crystal ball crystal ball - Facultad de Ciencias Económicas

Anuncio
!" #
$
$
$
$
&
%
$
&
#
'
#
' $ #
+ *(,
&! +
!
" #
%
&
'
(
)
$
%
+ ! +
( ! (+!
!
(! +.
( +& , '- ! /!
0 -' 1!1
+ *(
*
,( 2334
!
+ ! ! +(
!,/ &-5 ,(
!
(
$$
+
/
! + ( ,( 0
( ') !
!" #
#
6
7
"
:
+
# ,
6
"
,
,
,
!
":
8
8
(
)
"
9
:
( <
(
"
! $7
"
-
-
8
(
)
;
,;
,
%
"
;
; :!
( < ,
#
%
; *
+
&
7
"
!
:,
(
#
/
=#
:
! $7
"
;8
) = =
1
= :;
#
=
7 =
?
7
+
>
=
!
>=
7
; 1
)
=
+ *(,
&! +
+ ! +
( ! (+!
!
(! +.
( +& , '- ! /!
0 -' 1!1
+ *(
,( 2334
!
+ ! ! +(
1. TABLA DE CONTENIDO
@1
-
21
B1
( ! +-(+
+-,
,(
!! + A
(+ C
41
-, !- C
D1
"
(- *
E
D1@1
"
(- * 0(+(,
D121
"
(- *
F1
E
( %(! &!
E
" - &! ! .+ @3
A1
C1
4
! +!(
( % 9 (-(
! +!(%-
' !
C1@1G9 #
H
@3
@@
@@
C121G9 #
H
C1B1G9 #
7
@@
!
C141G9 #
H @2
7H
C1D1
;
7
!
C1F1G!7
;
@4
C1A121
; =
C1A1B1 0
*(,
7
@4
@D
2333H
C1E1G9 #
E1
@B
; H @4
C1A1@1 0
C1@31
; H
7H
C1A1G9 #
C1C1G!
!
@2
=
G9
+( @F
;
@D
7 H @D
=
7
= H @F
@B
@31
,(9 (,
(+-
(
, 5 ,( @C
@@1
,(9 (,
(+-
(
&-5 ,( @C
@21
!
, !,/ -
@C
@21@1
G9 I
!( !,/ -
@2121
G!7
;
@21B1
G!7
@2141
G9 #
=
H
!
8
=
G!7
@21F1
G!7
@21A1
=
7
G!
H
@21C1
G!7
@21E1
G!7
=
=
H
7
2B
H 2A
2C
;
=
8
=
H
BB
H
B4
BF
;
@21@3121
!
@21@31B1
%
@21@31D1
-
@21@31F1
! -
@21@31A1
(6
@21@@121
!,/ -
BF
!
BA
!:
BC
!:
BA
BE
BE
=
("
( %
@21@@1@1
&
=
@21@3141
@B1@1
23
B@
@21@31@1
@B1
(6 H
7H
@21@31
@21@@1
@E
H 2B
@2141@1 G!7
@21D1
H @C
(
BE
% ! ! .+ (
%, (, ("
( % 1J
&
(0 +
-
("
( % 1J
*
(
43
=
,
K 43
:K 44
FC
8
FE
@B1@1@1
:&
FE
@B1@121
7
@B1@1B1 -
!:
FE
FE
@B121
A3
@B121@1
=
A3
@B12121 (
7
@B121B1
A3
@B12141
@41
A3
7
+'
A3
(
(,,
@41@1
(+8L
@41@1@1
=-
:&
7
@41@1B1 !
-
!:
AD
AE
@4121
C4
@4121@1
=
@412121 (
C4
#
(8 =
7
E3
@41B121
@D1
CD
CF
@41B1@1 - ; =
@41B1B1
M A@
A@
@41@121
@41B1
A@
ED
7 ;
0, &N /5( 0, &N @3A
@33
2. INTRODUCCION
!
=
)
)
> :
)
7 )
=
=
; >
=
= ;;
=
=
( =
)
(
#6 > ;
1
:
)
>
)
:
=
!
7
)
=
)
1
%
=
7
P
8
>
!
=
!
:
=
=
7
7 )
=
1
>
:
(
6
7
(6 O>
7
=
&
=
7
> ) =
7
)
;
=
7
>
3. RESUMEN
#
=
:
7
)
=
Q
=
=
(6
;
=
71
:
:
:
=
7
:
=
;
7
#
)
:
=
=
=
:
:
>
7 =
!
7
;
> =
=
:
=
1
>
:
%
Q)
=
;
=
)
=
7>
=
;
: 8
= ;
; Q
>
>
; > =
8
7
>
7
4. ABSTRACT
-:
: :
:
:
=
:
:
: )
:
=
R
:
:
=
=
=
:
:
: :
=
=
P : :
P
Q
:
:
1
(6
:
;
:
>
<
:
:
:
:
P
P
< :
=
=
;
;
=
:
:
:
P
>
<
P
1
=
:
;
;
: ;
S
=
S
:
:
=
==
< 1
P:
:
P: : !
Q:
==
5 :
>
:
P: :
:
5. OBJETIVOS
5.1.
OBJETIVO GENERAL
!
8
O
>
)
;
=
7
!
!
•
P
=
!
=
!
(
7
=
=
;
&!(1
OBJETIVOS ESPECIFICOS
8
;
•
=
)
;
)
)
5.2.
•
:
$
:
!
7
) )
7
P
)
7
=
1
=
!
)
=
;
1
!
=
=
;
:
;
=
!
!
