PROYECTO EXPERIMENTAL DE FISICA III: “ANILLOS DE THOMSON” INTEGRANTES: - FRIAS SILVA, JULIO ARNOLDO Ing. Civil jfriassilva@hotmail.com VALLE, CAROLINA Ing. Civil caro_v46@hotmail.com AÑO: - 2010 1 • DESCRIPCIÓN DEL PROYECTO: El experimento consiste en medir la fuerza que actúa en un anillo de aluminio en presencia de un campo magnético externo, generado por un solenoide con núcleo de hierro, y comprobar los orígenes de la misma. Se comprobó que la ley de Faraday es condición necesaria pero no suficiente para explicar la levitación del anillo. La fuerza que actúa en el mismo se debe a una diferencia de fase entre los campos longitudinal y transversal. Se observa que el anillo “flota” en el aire a una cierta altura de equilibrio en la que se anulan la fuerza peso y la fuerza media que ejerce el campo magnético externo sobre la corriente inducida en el anillo. Analizamos que el efecto depende de las propiedades eléctricas y magnéticas del material elegido. • OBJETIVOS: - • Encontrar el origen de la fuerza que actúa sobre el anillo. Estudiar la dependencia de la fuerza media del flujo magnético en el anillo. Estudio del fenómeno de levitación con anillos de materiales de diferentes propiedades magnéticas y eléctricas. MATERIALES: - - - Carrete de plástico: para devanar el alambre de cobre. Longitud (l) = 6 cm. 0.06m. Radio (R) = 1cm. 0.01m. Barra de hierro: para el núcleo del solenoide. Se utilizó este material por su alta permeabilidad. Permite que un mayor número de líneas de campo atraviesen el anillo. Alambre de cobre: utilizamos un cable de sección relativamente grande para evitar el sobrecalentamiento del mismo. La resistencia del cable era muy baja (despreciable), lo que a su vez nos permitió un mayor paso de corriente. Diámetro (d) = 1mm. Sección (s) = 0.8 mm2. Siguiendo la relación 1mm2 6A, calculamos nuestra corriente máxima (Is máx.) y es: Is máx. = 4.8A. Solenoide: Núcleo de hierro. Longitud (l) = 0.06m. Número de vueltas (N) = 450. Radio (R) = 0.02m. 2 - - - - - - Transformador: para bajar la tensión. Descripción: sus componentes son dos bobinas o devanados, aislados eléctricamente uno del otro pero enrollados en el mismo núcleo, que por lo general está hecho de hierro, con una permeabilidad relativa muy grande. Esto mantiene las líneas de campo magnético dentro del núcleo. El devanado al que se le suministra energía se llama primario y el devanado que toma energía se llama secundario. Funcionamiento: La fuente de ca ocasiona una corriente alterna en el primario, lo que establece un flujo alterno en el núcleo; esto induce una fem en cada devanado. La fem inducida en el secundario da lugar a una corriente alterna en el secundario, y esto entrega energía al dispositivo que está conectado al secundario. Aplicando la ley de Faraday llegamos a la relación: ε 2 N2 = ε 1 N1 El transformador utilizado por nosotros es reductor, es decir ε 2 < ε 1 o Entrada: ε 2 = 220V. o Salida: ε 1 = 15V. Anillos de aluminio cuadrado: Espesor = 2mm. Altura = 1.6cm. Lado = 1.5 cm. Masa = 6.1g. Anillo de aluminio circular grande: Espesor = 1 mm. Altura = 3.4 cm. Diámetro = 1.9 cm. Masa = 6.1g. Anillo de aluminio circular mediano: Espesor = 1 mm. Altura =1.9 cm. Diámetro = 1.9 cm. Masa = 3.3g. Anillo de aluminio chico: Espesor = 1 mm. Altura = 8 mm. Diámetro = 1.9 cm. Masa = 1.5g. Anillos de plástico de diferentes tamaños y masas Anillo de hierro 3 • Variador de tensión: para el estudio de la variación de la altura con la corriente. Multímetro: para medir la corriente que circulaba cuando se estudió la variación de la altura con la corriente. Balanza: para medir la masa de los