Osciloscopio y generador de funciones

Anuncio
CARACTERÍSTICAS DEL OSCILOSCOPIO Y DEL GENERADOR DE FUNCIONES
Objetivo: Determinar las características del osciloscopio y del generador de funciones, así como el
funcionamiento y el propósito de cada una de sus partes.
EL OSCILOSCOPIO
Introducción:
El Osciloscopio es uno de los más importantes aparatos de medida que existen actualmente. Representan
gráficamente las señales que le llegan, pudiendo así observarse en la pantalla muchas más características de la
señal que las obtenidas con cualquier otro instrumento.
Hay muchos aparatos de medidas capaces de cuantificar diferentes magnitudes. Por ejemplo, el voltímetro
mide tensiones, el amperímetro intensidades, el vatímetro potencia, etc. Pero, sin duda alguna, el aparato de
medidas más importante que se conoce es el Osciloscopio. Con él, no sólo podemos averiguar el valor de una
magnitud, sino que, entre otras muchas cosas, se puede saber la forma que tiene dicha magnitud, es decir,
podemos obtener la gráfica que la representa.
Por otra parte los osciloscopios digitales tienen un aspecto totalmente distinto a los convencionales pero, si
entendemos el funcionamiento de los Analógicos, será muy sencillo aprender a manejar los digitales. Los más
modernos son, en realidad, un pequeño computador destinado a captar señales y a representarlas en la pantalla
de la forma más adecuada.
Éstos tratan de imitar los antiguos mandos de los osciloscopios normales, de modo que, en realidad, sólo es
necesario aprender la forma en que el aparato se comunica con el usuario. Esto se hace normalmente en forma
de menús que pueden aparecer en pantalla con opciones que el usuario puede elegir con una serie de
pulsadores.
1
La forma de trabajo de un osciloscopio consiste en dibujar una gráfica Una gráfica es una curva que tiene dos
ejes de referencia, el denominado de abscisas u horizontal y el eje de ordenadas o vertical. Para representar
cada punto de la gráfica tememos que dar dos coordenadas, una va a corresponder a su posición respecto al
eje horizontal y la otra va a ser su posición respecto al en el vertical. Esta gráficas se va a representar en la
pantalla que tienen todos los osciloscopios debido al movimiento de un haz de electrones sobre una pantalla
de fósforo que la parte interna del tubo de rayos catódicos. Para representar dicha señal sobre el tubo se realiza
una división en dos partes: señal vertical y señal horizontal. Dichas señales son tratadas por diferentes
amplificadores y, después, son compuestas en el interior del osciloscopio.
Un osciloscopio puede ser utilizado para estudiar propiedades físicas que no generan señales eléctricas, por
ejemplo las propiedades mecánicas. Para poder representar en pantalla del osciloscopio dichas propiedades, en
necesario utilizar transductores que conviertan la señal que le llega, en este caso la mecánica, en impulsos
eléctricos. Un osciloscopio es un aparato que basa su funcionamiento en la alta sensibilidad que tiene a la
tensión, por lo que se pondría entender como un voltímetro de alta impedancia. Es capaz de analizar con
mucha presión cualquier fenómeno que podamos transformar mediante un transductor en tensión eléctrica.
Con el osciloscopio se pueden hacer varias cosas, como:
• Determinar directamente el periodo y el voltaje de una señal.
• Determinar indirectamente la frecuencia de una señal.
• Determinar que parte de la señal es DC y cual AC.
• Localizar averías en un circuito.
• Medir la fase entre dos señales.
• Determinar que parte de la señal es ruido y como varia este en el tiempo.
En todos los osciloscopios podemos distinguir tres partes:
• la pantalla;
• un canal de entrada por las que se introduce la diferencia de potencial a medir;
• una base tiempos.
a) La pantalla es dónde vamos a ver las señales introducidas por el canal de entrada. Está fabricada con un
material fluorescente que se excita a la llegada de los electrones procedentes de un tubo de rayos catódicos
situado en el interior del osciloscopio. La intensidad de éste cañón y su enfoque sobre la pantalla se puede
controlar con los mandos 2 y 4 (ver figura 1).
b) El canal de entrada para la señal de tensión (en nuestro osciloscopio hay dos) consta de un borne para la
recepción de la señal (24 y 37 cuando se introduce utilizando una clavija coaxial, también conocida como
BNC); así como un conmutador giratorio para cada canal, 26 y 34, que permiten variar el factor de
amplificación de la señal según el eje Y. Esta amplificación posee un ajuste fino en 27 y 33, pero para
realizar medidas éste deberá estar en su posición CAL (posición tope en sentido horario).
Los conmutadores 26 y 34 nos señalan en su escala el número de voltios por división que tenemos. Esta será
la base con la cual podremos conocer el valor de nuestra señal. Cada cuadrado de la pantalla del osciloscopio
representa el valor elegido en la escala.