(
7
O
1
6. JUSTIFICACIÓN
=
7
=
=
=
=
1
=
7
;
=
=
;
=T;
!
=
P
Q
=
7
;
7
#
=
=
1
!
P
=
)
=
=
7
=
7
>
=
=
>:
(
=
=
=
71
=
7
6
>
)
>
7Q
;
1
%
#
8
)
=
=
7
> !
$
=
8
7
>=
7
7
: ;
7
=
1
7. ALCANCE DEL PAQUETE
( =
=
=
=
=
= )
> =
1
7
7
(
:
=
;
7
) =
) =
:
;
)
= )
;
=
=
=
!
)
=
;;
>
=
#
>
>
=
=
7
;
)
8
;
=
;
)
=
7
=
7
=
=
7 T
1
>
=
=
1 +
=
>
=
=
=
=
)
=
1
8. CONCEPTOS BÁSICOS
8.1.
!
)
¿Qué es riesgo?
7
=
6=
=
=#
#6 >
71
;
=
)
;
)
=
1
=
;
)
;
> =
=
)
8.2.
>
=
>
=
;
=
>
=
1
¿Qué es un modelo?
=
=
>
;
=
: 8
7 )
=
=
%
> 7
=
!
=
1
;
=
>
=
;
!
=
)
#>
1
)
>
=
;
7
=
=
=
7
8
;
=
=
7
)
)
7=
7
>
=
1
=
7>
;
Ilustración 1. Ejemplo de Cristal Ball en MS Excel
!
:
;
=
)
=
:
:
=
)
)
=
;
6
>
)
=
=
=
8.4.
1
¿Qué sucede durante una simulación?
7
8 =
=
=
;;
1
T =
;
;
!
L
M
2333 =
)
> !
=
(
=
;8
7
=
1 (
;
>
1
#
=
=
;
¿Qué es la simulación Monte Carlo?
7
=
=
=
>
8.3.
7
=
;
;
=
;
; 7
; 1
1
2333
L
= #
=
=
;
: 8
7M
; 81
1
;
; 7
)
8.5.
De donde obtiene la Simulación Monte Carlo su
nombre?
7
!
=
;
=
>
(
!
>
7
>
Q
1
7
;
;
7
>
)
=
T
=
8.6.
1 %
8 = >
@> 2> B> 4> D
=
1 (
=
L=1 1 =
>
1M
F =
;
=
#> =
> =
; )
=
=
>
>
¿Cómo analizar los resultados de una simulación?
%
: 8
=
>
=
;
7
>!
=
@1
1 !
=
>
> )
2333 =
=
7
=
7
1
7
@
!
8
=
7
1
=
7
;
:
>
)
=
;
:
=
)
;;
>
7>
=
; 7
;
1
=
=
1
=
7
7
= #
1
Ilustración 2. Cuadro de diálogo - Define Forecast
8.7.
!
=
¿Qué es la certeza o certidumbre?
;
=
7
>
=
1 (
=
8
)
=
1 %
=
;# =
6
>
!
1(
;
=
=
;;
8.7.1. Grafica de sensibilidad:
%
;
=
=
7>
=
7
=
L
)
;
M
=
G9 #
H (
;
;
1 %
;
=
1
8.7.2. La gráfica de sobreposición:
(
=
T =
#
8
G!
=
: 8
8>
1 (
1 (
=
)
:
=
;
M
H1
;
L
8.7.3. Gráfica de tendencia:
%
=
;
7
)
=
1 G!7
6
;
= H
8.8.
¿Cuales son los beneficios de realizar un análisis de
riesgos con Crystal Ball 2000?
!
8
!
: ;
>
=
)
!
=
=
=
=
1
>
=
=
+
7
:
6
: 8
7
!
1
(6
T =
=
: 8
; >
:
!
;
!
1
!
)
1
!
=
!
>
=
8.9.
1
7
=
1 +
7Q
;
)
=
L%1(8
1 0
=
M
!
=
)
;
#
)
=
=
)
1
7
7
=
=
=
=
;
1
: 8
=
>
=
=
;
1 !
=9
=
: ;
7=
6
=
;
;
8
: 8
;
8 = >
;
;
:
¿Qué es Optimización?
=
7 =
%
)
7
)
=
=
>
=
(6 >
(6 1
=
!
=
>
=
;8
; 1
;
;
8.10.
=
>
=9
7=
= 1
=
;
¿Que son los pronósticos de series de tiempo?
7
:
8
7
=
7
:
#
=
=
=
7
)
1 (
J
= K
1
9. VERSIONES
(
= )
7
=
5 ;2>
1
=
!
> )
=
!
=
=
=
;
!
!
•
(
7
•
(
%
7
•
(
•
(
!
%
!
=9
7 %
=9
>
7
L
L
+
=
$
L
2: = ?
?
PPP1
!
> !
=
1
!
> ! %
=
=
>
)
M
M
!
! - ;M
#
P
!
#
1 (
=
=
=
=
=
=
:
;
: 8
!
(
•
7
#
*
7
6 K
> =
1(
71
•
*
7
!
(
)
7
#
:
(
=
= #
5 ;
=
$1
=
=
%
7
=
7
71 %
7
;
:
=
>=
;
U:
=
= #
;
=
;
> )
: ;
5 ;1
=
7
;
>
P >
P
)
;
=
)
) = >
)
$1
=
=
;
:
=
7
= #
#
$
: ;
)
1
7
7
J
7
1 %
;#
;#
;
@43
: ;
=
-
7
=
$1
=
=
•
! %
=
=
7
=
%
=
•
=9
%
•
=
1M
> =
%
•
L
! - ;> =
L
!