anillos. Cámara fotográfica. EXPERIMENTO: El objeto principal del proyecto fue analizar el origen de la fuerza que actúa en el anillo en presencia del campo magnético externo. La corriente alterna que circula por el solenoide genera un campo magnético que varía con el tiempo. Dicho campo es paralelo al eje en el interior del solenoide, pero por fuera del mismo las líneas de campo divergen, como muestra la figura: La fuerza magnética sobre el anillo entonces es: → → → F = I a ⋅ l ×B Por la forma del campo de la parte exterior al solenoide, a la fuerza F la descomponemos en dos direcciones: - A lo largo del eje “z”. En la dirección radial. Pero las componentes radiales se anulan entre sí, entonces nuestra resultante tiene dirección “z” y su valor es: → F z = −2π ⋅ra ⋅ia ⋅Br con 4 ia = − v a − V0 a ⋅ cos(ωt ) = Ra Ra i s = I 0 s ⋅ sen(ωt ) Br es proporcional a is, y por lo tanto a sen (wt), mientras que ia es proporcional a –cos (wt). De éste modo podemos escribir la fuerza F sobre el anillo de la forma: Fz = c ⋅ sen(2ωt ) donde c es una constante de proporcionalidad. Analizando el valor medio de la fuerza en medio período (P = π/ w) encontramos que es 0. π ω v c ⋅ω < F >= sen(2ωt ) dt = 0 π ∫0 Por lo tanto, la ley de Faraday es condición necesaria pero no suficiente para explicar el fenómeno de levitación. - El anillo como circuito R-L conectado a una fem alterna. Quedó demostrado que si consideramos el anillo únicamente como una resistencia no se produce levitación. Para que la fuente sobre el anillo tenga valor medio distinto de 0 debe existir un desfasaje φ entre la fem en el anillo y la corriente inducida en el mismo, y este desfasaje se produce si consideramos que el anillo tiene una autoinducción L no nula. El anillo es entonces un circuito R-L tal que: Como Vemos en la figura: tgϕ = ia = V L ωL = VR R Va Za Z a = ω 2 L2 + R 2 V0 a = M ⋅ I 0 s ⋅ ω 5 Reemplazando y transformando cos (α-β) = cosα senβ + senα cosβ ia = − M ⋅ I 0s ⋅ ω ω 2 L2 + R 2 ( cos(ωt ) ⋅ cos ϕ + sen(ωt ) ⋅ senϕ ) con R Z ωL senϕ = Z cos ϕ = Luego: ia = − M ⋅ I 0s ⋅ ω ( R cos(ωt ) + ωLsen(ωt ) ) ω 2 L2 + R 2 Sabiendo que Br = k (z) is encontramos la expresión final de la fuerza que es: π ⋅ ra ⋅ k ( z ) ⋅ M ( z ) ⋅ I 0 s 2 Fz = L • ω 2 L2 2 2 2 ω L + R PARTE PRÁCTICA: Los materiales con los que contábamos eran: – Carrete: r = 0,01m. – Barra de hierro: r = 0,005 m. – Transformador: 15 V. Al contar con un transformador de 15 V, decidimos incluirlo en nuestro experimento para protección del circuito. Si la corriente que pasaría por el solenoide al conectarlo en serie con este transformador no fuera suficiente, habríamos de considerar reemplazarlo por un foco. Contábamos con alambres de varios espesores y decidimos que era más seguro trabajar con uno de una sección relativamente grande. Esto evitaría sobrecalentamientos y nos permitiría un mayor paso de corriente. Luego nos dispusimos a hacer los cálculos: Según la relación: 1 mm2 (sección del alambre) ___ 6 A (corriente máxima que circula), y midiendo el diámetro del alambre con un micrómetro, encontramos que la corriente máxima que podía circular por nuestro alambre era de 4,8 A. Decidimos por seguridad no superar los 4 A. 6 A partir de la ecuación: V = i ⋅ z , con z = ω ⋅ L (considerando la resistencia del cable despreciable), procedimos a calcular L. V 1) L = (trabajando con imáx = 3A) iω L = 0,02 H Con la fórmula: N 2 µ 0 kS 2) L = , encontramos que teníamos 2 incógnitas por l determinar: el número de vueltas del solenoide y la constante de permeabilidad del núcleo. Este problema fue más complicado de lo que nos imaginábamos, ya que, según la