Any questions?…. ealfonso@rmocfis.uprm.edu Are internal waves altering the ocean’s carbon cycle? 1 Alfonso , 1 Capella , 1 López , 1 Dieppa Edwin Jorge José M. and Angel 1Departmento de Ciencias Marinas, Universidad de Puerto Rico, Mayagüez, PR ABSTRACT Higher vertical diffusivity values, Kd > 50 x 10-4 m-2 s-1 were measured between SEP-DEC 1997 and MAY-OCT 2000 in oceanic waters of the Mona Passage. Extremely low values of the Richardson number, Rig < 0.25 and increments in Kd correspond to increase seiching in the south-west coast of Puerto Rico. The link between both processes are the local generation of internal waves. The increases in activity are strictly correlated with the lunar cycle and changes in the stratification of the water column due to the influence of the Orinoco River. During the same period, visits to the stations ADCP1 and InWaPE revealed increases in biomass and primary productivity in the crest and trough of the internal tide. In ADCP1 productivity increased between 0.2-0.6 mg C m-3 h-1 and in the near shelf-break station (InWaPE) incremented by 7 mg C m-3 h-1. Because the internal tide pervades the global ocean this phenomenon could potentially imply that conventional methods may underestimate primary productivity. Estimates of the carbon fixation by phytoplankton could be underestimated, especially near the continental margins, island margins and passages between islands. Please follow the equation: Breve explicación en español: El primer recuadro muestra una situación correspondiente a los meses de enero-marzo. Durante esa época del año la influencia del Rio Orinoco (verde) en nuestras aguas es mínima. El picnoclino está profundo (línea negra continua), el valor de la frecuencia de BV es bajo y la pendiente del rayo es alta (>15°) . Por lo tanto la marea interna se genera en pendientes topograficas más elevadas en los márgenes insulares. La difusividades verticales (color rojo) son altas a lo largo del rayo de enegia (linea negra punteada) pero las ondas no imparten mucha energia a la plataforma y los seiches (elevación color gris) son de poca altura. En el segundo recuadro se representan las condiciones entre septiembre y noviembre. Marcada influencia del R. Orinoco en la estratificación, BV alto y pendientes del rayo es bastante acostada (<1°). Las marea interna se puede generar con facilidad en el beril y aumentar la difusividades en profundidades por encima de los 60 m. La energia de las ondas puede transferirse mejor a las aguas de la plataforma y excitar la actividad de seiches. En ambos recuadros la condiciones astronómicas son favorables (luna en cuarto creciente) Astronomical Conditions + Low ray slope + Bathymetry = Energetic internal tide Enhanced vertical mixing + Seiches+ Increased primary productivity 2 Tidal force index values for year 2000 4 F M A M J J A S O N D Slope along the north-south direction at depths < 200 m -20 60 -120 -140 -160 55 + -180 FFT smoothing with a fortnightly window index J F M A M J J 2 S O N I. Desecheo 4 D 6 8 Month 10 0.6 -- 0.8 0.4 -- 0.6 0.2 -- 0.4 0 -- 0.2 -0.2 -- 0 -0.4 -- -0.2 -0.6 -- -0.4 -0.8 -- -0.6 Mayaguez 18.0 -200 A Rincón I. Mona 12 B Date (2000) -68.0 -67.5 -67.0 -66.5 = 22.0 22.5 23.5 23.0 -40 24.0 -100 Critical slope colored red and blue degrees Aguadilla -60 -80 -100 -120 26.0 65 -80 Pichincho 26.5 26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0 21.5 21.0 24.5 + 70 18.5 4.500 -- 5.000 4.000 -- 4.500 3.500 -- 4.000 3.000 -- 3.500 2.500 -- 3.000 2.000 -- 2.500 1.500 -- 2.000 1.000 -- 1.500 0.5000 -- 1.000 0 -- 0.5000 25.5 75 Degrees 25.0 -60 t (kg m ) -20 Depth (m) 80 -3 Latitude -40 Depth (m) 85 -140 ------------- 27.0 26.5 26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0 21.5 8 1.0 0.8 Jul 3 Jul 23 Aug 12 Sep 1 Sep 21 8 Oct 11 9 10 11 12 13 14 15 16 17 10 12 14 16 -3 PP mg C m h 1.0 Seiche energy 0.4 0.4 0.2 0.2 0.0 0.0 Difusividad Vertical Turbulenta (Pacanowski y Philander 1981) -2 -1 m s 0.007 -- 0.008 0.006 -- 0.007 0.005 -- 0.006 0.004 -- 0.005 0.0030 -- 0.004 0.0020 -- 0.0030 1E-3 -- 0.0020 + -40 -60 -80 -100 -120 -140 -1 2.60 -- 2.80 2.40 -- 2.60 2.20 -- 2.40 2.00 -- 2.20 1.80 -- 2.00 1.60 -- 1.80 1.40 -- 1.60 1.20 -- 1.40 1.00 -- 1.20 0.800 -- 1.00 0.600 -- 0.800 0.400 -- 0.600 0.200 -- 0.400 0 -- 0.200 -20 0.8 0.6 Longitude Ray slope in station ADCP1 (10/oct/2000) Jun 