!
;
M
%
=
=
;
7 %
-
>
•
7
8
L
=
=
) =
M
=
!
7
7 L
7
:
7 =
7
1= >
1
M
A
10. REQUERIMIENTOS DE HARDWARE
•
%
%
•
F4
•
B3
•
! U,
•
- 8
)
433
M
,
=
;
L(
7
!
! M
C336F33 = 6
7
11. REQUERIMIENTOS DE SOFTWARE
%
8
!
P
•
>
) = 1
=
5
L M
> 5
P +- 413 5
> 5
P 2333 %
P V%%
(
=
5
•
(6
(6=
;
P
; ,
7 =
=
D13
413
EC> 5
P
<
> 5
EA> 2333> 2332 LV%M
>
•
•
;
% <F
(
P V%
233B1
=
1L
=
>
L
M
=
=
M
12. COMO USAR CRYSTAL BALL
12.1.
¿QUÉ HACE CRYSTAL BALL?
!
6
=
(6
P
•
=
=
;
=
=
1!
7
=
;
= 1 !
>
)
:
J
5: U K
=
>
=
1
(
)
8
(6 >
6=
=
•
: 8
=
;
7 )
1
=
!
=
;;
T
=
•
%
;
=
: 8
;
=
= 1
;
=
1
)
•
6=
=
' &!" $
=
7
= ;;
8
=
1
)
;
8
=
!
&> !
)
;8
;
8 =
1
12.2.
¿Cómo abrir el programa?
!
P
>
=
:
: 8
;
=
=
(6
(6
;
;8 1
%
;
=
= #
>=
7
>
;8
;
O1 (
=
!
>
!
=
8
7
! %:
1%
;
!
>
=
:
=
:
;
=
;
;
> )
;
; 7
;;
P
>
:
;
;8
8 =
8 =
T
=
;
1
7
T
!
1
=
!
7>
:
(6
M
1
L=
!
;
=
=
;
)
Q
7
=
:
Ilustración 3 Barra de tareas ejecutando Crystal Ball
;
+! 1
!
T
Ilustración 4 Ubicación de Crystal Ball en el menú Inicio
! %:
8 =
;
#
16 >
)
!
1 (
;
=
)
)
;
)
= 7 L
L
M
> !
>
M
>
; 81
;
=
8
1
¿Cómo Crystal Ball mejora Excel?
: 8
> =
7
=
;
!
=
=
1
%
:
12.3.
7
=
=
(6
Q
(6
7
6
:
=
:
)
)
>
=
1
=
;
1
8
(6
=
;
;
=
; 1%
:
>
!
T
(6 1
Ilustración 5 Barra de Herramientas de CB
!
=
;
=
T
=
;
;
)
=
!
:
=
: 1
=
=
8
6
7
1
;
;
=
Q
1
T
!
(,,
(+-
L
!(
L
M
> ("
(! - , L
M
1
Ilustración 6 Barra de Menús de Excel con CB
(
T!(
L
M=
!
Ilustración 7 Menú Cell
(
T ("
(! - , L
1
M
> =
1
M
Ilustración 8 Menú Run
(
:
(
T !
7 %
(,,
(+7
!
L
M
>
:
1
Ilustración 9 Menú CBTools
=
=
12.4.
(
¿Qué es un supuesto?
)
;
)
=
: 8
;
>
1
=
=
(
=
=
;;
J =
= ;
=
K)
1
> !
=
=
;
= ;;
;
; 1 (
= 7
;
= =
=
1
=
8 =
L!
%:
M
>
>
=
0
(
;8
L
;#
M
1
7
=
;
=
¿Cómo definir un supuesto?
=
=
;
>
>
;
)
;
1
%
=
1
12.4.1.
( =
;
; 7
!
1
=
;
!
(6
;
;;
(
6
8 =
;
=
! %:
)
>
=
=
1
8
;
Ilustración 10 Hoja de Calculo del ejemplo CellPhone
%
=
=
:
;
=
)
;
; 7 J
; 7
!
=
7>
KL
1
L!
L @@M
=
M
=
> )
@@M
1
;
1
Ilustración 11 Cuadro de dialogo Distribution Gallery
Ilustración 12 Distribución Triangular para la celda B11
1
=
;
T
1
)
)
=
;8
=
=
=
;; 1 (
=
=
)
8 = ! %:
1%
L
=
>
>
=
1
T
U
=
6
;
>
=
:
>
; 7
:
J
;
=
K
M
1
Ilustración 13 Celda supuesto % Long Distance (B11)
;
L @3M
1
=
KL
J
:
M
1 :
=
;
; 7
; 7
1
; )
)
=
=
B43
7
=
7>
;
: ;
4F31
=
231
43
Ilustración 14 Distribución Normal para la celda B10
:
=
;
=
=
L
M
)
1 (
1
!
>
Ilustración 15 Celda supuesto Actual Minutes (B10)
(
=
=
7
!
1
12.5.
¿Cómo definir un pronóstico?
:
=
=
=
#> )
+
;
7
!
>
U
7
>!=
=
7
=
7
,
=
7
7>
=
8
)
)
1
7
J
; 7 &E>
> =
=
: ;
>
M
:
L @4M
1
%
7
KL
&
%
L!
#
(6 1
=
;
; 7
M
1
@4
&
=
=
!
1
L!
=
1 !
=
=
;
;
> *
+
)
=
=
)
0
%
1
(
)
1
Q
=
=
1 (
M
;
=
LWM
Ilustración 16 Cuadro de dialogo Define Forecast
!
:
L!