bibliografía consultada, la constante del hierro era variable y, además, nos dimos cuenta que el volumen que ocupaba el hierro en el núcleo era mucho menor que el que pensábamos, ya que el radio del solenoide resultó ser 0,01 m más grande del que habíamos medido en un principio. Al espacio sobrante lo consideramos vacío. Sabíamos que kFe variaba entre 200 y 5000, valores que diferían mucho de la del vacío. Igualando 1) y 2) analizamos los dos casos extremos: Si k = 1000, entonces N = 28. Si k = 1, entonces N = 870. Por más que intentamos, no encontramos un método analítico que nos pareciera adecuado para el cálculo. Optamos entonces por encontrar el valor de k de manera experimental. Decidimos fijar un valor de N, medir la corriente con el multímetro y a partir de allí determinar nuestra k. Considerando que N variaba entre 28 y 870 decidimos fijarlo en un valor promedio. Elegimos N = 450. Nada nos aseguraba que conectando el transformador de 15V la corriente no superaría los 4 A con nuestro valor fijado de N. Ante esta duda decidimos ir incrementando la tensión con un variador de tensión y con un amperímetro medir la corriente que pasaba. La conexión fue de la siguiente forma: A 7 Se logró llegar a los 15 V con una corriente de 2,8 A. Calculando encontramos nuestra k = 5. Suponemos que el valor tan bajo de k se debe a que aproximadamente un 94% del núcleo del solenoide es vacío. A) Estudio de cómo varía la altura con la fuerza Para hacer este análisis usamos anillos de diferentes tamaños, masas y formas. Medimos las masas con una balanza electrónica. Trabajamos siempre con un voltaje de 15V alterno. Los valores obtenidos fueron: 8 Masa del anillo [g.] 1.5 3.3 6.1 9.4 12.2 Altura de elevación [cm.] 5.5 6.0 4.5 3 2.3 Como observamos en la tabla, en las 4 últimas mediciones la altura va disminuyendo mientras los anillos de aluminio van aumentando su peso, pero en las dos primeras podemos observar que la altura de levitación del segundo (más masa) es mayor que la del primero, entonces concluimos lo siguiente: - La fuerza es más intensa en la parte de abajo (más cercano al solenoide) que en la parte superior (más lejos del solenoide). Esto se debe a que la cantidad de líneas de campo que atraviesan el interior del anillo aumenta a medida que nos acercamos al núcleo. Entonces, a medida que el flujo es mayor, es mayor la fem inducida en el anillo y es mayor la corriente. En definitiva concluimos que la fuerza sobre el anillo es proporcional a la corriente inducida en el anillo y a las líneas de campo magnético que atraviesan su interior. Con un multímetro corroboramos que la corriente aumentaba a medida que aumentaba la masa. - Al ver los resultados de las dos primeras mediciones, y viendo que la única diferencia entre los dos anillos es su altura, llegamos a la conclusión de que la corriente inducida depende de la cantidad de material conductor que hay en el objeto inducido. Para comprobar esto realizamos la siguiente experiencia: B) Estudio de cómo varía la altura de acuerdo a la cantidad de material conductor en el anillo. El experimento consiste en lo siguiente: en vez de poner el anillo mediano (3.3 g.) (que es de aluminio) pusimos el primero y más pequeño (que también es de aluminio pero de menor masa) e igualamos las masas poniendo anillos de un material no conductor como el plástico. 