Historia de las redes Ethernet En 1972 comenzó el desarrollo de una tecnología de redes conocida como Ethernet Experimental- El sistema Ethernet desarrollado, conocido en ese entonces como red ALTO ALOHA, fue la primera red de área local (LAN) para computadoras personales (PCs). Esta re d funcionó por primera vez en mayo de 1973 a una velocidad de 2.94Mb/s. Las especificaciones formales de Ethernet de 10 Mb/s fueron desarrolladas en conjunto por las corporaciones Xerox, Digital (DEC) e Intel, y se publicó en el año 1980. Estas especificaciones son conocidas como el estándar DEC-Intel-Xerox (DIX), el libro azul de Ethernet. Este documento hizo de Ethernet experimental operando a 10 Mb/s un estándar abierto. La tecnología Ethernet fue adoptada para su estandarización por el comité de redes l ocales (LAN) de la IEEE como IEEE 802.3. El estándar IEEE 802.3 fue publicado por primera vez en 1985. El estándar IEEE 802.3 provee un sistema tipo Ethernet basado, pero no idéntico, al estándar DIX original. El nombre correcto para esta tecnología es IEEE 802.3 CSMA/CD, pero casi siempre es referido como Ethernet. IEEE 802.3 Ethernet fue adoptado por la organización internacional de estandarización (ISO), haciendo de un estándar de redes internacional. Ethernet continuó evolucionando en respuesta a los cambios en tecnología y necesidades de los usuarios. Desde 1985, el estándar IEEE 802.3 se actualizó para incluir nuevas tecnologías. Por ejemplo, el estándar 10BASE-T fue aprobado en 1990, el estándar 100BASE-T fue aprobado en 1995 y Gigabit Ethernet sobre fibra fue aprobado en 1998. Ethernet es una tecnología de redes ampliamente aceptada con conexiones disponibles para PCs, estaciones de trabajo científicas y de alta desempeño, mini computadoras y sistemas mainframe. La arquitectura Ethernet provee detección de errores pero no corrección de los mismos. Tampoco posee una unidad de control central, todos los mensajes son transmitidos a través de la red a cada dispositivo conectado. Cada dispositivo es responsable de reconocer su propia dirección y aceptar los mensajes dirigidos a ella. El acceso al canal de comunicación es controlado individualmente por cada dispositivo utilizando un método de acceso probabilístico conocido como disputa (contention). Objetivos de Ethernet Los objetivos principales de Ethernet son consistentes con los que se han convertido en los requerimientos básicos para el desarrollo y uso de redes LAN. Los objetivos originales de Ethernet son: Simplicidad Las características que puedan complicar el diseño de la red sin hacer una contribución substancial para alcanzar otros objetivos se han excluido. Bajo Costo Las mejoras tecnológicas van a continuar reduciendo el costo global de los dispositivos de conexión. Compatibilidad Todas las implementaciones de Ethernet deberán ser capaces de intercambiar datos a nivel de capa de enlace de datos. Para eliminar la posibilidad de variaciones incompatibles de Ethernet, la especificación evita características opcionales. Direccionamiento flexible El mecanismo de direccionamiento debe proveer la capacidad de dirigir datos a un único dispositivo, a un grupo de dispositivos, o alternativamente, difundir (broadcast) el mensaje a todos los dispositivos conectados a la red. Equidad Todos los dispositivos conectados deben tener el mismo acceso a la red. Progreso Ningún dispositivo conectado a la red, operando de acuerdo al protocolo Etheret, debe ser capaz de prevenir la operación de otros dispositivos. Alta velocidad La red debe operar eficientemente a una tasa de datos de 10 Mb/s. Bajo retardo En cualquier nivel de tráfico de la red, debe presentarse el mínimo tiempo de retardo posible en la transferencia de datos. Estabilidad La red debe ser estable bajo todas las condiciones de carga. Los mensajes entre gados deben mantener un porcentaje constante de la totalidad del tráfico de la red. Mantenimiento El diseño de Ethernet debe simplificar el mantenimiento de la red, operaciones y planeamiento. Arquitectura en capas El diseño Ethernet debe ser especificado en término de capas de forma de separar las operaciones lógicas de los protocolos de capa de enlace de las especificaciones de comunicaciones físicas del canal de comunicación. Redes Locales (LAN) Las redes son conjuntos de ordenadores independientes que se comunican entre si a través de un medio de red compartido. Las