M
:
;
>
)
)
=
7
=
!
1
Ilustración 17 Celda pronostico B14
:
=
12.6.
71
¿Cómo correr una simulación?
!
7
!
B
=
: 8
1 (
)
=
>
=
%
= >
U=
L
7
=M
BE3
;)
:
; 7 J
%
;
=
3
;
!
=
=
"
J
5: U K
1
;
%
1
L
http://www.decisioneering.com/models/beginner.html
=
=M !
1
:
BBX1
K
Ilustración 18 Nuevos valores para el modelo al correr la simulación
(6
=
7
W41F@1
: 8
W21DB1 (
:
!
; 7
=
=
: 8
7
;
=
KL
=M
1
)
=
U=
= #
7 L
M
>)
>:
433
; 7 J
,
=
>
)
B3X
=
>
M
)
=
1
1
8
=
8
;
=
;
K
7
%
7
1
;
%
;
=
;
=
%
X
J
%
:
J
(8
L,
7K
7
T
)
>
Ilustración 19 Cuadro de dialogo Run Preferences
#(
T
6
@3333
:
; 7 J
(8
K
L, M
L
=
(8
=
7M
1
;
=
=
U
7
Y:
1
;
=
Ilustración 20 Gráfica de pronósticos para la celda Cost Savings (B14)
12.7.
¿Como analizar los resultados arrojados por el cuadro
de pronósticos?
7
8
=
1
>=
#%
=
;
7
=
1
(
=
7
=
;
=
7
;
> =
; =
=
;
=
6
=
=
=
T *(,
#
=
= 7
8
=
)
;
>
=
1
;
)
)
L
7
M
>
=
! %:
=
1
=
Ilustración 21 Cuadro de estadísticas para la celda B14
(
=
= 7
=
8
;
)
W@1A31
=
;
:
1 %
8 =
C3X
:
Ilustración 22 Cuadro de Percentiles para la celda B14
(
:
;
)
)
:
:
=
=
=
;
!
7
W41F@ )
=
1
!
;
: ; =
:
;
8
L
;
!:
M
1
12.8.
¿Cómo usar el cuadro de sensibilidad?
=
;
=
;
;
=
%
)
1
6
=
:
> :
!:
=
> =
#
; 7
;
$
=
J
!
M
7
!
;
KL
=
1 %
1
Ilustración 23 Cuadro de Sensibilidad medida por el rango de correlación
=
L!
%
'
%
L%
>
;
M
;
71
M
>
:
;
%
&
=
;
)
=
; 7
=
A41B X
M
> : ;
= 7
$
L
!
:
1
Ilustración 24 Cuadro de Sensibilidad medida por la Contribución a ala varianza
;
)
7
>
: ;
)
)
)
>
:
"
7
:
)
>
=
1%
!
)
=
>
8
8
(
+
!
=
T
=
>
:
T )
8
=
>
7
>
=
)
Q
1
:
=
8 = >
=
=
=
;
)
=
>
1
¿Cómo generar un reporte?
%
%
=
)
;
=
1%
=
=
12.9.
;
=
=
:
7
;
:
; 7
!
J
!
!
=
1
1
KL!
,=
M
Ilustración 25 – Cuadro de diálogo Create Report
=
)
)
=
)
=
=
=
)
7 ;
;
=
LZM
1
?
;8
(
=
)
$ LZM
>
LZM
>
LZM
>
;
=
=
(6
7
;
!
;8
LZM
Q
;
>
:
=
8
8 =
7
;
$
=
)
)
8
#(
71 !
> =
=
1
=
7 )
7 2DM
1
=
>
L
=
T
>
:
1
;
:
6=
)
=
:
:
;
=
;
=
)
12.10.
Otros recursos
12.10.1.
=
Distribution Fitting
: 7
= 7
J
;
;
)
&
0
=
=
;
K
1
Ilustración 26 Galería de Distribuciones
Ilustración 27 Cuadro de dialogo Fit Distribution
=
>
; 7 J
&K
12.10.2.
:
Correlated Assumptions
;
=
7
71 (
:
;8
(6 1
: 8
( ; 7
>
7
)
>
=
:
%
:
)
=
=
)
1
Ilustración 28 Cuadro de dialogo Correlación
12.10.3.
( !
Precision Control
%
7
!
=
)
=
=
%
T
1 (
=
!
1
)
8
= 7
; 7
Ilustración 29 Cuadro PrecisionControl
12.10.4.
Overlay Chart
)
=
=
=
T =
1(
:
=
7
7
=
;
;
Ilustración 30 Cuadro de dialogo Overlay Chart
> J
:
; 7
T
(
K
12.10.5.
*
Trend Chart
+
T =
=
;
;
1 (
T
=
:
=
7
;
;
> =
;
(
Ilustración 31 Cuadro de Tendencias
12.10.6.
=
CB Tools
=
=
)
=
!
12.10.7.
=
7
:
1
Example Models
!
:
;8 =
8
=
#
8 =
:
T
)
=
1
=
7
12.11.
EJEMPLOS DE APLICACIÓN DE MODELOS
12.11.1.
(
&
B3
PRIMER EJEMPLO. “Futura Apartments”
8 = >
=
1
=
7
)
;8
;
= 8
7
=
=
71
Ilustración 32 Hoja de Calculo “Futura Apartments”
!
;8
•
WD33 =
•
( T
B3 43
)
=
=
=
= 8 =
=
71 (
: ;
L
!
=
=
(6 1
>
: ;
J
5: U J
>
=
=
•
=
:
7
= 8
>
)
;
=
M
>
W@D1333
>=
;
=
)
;
:
)
: 8
=
)
:
)
=
=
;
;8
: 8
#
=
1 /
)
;
)
71 !