9 Luego realizamos otra medición pero poniendo el segundo anillo (m = 3.3g.) y lo igualamos en masa al tercer anillo (m = 6.1g.) con plástico. Finalmente realizamos una tercera medición con una masa total de 6.1g. de los cuales 1.5g. era aluminio y lo restante material no conductor (papel, cinta de tela y plástico). Los resultados fueron los siguientes: Masa total [g.] 3.3 6.1 6.1 Masa de aluminio [g.] 1.5 3.3 1.5 Masa de material no conductor [g.] 1.8 2.8 4.6 Elevación [cm.] 1.1 2.5 0 Comparando con los resultados anteriores, Masa [g.] 3.3 6.1 Elevación 1 [cm.] 6.0 4.5 Elevación 2 [cm.] 1.1 2.5 Elevación 3 [cm.] 0 concluimos: - - La corriente inducida en el anillo depende de la cantidad de material conductor que tiene dicho objeto, mientras más conductor tengo, mayor es la corriente inducida. Como explicamos anteriormente, la fuerza es proporcional al campo que atraviesa el anillo, y el flujo es proporcional a la corriente inducida y la corriente depende de la cantidad de material conductor que 10 haya en el anillo, entonces la fuerza depende también de dicha característica del objeto mencionado. C) Estudio de cómo varía la altura de levitación respecto a la corriente que circula en el solenoide. Utilizando un variador de tensión hicimos cambiar la corriente que circulaba por el solenoide. Con un multímetro digital medimos dicha corriente. Nuestro objetivo era analizar la altura a la que alcanzaba el equilibrio la fuerza con el peso del anillo. Los valores medidos fueron: Corriente [A] 1.59 1.93 2.24 2.60 2.95 Altura [cm.] 4.2 5.5 6.7 7.6 8.5 Altura vs. Corriente 9 8 7 Altura 6 5 4 3 2 1 0 0 0,5 1 1,5 2 2,5 3 3,5 Corriente Observamos que la altura a la que levitaba el anillo aumentaba a medida que la corriente que circulaba era mayor, y como muestra la gráfica, la relación entre ambos parámetros es lineal. Al aumentar la corriente aumenta el flujo por el anillo y la fem y la corriente inducidas en el anillo aumentan. Por consiguiente la fuerza 11 es mayor. Considerando nuevamente la forma de las líneas del campo magnético del solenoide es lógico que la fuerza disminuya con la altura. D) Imantación del núcleo del solenoide Como ya dijimos, el material que colocamos para el núcleo del solenoide fue hierro. Esto de debe a la alta permeabilidad del material ya que es ferromagnético. Esta característica le permite ser fuertemente magnetizado por el campo de un imán permanente y es atraído hacia el imán. La barra de hierro en nuestro caso actúa como imán cuando circula corriente, y por su permeabilidad permite que se pierdan pocas líneas de campo. Un material paramagnético como el aluminio también es atraído hacia un imán permanente, pero la permeabilidad de estos materiales es tan pequeña en comparación con los ferromagnéticos que la atracción es muy débil. Ahora en vez de usar un anillo de aluminio, usamos una argolla de carpeta, que está hecha de hierro (material ferromagnético). Al hacer circular corriente pudimos observar que éste no levitaba y encima era atraído por el núcleo de hierro. Por lo tanto llegamos a las siguientes conclusiones: - La barra atrae a la argolla de la misma manera que un imán permanente atrae elementos ferromagnéticos, es decir que cuando circula corriente, la barra sería como un imán. - La levitación no sólo depende de las propiedades eléctricas del material, sino también de las magnéticas. El cd estregado con el informe incluye un video que lo muestra. E) Estudio con un anillo abierto Hicimos una prueba de levitación con un anillo que no formaba un circuito cerrado, y como era de esperar no se levantó. También se incluye un video de esta prueba en el cd entregado. 12 • BIBLIOGRAFÍA: - FREEDMAN – YOUNG – SEARS – ZEMANSKI: “FISICA UNIVERSITARIA” VOLUMEN 2, DUODÉCIMA EDICIÓN. HTTP://WWW.SC.EHU.ES/SBWEB/FISICA/ELECMAGNET/I NDUCCION/ANILLO/ANILLO.HTM HTTP://WWW.FISICARECREATIVA.COM/INFORMES/INFOR _EM/COMUNIDAD_ANILLO2K3.PDF 13