redes de área local son aquellas que conectan una red de ordenadores normalmente confinadas en un área geográfica, como un solo edificio o un campus de la universidad. Las LAN, sin embargo, no son necesariamente simples de planificar, ya que pueden unir muchos centenares de ordenadores y pueden ser usadas por muchos miles de usuarios. El desarrollo de varias normas de protocolos de red y medios físicos han hecho posible la proliferación de LAN's en grandes organizaciones multinacionales, aplicaciones industriales y educativas. Redes de Area Extensa (WAN) A menudo una red se localiza en situaciones físicas múltiples. Las redes de área extensa conectan múltiples redes LAN que están geográficamente dispersas. Esto se realiza conectando las diferentes LAN's mediante servicios que incluyen líneas telefónicas alquiladas (punto a punto), líneas de teléfono normales con protocolos síncronos y asíncronos, enlaces vía satélite, y servicios portadores de paquetes de datos. Internet Con el meteórico auge en demanda para la conectividad, Internet se ha convertido en la autopista de comunicaciones para millones de usuarios. Internet fue usado inicialmente por el ejército y las instituciones académicas, pero ahora es un cauce de información completo para cualquiera, en todas las formas de información y comercio. Los sitios World Wide Web (WWW) de Internet proporcionan ahora recursos personales, educativos, políticos y eco nómicos a cada esquina del planeta. Intranet Con los avances hechos en software basado en navegadores para Internet, hay ahora un fenómeno denominado Intranet que han desarrollado corporaciones y otras organizaciones privadas. Una Intranet es una red privada que utiliza herramientas del tipo de Internet, pero disponible sólo dentro de esa organización. Una Intranet permite un modo de acceso fácil a información corporativa para los empleados a través del mismo tipo de herramientas que emplean para moverse fuera de la compañía. Ethernet Ethernet es la capa física más popular la tecnología LAN usada actualmente. Otros tipos de LAN incluyen Token Ring, Fast Ethernet, FDDI, ATM y LocalTalk. Ethernet es popular porque permite un buen equilibrio entre velocidad, costo y facilidad de instalación. Estos puntos fuertes, combinados con la amplia aceptación en el mercado y la habilidad de soportar virtualmente todos los protocolos de red populares, hacen a Ethernet la tecnología ideal para la red de la mayoría los usuarios de la informática actual. La norma de Ethernet fue definida por el Instituto para los Ingenieros Eléctricos y Electrónicos (IEEE) como IEEE Standard 802.3. Adhiriéndose a la norma de IEEE, los equipo y protocolos de red pueden interoperar eficazmente. Fast Ethernet Para redes Ethernet que necesitan mayores velocidades, se estableció la norma Fast Ethernet (IEEE 802.3u). Esta norma elevó los límites de 10 Megabits por segundo (Mbps.) de Ethernet a 100 Mbps. con cambios mínimos a la estructura del cableado existente. Hay tres tipos de Fast Ethernet: 100BASE-TX para el uso con cable UTP de categoría 5, 100BASE-FX para el uso con cable de fibra óptica, y 100BASE-T4 que utiliza un par de cables más para permitir el uso con cables UTP de categoría 3. La norma 100BASE-TX se ha convertido en la más popular debido a su íntima compatibilidad con la norma Ethernet 10BASE-T. En cada punto de la red se debe determinar el número de usuarios que realmente necesitan las prestaciones más altas, para decidir que segmentos del troncal necesitan ser específicamente reconfigurados para 100BASE-T y seleccionar el hardware necesario para conectar dichos segmentos "rápidos" con los segmentos 10BASE-T existentes. Protocolos Los protocolos de red son normas que permiten a los ordenadores comunicarse. Un protocolo define la forma en que los ordenadores deben identificarse entre si en una red, la forma en que los datos deben transitar por la red, y cómo esta información debe procesarse una vez que alcanza su destino final. Los protocolos también definen procedimientos para gestionar transmisiones o "paquetes" perdidos o dañados. IPX (para Novell NetWare), TCP/IP (para UNIX, WindowsNT, Windows 95/98 y otras plataformas), DECnet (para conectar una red de ordenadores Digital), AppleTalk (para los ordenadores Macintosh), y NetBIOS/NetBEUI (para redes LAN Manager y WindowsNT) son algunos de los protocolos más populares en