!
;
1
Correr la simulación
%
7
•
;
=
,
•
8
=
7
6=
*
8
6
7 !
8 =
" ! +
=
;
(
=
7
*
= #
LD33 =
1
= #
>
=
7
+
: ;
M
>
T
6
1
Ilustración 33 Pronósticos de Ganancia/Perdida para FA
•
•
+
(6
=
=
%
:
8
7
=
>
1
=
7
7>
[- ;1
7
>
;
, [
=1
=
=
>
(
=
=
7
=
:
=
=
=
1 (
=
= ;; >
1 !
W4AD3 =
=
)
7
;
&
=
=
;;
=#
1 !
;
=
;# =
=
W2D3
> )
=
W2333
WA3331
8
Determinar el beneficio
:
=
!
=
;
=
;; 1 %
=
•
%
=
;
;
>
;;
(
•
%
=
>
7
$
; 3L
;;
;
8
=
)
•
=
=
M
)
7
=
Ilustración 34 Probabilidad de Ganancia para FA
(
=
:
=
;
;;
=
7>
>
)
:
L!
=
M
;
=
8
W3 =
:
8 =
1 !
7 =
7
;
+
&
7 B>
W3M
L0
;# )
=
=
6
W2333>
=
;
>
1 -
=
:
EBX1
1
Como usa Crystal Ball la simulación de Montecarlo
(
=
:
:
;
= 8 )
;
=
1
T
)
T
7
#
;
=
1
)
•
•
T
=
(
)
T
7
:
6
(
7
(
=
U
7
=
!
8
;
=
=
1,
=
>
;
=
6
=
•
7
1
=
:
; 1
=
;# =
8 1
%
;
=
6
=
7
;
)
7
6
!
!
=
; )
1 (6
= ;
)
: 8
;
)
)
;
8 =
,
[,
•
=
=
;
1
•
•
7
=
•
!
;
=
1
: 8
8 =
7
12.11.2.
(
6
SEGUNDO EJEMPLO. “Vision Research”
8 =
7
:
!
:
:
(
=
8 =
=
)
1
)
*
,
; 1
:4
7
=
*
>
=
= > =
=
=
* P> )
=
= 76
;8
;
= 1 (
=
$
=
;
&
)
*
,
;
: =
=
> = ;
=
=
=
=
=
&
;
,
=
1
>
=
;
!
: :
!
U
)
#6
=
1
)
1 ( =
1 !
7>
$
=
!
* P
=
=
1
%
;
•
;
8 =
!
: 8
* P =
4
;8 !
: 8
!
[ (6
7
'
>
=
=
T
!
[%
[
=
=
>
http://www.crystalball.com/models/pharma.html
*
,
7 2B1
:=
=
!
Ilustración 35 Hoja de calculo ejemplo Vision Research
(
: 8
=
;
)
*
,
:
1
Definir supuestos
(
!
>
;
=
;
)
;
:
7
@A
0
;
;
;
:
= 7
G!7
=
=
; )
=
=
=
=
U
8
=
;
;
=
=
U
;
)
1 %
>
=
> 0
!
L
;
)
=
;;
7
=
1 (
: 8
= ;;
)
!
* P1
; 7
;
>
)
7 DM
1
H1 (
;
6
=
;
7 ;
8 = >
*
,
:
;
(
=
8 = >
=
6=
=
=
;
7
1
Definir Testing Costs. La Distribución Uniforme
:
> *
!
* P
=
D13331333 =
=
1%
)
= ;;
!
=
,
;
: :
> ;
; > J
WB13331333
> *
J
-
;
,
!
6
>
8
=
=
:
7
K
7
6
; 7
= $ =
;
)
W@313331333
WB13331333
W
=
;
K
>*
,
:
)
W D13331333
1
7
=
)
!
;
;1
=
8
7
;
7
;;
%
;
;
1
=
U
=
;
1 %
7>
=
=
=
!
•
•
!D
(
T
> :
=
!
1(
;
:
J
= 7
;
$ ) ,
:
-+ =
-
Ilustración 36 Cuadro de dialogo “Distribution Gallery”
•
;
•
;
7
( '
,
(
J
;
7
K =
Ilustración 37 Cuadro de dialogo “Distribución Uniforme”
)
>
!D
;
=
=
1
1
; 71
;
;
; 7
6 1 *
WB13331333
)
=
; 7
•
(
;
=
; =
) !
>
=
,
:
6
=
!
; B
=
=
WD133313331
=
=
>
L
)
7
=
(
,
=
:
•
%
WB13331333>
=
=
+
;
=
>
J
;
: 8
+
K
=
>
=
;
=
T
: 8
M
1
)
; L8
!
=
M
1
*
•
(
(
=
; D
=
=
; L-
WD13331333>
!
M
1
;
; =
6
=
•
7
8
; )
7 2F
>
:
:
:
Ilustración 38 Distribución Uniforme para la celda C5
;
7
>
=
7> !
;
=
1
>
7 2F1
=
B
•
=
=
= #>
!
=
D
7
!D )
1
: 8
Definir Costos de marketing: La Distribución Triangular
*
,
!
: =
;
* P>
=
;
=
=
= $ = ;
=
= ;
> *
W@C13331333>
=
&
=
1 (
<
=
=T;
1
,
:
=
W@F13331333
W@213331333
=
;; 1
*
!
,
:
<
>
7
)
U
=
; 7
; 7
6 >
=
=
;
7
= ;;
;
1
%
!