13 0.6 -40 -60 -80 -100 -120 -140 -160 Hour (10/oct/2000) -66.0 May 24 160 180 200 220 240 260 280 -160 7 Sigma-T and Primary Productivity Sigma-t y Productividad Primariain ADCP1 Seiche energy in the southwest of PR and vertical diffusivity K at ADCP1 Internal tide at station ADCP1 (10/OCT/2000) Normalized seiche energy 90 J Depth (m) 0 50 7 5y6 Ray Slope through the year in CaTS serial station 95 -160 8 10 12 14 16 Hora 160 180 200 220 240 260 280 Yearday 2000 Hour Slope along the east-west direction at depths < 200 m -20 Internal tide at station InWaPE (22-septiembre-2000) 0 -120 Mayaguez 18.0 -140 0.5 0.6 0.7 0.8 0.9 1.0 I. Mona 1.1 coastline Pichincho slope (degrees) -68.0 -67.5 -67.0 -66.5 -66.0 Longitude Orinoco River changes the stratification conditions -30 -40 -50 -60 ----------- Index 29.50 29.00 28.50 28.00 27.50 27.00 26.50 26.00 25.50 25.00 30.00 29.50 29.00 28.50 28.00 27.50 27.00 26.50 26.00 25.50 Normalized energy -100 0.6 -- 0.8 0.4 -- 0.6 0.2 -- 0.4 0 -- 0.2 -0.2 -- 0 -0.4 -- -0.2 -0.6 -- -0.4 -0.8 -- -0.6 Pichincho -20 -70 0.9 0.8 0.7 0.6 0.5 -80 8 9 10 11 12 13 14 15 16 17 Hours Chlorophyll signal of the Orinoco River (Nov. 4 1998) Temperatura y Producción primaria durante el dia (22/ago/00) index 0 Jul 3 Jul 23 Aug 12 Sep 1 Sep 21 Oct 11 1.0 0.8 0.6 0.4 0.2 0.0 seiche 160 180 200 220 240 260 280 Tasa de fotosintesis -3 mg C m h -20 29.0 -40 28.0 -50 27.5 -70 mean 26.5 27.0 26.0 -80 8 9 10 11 28.5 13 26.0 26.5 26.026.5 12 -1 12.25 -- 14.00 10.50 -- 12.25 8.750 -- 10.50 7.000 -- 8.750 5.250 -- 7.000 3.500 -- 5.250 1.750 -- 3.500 0 -- 1.750 -30 -60 Vertical eddy diffusivity (Pacanowski y Philander 1981) 0.008 0.006 0.004 0.002 29.0 -10 May 24 Jun 13 1.0 0.8 0.6 0.4 0.2 0.0 -2 -1 mean Temperature C Depth (m) Rincón Latitude -80 -10 critical slope colored red and blue degrees Aguadilla I. Desecheo Mean Diffusivity (m s ) 18.5 -60 Tidal force index, seiche energy and mean vertical diffusivity, d Profundidad (m) -40 Depth (m) 14 15 16 17 Hora 160 180 200 220 240 yearday 2000 260 280 Explanation of the equation: 0 PRIMARY PRODUCTION: InWaPE (22/AUG/00) PHOTOSYNTHETIC RATE -3 -1 mg C m h -20 12.00 -- 13.00 11.00 -- 12.00 10.00 -- 11.00 9.000 -- 10.00 8.000 -- 9.000 7.000 -- 8.000 6.000 -- 7.000 5.000 -- 6.000 4.000 -- 5.000 3.000 -- 4.000 2.000 -- 3.000 1.000 -- 2.000 0 -- 1.000 -40 DEPTH (M) (1) Astronomical conditions combine to increase the tidal forces. (2) Stronger stratification due to the influence of the Orinoco River allows the baroclinic energy ray slopes to have low values during the period of optimum astronomical forcing. (3) This condition enables the generation of a large internal tide in topographic slopes of less than 1° around Puerto Rico. (4) More generation areas increase the internal wave field at shallower depths. (5) Internal waves increase the shear and enhance the vertical mixing. (6) Shallow internal waves excite coastal seiches. (7) Primary productivity increases on the crest and valley of each wave. -60 -80 -100 -120 MEAN 8 9 10 11 12 13 14 15 16 17 HOUR Tidal force index for the 18.6-year Moon cycle 84 Is the ocean carbon cycle modulated by the 18.6-year lunar cycle? The right combination of certain astronomical factors can increment the energy of the internal tide for some years and decrease it for another set of years. Internal waves can enhance primary production near topography and increase the sink of CO2 at the island margins. If stratification conditions and astronomical forcing coincide this process is enhanced. The regresion of the lunar nodes (18.6 lunar cycle) can impose a low frequency modulation in the carbon uptake by phytoplankton. 82 80 Acknowledgements 78 Index Index of tidal force 3 Profundidad (m) 1 76 74 72 70 68 FFT smoothing with a fortnightly window 66 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 Date (JAN 1990-DEC 2008) This work was supported by the NASA/UPR Topical Atmospheric Science Center and by NASA grant No. NAGW3926. We thank NASA EPSCOR and especially to Dr. Jorge Corredor and Julio Morell for award me the NASA fellowship. Thanks to the Captain and Crew of the R/V Chapman and R/V Magueyes. I want to acknowledge Carmen Enid Pérez for help me to prepare the drawings. Also to Dr. Fernando Gilbes who provided me with the L1A level SeaWiFS images and the facilities for the printing of this poster.