la actualidad. Aunque cada protocolo de la red es diferente, todos pueden compartir el mismo cableado físico. Este concepto es conocido como "independencia de protocolos," lo que significa que dispositivos que son compatibles en las capas de los niveles físico y de datos permiten al usuario ejecutar muchos protocolos diferentes sobre el mismo medio físico. Medios Físicos Una parte importante en el diseño e instalación de una red Ethernet es la correcta selección del medio físico apropiado al entorno existente. Actualmente, se emplean, básicamente, cuatro tipos de cableados o medios físicos: coaxial grueso ("thickwire") para re des 10BASE5, coaxial fino ("thinwire") para redes 10BASE2, par trenzado no apantallado (UTP) para redes 10BASE-T o 100Base-TX y fibra óptica para redes 10BASE-FL o 100BASE-FX. Esta amplia variedad de medios físicos refleja la evolución de Ethernet y la fle xibilidad de la tecnología. Cada tipo tiene sus ventajas e inconvenientes. La adecuada selección del tipo de medio apropiado para cada caso, evitará costes de recableado, según vaya creciendo la red. Cable Coaxial Grueso El cable coaxial grueso o Ethernet 10Base-5, se empleaba, generalmente, para crear grandes troncales ("backbones"). Un troncal une muchos pequeños segmentos de red en una gran LAN. El cable coaxial grueso es un troncal excelente porque puede soportar muchos nodos en una topología de bus y el segmento puede ser muy largo. Puede ir de un grupo de trabajo al siguiente, donde las redes departamentales pueden ser interconectadas al troncal. Un segmento de cable coaxial grueso puede tener hasta 500 metros de longitud y máximo de 100 nodos conectados. El cable coaxial grueso es pesado, rígido, caro y difícil de instalar. Sin embargo es inmune a niveles corrientes de ruido eléctrico, lo que ayuda a la conservación de la integridad de las señales de la red. El cable no ha de ser cortado para instalar nuevos nodos, sino "taladrado" con un dispositivo comúnmente denominado "vampiro". Los nodos deben de ser espaciados exactamente en incrementos de 2.5 metros para prevenir la interferencia de la señales. Debido a esta combinación de ventajas e inconvenientes, el cable coaxial grueso es más apropiado, aunque no limitado a, aplicaciones de troncal. Cable Coaxial Fino El cable coaxial fino, o Ethernet 10Base-2, ofrece muchas de las ventajas de la topología de bus del coaxial grueso, con un coste menor y una instalación más sencilla. El cable coaxial fino es considerablemente más delgado y más flexible, pero sólo puede soportar 30 nodos, cada uno separado por un mínimo de 0.5 metros, y cada segmento no puede superar los 185 metros. Aún sujeto a estas restricciones, el cable coaxial fino puede ser usado para crear troncales, aunque con menos nodos. Un segmento de cable coaxial fino esta compuesto por muchos cables de diferentes longitudes, cada uno con un conector de tipo BNC en cada uno de los extremos. Cada cable se conecta al siguiente con un conector de tipo "T", donde se necesita instalar un nodo. Los nodos pueden ser conectados o desconectados de la "T", según se requiera, sin afectar al resto de la red. El cable coaxial fino es una solución de bajo coste, reconfigurable, y la topología de bus le hace atractivo para pequeñas redes, redes departamentales, pequeños troncales, y para interconectar pocos nodos en una sola habitación, como en un laboratorio. Par Trenzado El cable de par trenzado no apantallado, o UTP, ofrece muchas ventajas respecto de los cables coaxiales, dado que los coaxiales son ligeramente caros y requieren algún cuidado durante la instalación. El cable UTP es similar, o incluso el mismo, al cable telefónico que puede estar instalado y disponible para la red en muchos edificios. Hoy, los esquemas de instalación de cableado más populares son 10BASE-T y 100BASE-TX, tanto con cable de par trenzado de tipo apantallado como sin apantallar (STP y UTP, respectivamente). Como hemos dicho es un cable similar al telefónico y existe una gran variedad de calidades; a mejor calidad, mejores prestaciones. El cable de Categoría 5 es el de mejor calidad, más caro y ofrece soporte para la transmisión de hasta 100 Mbps. (megabits por segundo). Los cables de Categoría 4 y Categoría 3 son menos caros, pero no pueden soportar las mismas velocidades para la transmisión de los datos, como 10 Mbps. (10Base-T). La norma 100BASE-T4 