=
!
<
L
<
M
•
!F
•
;
=
= 7
:
;
$
J
•
;
J
;
:
) ,
7 -
!
-+ =
1 (
1
K
•
(
J
;
7 -
K =
Ilustración 39 Cuadro de dialogo “Distribución Triangular”
:
=
=
;
;
7
7
)
;
=
=
;
7
1
2A>
7
=
=
1 !
=
=
•
(
,
(
; @2
=
=
:
•
W@213331333>
!
<
=
%
=
= ".
; 1
@F>
(
!
=
<
•
; @C
=
!
/
W@F13331333>
%
(
)
#
=
*
$$ 0
(
;;
=
=
W@C13331333>
6
=
<
•
;
7
;
=
8
1
Ilustración 40 Distribución Triangular para la celda C6
7> !
)
@F
•
@2
=
@C1
: 8
Definir pacientes curados: La Distribución Binomial
)
;
=
$1 *
!
* P
)
= #
>
&
=
; !
* P> *
,
:
;
;
@33 =
,
:
=
)
&
=
;
=
=
=
23
=
>
)
T
1 (
= ; > 23X
=
;
7
!
* P=
$1 *
,
:
= #
=
;
=
)
=
8
#6
2DX1
%
; > J
=
=
; =
G*
,
:
= =
> *
,
:
7
;
)
=
;
;
T
=
L@33M
1
%
U
=
K
> *
>)
:
#6
&
;
=
•
,
7 ;
7Q
)
6
L2DM
J
%
2DX1
!
;
; 7
H1
=
K
>
T
=
!@3
•
;
= 7
;
•
(
'*
=
;
7
•
•
•
(
)
D3XM
1
*
=
=
$
=
)
+ =
= ;;
1 L&8
31D
Ilustración 41 Cuadro de dialogo “Distribución Binomial”
•
;
L
=
7
$1M
8
>
6
= ;;
6
1
=
•
=
1
;
L
0
(
2DX
312D
; )
=
=
6=
@>
3
=
8>
=
*
;
=
;
% ;;
:
)
,
=
=
)
= ;;
313B>
T
BX1
•
•
; )
=
;
&
@33 =
>
=
) *
,
:
@33
=
6=
; 7 ;
1%
=
•
•
(
•
(
; 312D
=
=
2DX
=
=
;;
•
=
•
(
•
(
=
•
@33> =
; @33
=
=
&
$
@33 =
)
1
:
•
;
7
; =
8
•
Ilustración 42 Distribución Binomial para la celda C10
7> !
T
@33>
=
&
)
3
=
1
•
=
: 8
Tasa de crecimiento: La Distribución Personalizada
*
,
: :
4313331333
=
3X DX
$
) !
* P
;
6
>
=
)
=
8
=
7
=
;
1
<
2DX
6
=
=
;
=
(
)
:
=
)
=
=
* P
!
(
1 (
DX
; J
;
;
,
=
= K
7
;
1 %
=
=
(
=
7
#
=
;;
)
7 =
=
=
:
;
=
@DX1
=
1
!
;
)
=
;
> :
=
;
=
0
;
=
7
;
7
;
=
7
>
1
=
=
=
>
B1
=
7
=
=
=
>
1
=
;
)
> *
T
=
=
%
=
•
!
* P1 %
=
U
!@D
•
;
•
= 7
;
7
L%
M
•
(
)
;
8
;
7 B@ )
)
>
1
7 %
=
=
1 +7
8
Ilustración 43 Cuadro de dialogo “Distribución Personalizada”
%
=
•
(
; 3X
(
=
=
•
%
•
(
3X
; DX
(
=
=
•
%
•
(
(
,
=
DX
; ADX
=
=
=
=
:
*
,
;;
)
=
7
=
=
*
=
7
:1
•
;
7
3X
DX =
1
Ilustración 44 Distribución Personalizada para C15
%
•
(
; U@DX
(
=
•
%
•
(
=
@DX
; UDX
(
%
•
(
(
,
=
7
=
=
=
•
7
DX
; 2DX
=
:
=
2DX
DX
=
;
)
=
7
=
=
*
=
7
UDX
=
*
@DX
•
;
;
7
=
=
$
+
1
@DX
:
1
Ilustración 453 Distribución personalizada para C15 (2 Supuesto)
%
; 7
: 8
=
=
T
;
=
1 (
7 !
)
=
=
•
1
=
: 8
Definir penetración en el mercado: La distribución normal
(
=
=
=
<
)
7
=
=
*
,
;
*
7
,
FCX
FX
:
=
2X1 J
+
;
= ;
7
7
=
;
7
:
CX
K
)
=
=
=
=
;8
7
>
@3X1
(
> CX>
=
; =
1
)
>
=
<
DX>
=
=
=
*
J
=
,
<
:
7
K
1 %
%
7
•
#
1
;
7
=
;
U
=
;
=
!@E
•
= 7
•
;
7 +
•
(
J
+
;
K =
Ilustración 34 Cuadro de dialogo “Distribución Normal”
:
=
)
=
=
;
7
7
•
=
=
=
•
%
•
(
(
C133X>
=
=
7
; 2X
1
=
!
; CX
CX =
(
=
2X =
7
1
•
•
; 7
)
=
•
%
•
(
•
(
=
;
8
7
; >
; 1
=
; DX
=
=
=
1
=
=
DX )
>
;
)
= 7
=
•
•
;
7
; =
8
1
Ilustración 35 Distribución Normal para la celda C19
7> !