El error de medida se corresponde con la menor indicación en la pantalla (o la mitad) del aparato. Hay que
tener en cuenta que esta escala depende de la posición del mando 26 (también con el 34).
2
c) La base tiempos es vital en el osciloscopio para el registro de las señales que varían con el tiempo. El valor
de la tensión de la señal de entrada aparece según el eje vertical (eje Y) y la señal es representada en función
del tiempo según el eje horizontal (eje X). La escala de tiempos puede modificarse girando el conmutador 12.
Este mando posee también un ajuste fino en 13, y deberá estar girado a tope en sentido horario para que la
escala de medida de tiempos que indica el mando sea correcta.
Para ver correctamente en la pantalla señales que no permanecen estacionarias en la misma, el osciloscopio
dispone de un control de disparo ( trigger), que permite fijar en la pantalla todas las señales. Para que
funcione correctamente es necesario tener el botón 15 en posición NORM y girar el botón 16 hasta que se
establece la señal. Para ello el botón 14 no deberá estar presionado.
El error de medida se corresponde con la menor indicación en la pantalla (o la mitad) del aparato. Hay que
tener en cuenta que esta escala depende de la posición del mando 12.
GENERADOR DE FUNCIONES
Un Generador de Funciones es un aparato electrónico que produce ondas senoidales, cuadradas y triangulares,
además de crear señales TTL. Sus aplicaciones incluyen pruebas y calibración de sistemas de audio,
ultrasónicos y servo.
Este generador de funciones, específicamente trabaja en un rango de frecuencias de entre 0.2 Hz a 2 MHz.
También cuenta con una función de barrido la cual puede ser controlada tanto internamente como
externamente con un nivel de DC. El ciclo de máquina, nivel de offset en DC, rango de barrido y la amplitud
y ancho del barrido pueden ser controlados por el usuario.
1. Controles, Conectores e Indicadores
3
• Botón de Encendido (Power button). Presione este botón para encender el generador de funciones. Si se
presiona este botón de nuevo, el generador se apaga.
• Luz de Encendido (Power on light). Si la luz está encendida significa que el generador esta encendido.
• Botones de Función (Function buttons). Los botones de onda senoidal, cuadrada o triangular determinan el
tipo de señal provisto por el conector en la salida principal.
• Botones de Rango (Range buttons) (Hz). Esta variable de control determina la frecuencia de la señal del
conector en la salida principal.
• Control de Frecuencia (Frecuency Control). Esta variable de control determina la frecuencia de la señal del
conector en la salida principal tomando en cuenta también el rango establecido en los botones de rango.
• Control de Amplitud (Amplitude Control). Esta variable de control, dependiendo de la posición del botón
de voltaje de salida (VOLTS OUT), determina el nivel de la señal del conector en la salida principal.
• Botón de rango de Voltaje de salida (Volts Out range button). Presiona este botón para controlar el rango de
amplitud de 0 a 2 Vp−p en circuito abierto o de 0 a 1 Vp−p con una carga de 50W . Vuelve a presionar el
botón para controlar el rango de amplitud de 0 a 20 Vp−p en circuito abierto o de 0 a 10 Vp−p con una
carga de 50W .
• Botón de inversión (Invert button). Si se presiona este botón, la señal del conector en la salida principal se
invierte. Cuando el control de ciclo de máquina esta en uso, el botón de inversión determina que mitad de la
forma de onda a la salida va a ser afectada. La siguiente tabla, muestra esta relación.
4
• Control de ciclo de máquina (Duty control). Jala este control para activar esta opción.
• Offset en DC (DC Offset). Jala este control para activar esta opción. Este control establece el nivel de DC y
su polaridad de la señal del conector en la salida principal. Cuando el control esta presionado, la señal se
centra a 0 volts en DC.
• Botón de Barrido (SWEEP button). Presiona el botón para hacer un barrido interno. Este botón activa los
controles de rango de barrido y de ancho del barrido. Si se vuelve a presionar este botón, el generador de
funciones puede aceptar señales desde el conector de barrido externo (EXTERNAL SWEEP) localizado en
la parte trasera del generador de funciones.
• Rango de Barrido (Sweep Rate). Este control ajusta el rango del generador del barrido interno y el rango de
repetición de la compuerta de paso.
• Ancho del Barrido (Sweep Width). Este control ajusta la amplitud del barrido.
• Conector de la salida principal (MAIN output connector). Se utiliza un conector BNC para obtener señales
de onda senoidal, cuadrada o tiangular.
• Conector de la salida TTL (SYNC (TTL) output connector). Se utiliza un conector BNC para obtener
señales de tipo TTL.
Conclusiones:
Al hacer esta práctica pudimos comprender las características del osciloscopio y del generador de funciones y
pusimos en práctica el manejo de los controles para que nos dieran distintos tipos de onda.
5
Descargar