permite soportar Ethernet a 100 Mbps. sobre cable de Categoría 3, pero éste es un esquema torpe y por consiguiente 100BASE-T4 ha visto muy limitada su popularidad. El cable de Categoría 4 soporta velocidades de hasta 20 Mbps., y el de Categoría 3 de hasta 16 Mbps. Los cables de Categoría 1 y 2, los más asequibles, fueron diseñados principalmente para aplicaciones de voz y transmisiones de baja velocidad (menos de 5 Mbps.), y no deben de ser usados en redes 10Base-T. Los segmentos UTP están limitados a 100 metros. Fibra Optica Para las aplicaciones especializadas son populares los segmentos Ethernet de fibra óptica, o 10BASE-FL. El cable de fibra óptica es más caro, pero es inestimable para las situaciones donde las emisiones electrónicas y los riesgos medioambientales son una preocupación. El cable de fibra óptica puede ser útil en áreas donde hay grandes cantidades de interferencias electromagnética, como en la planta de una fábrica. La norma Ethernet permite segmentos de cable de fibra óptica de dos kilómetros de longitud, haciendo Ethernet a fibra óptica perfecto para conectar nodos y edificios que de otro modo no podrían ser conectados con cableados de cobre. Lo más importante a resaltar sobre los concentradores es que sólo permiten a los usuarios compartir Ethernet. Una red de repetidores es denominada "Ethernet compartido", lo que implica que todos los miembros de la red están contendiendo por la transmisión de datos hacia una sola red (dominio de colisión). Esto significa que miembros individuales de una red compartida sólo consiguen un porcentaje del ancho de banda de red disponible. El número y tipo de concentradores en cualquier dominio de colisión para Ethernet 10 Mbps. está limitado por las reglas siguientes: Tipo de Red Máx. nº de Nodos por Segmento Distancia Máx. por Segmento 10Base-T 2 100 m. 10Base-2 30 185 m. 10Base-5 100 500 m. 10Base-FL 2 2000 m. El nuevo estándar de Ethernet de 10 Gigabit ¿Por qué necesitamos Ethernet de 10 Gigabits? En junio de 2002 se ratificó el estándar IEEE 802.3ae de Ethernet de 10 Gigabit, que continúa con lo ya establecido por anteriores estándares de Ethernet de separación entre la capa MAC (Media Access Control ) y la capa Phy (Physical Media Layer ). Soporta dos tipos de PHY: LAN-PHY y WAN-PHY. LAN-PHY se puede utilizar en redes de fibra privadas tales como: fibra de monomodo (distancias amplias y largas), fibra multimodo (distancia corta) para cubrir distancias de hasta 40 kilómetros. WAN PHY se puede utilizar con los interfaces SONET/SDH OC-192/STM-64 existentes que proporcionan soporte a zonas extensas en redes metropolitanas, nacionales e incluso internacionales. En un principio, los estándares de 10 Gigabits fueron especificados para interfaces de fibra óptica exclusivamente. Pero, más recientemente, se ha acordado el estándar 10GBase-CX (IEEE 802.3ak) para utilizar cableado de cobre de alta calidad desarrollado inicialmente para el estándar de cableado de centros de datos InfiniBand. También se está desarrollando un estándar a utilizar con cable de par trenzado sin apantallar (Cat. 5 o Cat. 7). La proliferación de aplicaciones multimedia, que combinan imágenes, vídeo y sonido, ha hecho que los archivos de más de 50 MB empiecen a ser habituales. Los usuarios esperan que aparezcan imágenes instantáneamente; sólo Ethernet con capacidad de transmisión de 10 Gigabits puede garantizar este nivel de tiempo de respuesta. El despliegue constante de PCs de alto rendimiento y estaciones de trabajo está incrementando la presión sobre la infraestructura de la red. Aún cuando los actuales switches Fast Ethernet con uplinks a Gigabit permiten conectar varios PCs equipados con Fast Ethernet a 100 Mbps, su uso no es el apropiado para una compañía con varios PCs, estaciones de trabajo y servidores a Gigabit. En estos entornos son absolutamente necesarios los switches de alto rendimiento para Ethernet a Gigabit con capacidad de uplink a 10 Gigabits para proporcionar los niveles adecuados de control, prestaciones de la red, seguridad y fiabilidad. A medida que los precios de las últimas generaciones de componentes de 10 Gigabits bajen inevitablemente, la mayoría de los servidores de archivo y dispositivos de almacenamiento de datos comenzarán a soportar troncales de 10 Gigabits. Esto permitirá conectar más PCs y estaciones de trabajo con capacidad Gigabit a velocidad plena.