;
)
7
)
=
=
Definir pronósticos
;8
DX )
: 8
CX
1
1
= #
U
U=
1
=
=
*
U =
1(
7
,
;
;
:
=
=
7
L!2BM=
>
=
;;
= ;;
1 (
>
>
=
;
!
* P1
=
=
=
)
L!2@M
;
Calcular el beneficio total
!
=
=
71 (
>
;
=
1 %
1
U=
=
•
;
=
=
: 8
;
=
=
;
= #
=
L!@EM
7
;
= #
>
=
1%
(
=
U=
T
(
;
7
;
;
=
!@F\!@E\!231 !
=
$ L!@FM =
=
L!23M
1
1
=
•
;
!2@
(
=
7
=
:
J %
=
=
;
=
;
7
+ =
1
=
;
= 7
1(
;
1 %
1
;
;
=
"
=
>
: 8
;
)
>
Ilustración 36 “Definir Pronostico” para C21
•
%
•
(
; J
)
K
=
#
>
=
8
•
=
: 8
Calcular el beneficio neto
;
=
•
•
=
;
>
!2B
(
=
;
: 8
&
;
L!2@M
1
&
M
>
=
;
L!@@
*
M
>
L!AM
;
>
&
(
U=
T
;
+
L!DM)
=
:
;
=
;
%
(
=
=
] L!@@Q
!2@U!AQ
U!4U!DM
1(
L!4M !
•
U=
;
L!@@
:
: 1
;
;
= 7
"
Ilustración 46 “Definir Pronostico “ para C23
+
;
=
=
)
=
7
)
=
= #
1
•
%
•
(
; J
K
•
= #
=
>
: 8
:
,
*
=
:>
;
;
=
=
7
: 8
Q
=
)
71
Correr la simulación
!
;
7
7
1
!
>
)
T
=
7
=
=
T1
1
=
7>
=
)
>
=
%
7
=
)
T
7
•
(
8
1
= 7 $%
(
1
8 = >
T
•
•
-%
=
7>
J
,
=
; D33
.' '
&[
%
'/
(
'
K =
&L
T
1
6
M
>
•
(L
•
= 7
'/
•
(
M
J
'
0
T
1L
= )
!
(
$'
M
; EEE
•
Ver los cuadros de pronósticos
;
)
= 1
;
=
;
7
=
> 6
=
7
=
7
:
1 (
; 1
=
(
(
;
L0
%
( **
M =
$
>
7 BC
Ilustración 47 Cuadro de Pronostico para “Net Profit”
= 7 2"
*
"
>
=
7
T
=
%
1
7
=
+ ,&
>
=
=
8
; 7
;
U=
1
;
7
=
;
;
7
T
=
;
1 (
=
7
=
) @F
7
+
@F =
1 (
=
,
)
1
)
=
;
=
)
7
;
7 BC>
=
> !
7
=
U=
6
8
7
1
T
=
)
1
Interpretar los resultados
Entender el cuadro de pronóstico
!
*
T
=
=
,
:1
;
>
> )
6
6=
8
)
(
W@41A :
+
(
=
6
=
=
!
T
; 1 (
@33X>
)
= ; 1 ,
)
=
;
;
=
;
1
=
T
;
> =
8 =
:
;
;
;
)
: 8
1
=
=
=
)
8
=
>!
=
: >
)
7
;#
>
=
)
)
1
=
:
(
7
7 BC>
WB414>
1
=
7
1 %
7
=
=
=
6
6
7>
T
1 (
7
=
=
6
1
=
>
T
6
=
)
71
Determinar el nivel de certidumbre
:
=
=
=
1
*
;
,
: )
;
=
;
%
)
;
=
•
(
•
(
•
%
!
)
=
; 3
7
+
-;
(
> =
; 1
;
W313
=
;
AE1C3X
=
=
=
J
+
=
%
AE1C3X1 (
= ;
=
)
6
L@33X
AE1C3XM
1
*
,
;
=
>=
=
=
:
%
=
K
>
=
;
=
=
;
;
) *
;
;
: )
W2133313331 !
1
)
,
:
1
2312X
;
!
Ilustración 48 Pronostico para “Net Profit” con valores positivos
•
(
•
%
; 2
=
!
;
7 BE> !
W213
; 1
Ilustración 49 Pronostico para “Net Profit”
*
,
: =
;
;
W2133313331
*
,
=
7
1
=
!
AB1F3X =
;
)
;
=
>!
•
(
•
%
=
; 4
:
:
;
=
; )
W4133313331
=
;
*
,
W413331333
=
=
: =
;
=
=
>
7
=
;
;
1
1
=
!
=
W413
Ilustración 50Pronostico para “Net Profit” (2)
(
=
7
;
;
=
!
=
J
&
FFX1 !
W4133313331 *
* P
=
1
7 4@
;
,
:
=
;
13. CRYSTAL BALL TOOLS
:
!
=
1 %
=
*
)
7
:
=
=
7> )
7
=
;
>
7
)
=
(
:
1
D
)
!
=
7
:&
!
( -
7
!:
=
-; =
(
7
7
;
>
=
5
http://www.crystalball.com/crystal_ball/cbtools.html
8>
;
>
8
13.1.
Herramientas de Montaje del modelo
7
13.1.1.
: &
Batch Fit
:
F
=
!
!
>
;
1
(6
T! : &1
13.1.2.
(
=
;
:
=
=
>
Matriz de correlación
:
=
)
) =
Q
=
;8
6
:
=
=
>
>
;
7> =
=
1
)
=
13.1.3.
(
6
>=
8 = 1
Tornado Chart
=
=
;
;
:
6
>
;8
=
>
http://www.crystalball.com/spotlight/spotlight10.html
)
;
8
=
6
1
13.2.
Herramientas de análisis
13.2.1.
(
=
Bootstrap
#
=
=
7
?
=
=
=
1
>
>
=
=
1
7>
(
7
)
:
;
13.2.2.
;
=
7
=
>
>
Escenario de decisión
=
=
6
;
7
7Q
71
13.2.3.
Análisis de escenarios
>
=
(
=
)
=
)
)
>
;
=
13.2.4.
=
;
=
=
=
=
1
=
7>
=
7>
>
7
1
Simulación Bidimensional:
=
=
=
;
)
=
7
>
=
7
1
(
;
)
=
;
=
7>
7
;
= $
=
;
6=
L
M
>
)
7
=
)
;
>
L:
67
>
M
>
;
T
=
;
L
7
T = M
14. ANÁLISIS DE LAS HERRAMIENTAS
:
=
=
8
=
1
:
L
7
=
=
1
Herramientas de Montaje (Setup Tools)
:
;
!
=
M
> =
;
7
%
8 =
8
=
14.1.
;
)
8
*
;
7
14.1.1.
=
*
1
Batch Fit o Herramientas de serie
Ilustración 51 Asistente de Batch Fit
(
#
=
;
>
L
=
;;
=
>
>
#
;
>
=
=
T =
1M =
=
:
=
)
7 )
;;
T
;
1
=
7
>
;
1
8
(
7
=
:
> =
7 =
8
1
(
=
7 =
; =
;;
=
>
;
= ;
;
=
8
> !: U
Q
;
=
:
=
=
;
>
=
=
=
>
)
7
7 )
7
:
)
;
> =
)
>
8
=
8
(6 >
)
Q
=
>
1
Ejemplo
(
=
;
!
8
;
Q=
=
>
%
7
;
8
( =
;
8
=
;
@EEC
;
=
=
=
=
; >
:
;
233B> =
1
:&
=
!
;
>
:
!-
T
=
(6 >
:
: &>
=
@
1
B
;
(
=
2
=
1
B
=
>
=
=
1
>
=
>
!
:
=
;
;
7
: 8
1
=
1
= 7
;
7
7
=
;;
=
>
1
%
B
B
)
=
( =
1
=
>)
;
7
=
3
= 7
>=
;
=
=
:
>
!
(6 >
=
7
=
;
7
1
=
=
=
@1
: 8
=
=
T
=
;
7
:
1
(
T,
= 7
=
;
7
7
^
!
=
T
>=
= 7 ,
:&
8
>
=
=
=
> =
1 %
:
=
1
Ilustración 52. Vista “Statistics”. Observese que el coeficiente de variación es del 9%.
:
7
=
=
=
>
=
8
=
!
:
J
7
: &K
=
$
=
=
! %
8
8
;
>
= 71
>
8
7>
;
>
)
1
(
=
=
7
;
)
L&
M=
; 7
=
=
WD1233>
)
=
:
;
=
E@>2X
1
Ilustración 53 . “Frequency chart” del ejemplo
=
6
7
14.1.2.
Matriz de correlación
Ilustración 54 Matriz de Correlación
)
= >
>
=
=
7
U=
6
;
=
=
7
;
=
=
=
7
=
71
6
=
)
;
6
;
=
>
A
(6
7
7 =
(
7
7
$
)
;
Cárdenas Héctor, Curso de Econometría, capitulo 2. Profesor de la Facultad de Ciencias Económicas de la
Universidad Nacional de Colombia
6=
M
>
= L
7
=
8 =
=
Q=
=
;
7
6=
=
/] @2>B2@4CEEC _ 3>3EACDFCB V@ _ 3>42F4442@ V2_ 3>4DBF4CFA VB
-
;
V@
=
V2
6=
7
VB
6=
7
;
=
/
67
6=
7
=
7
Q
)
:
;
6= )
;
=
7
=
7
7
!
;
6=
>
>
;
7
7
6
;
=
>
Q
)
=
6=
=
=
=
@
8
7
=
7C
=
7
:
6=
;
>
)
8
)
;
=
;
=
)
=
7
6
=
1
;
6
)
7
>
6
>
;
;
6
)
;
1
Mide el grado de asociación lineal entre la variable dependiente (endógena) y la independiente o exógena,
eliminando el efecto de las demás variables del modelo
!
=
=
7
;
>
>=
>
(
=
= 7
T
!=
7
>
;
:
;
=
)
;
=
1
>
=
=
7
>
=
=
=
>
=
T =
6
7
;
1
> =
=
71
7
:
=
=
$
=
: 8
)
=
=
>
7
;
:
>
1
=
Ilustración 55 – Matriz de correlación
7> !
8
>=
)
;
1
Ejemplo
!
8 =
>
=
L
>
6=
7
*
;
> =
=
;
7
=
7
Q
1
=
7M
7
T
=
%
!
8
81
8
!
;
!
7>
(6
=
=
;
:
8
>
=
LEEEM
;
!
7 L
1
LK
>
=
D33M
>
K
M
>
,
7
7 L
= 7
J
K
M
1
=
7 =
;
7 DF1
Ilustración 56 Cuadro de EStadisticas
!-
>
7
=
;
;
;#
;
7Q
=
=
=
=
:
8
=
1
(
$
=
>
>
=
8
233B
2332
7
2333
!
233@
2333
!
7
7
7
@>333 3>233 3>B33 3>@33
1 (
!
@>333 3>@33 3>B33
2332
@>333 3>433
233B
@>333
7
!
(
=
J
233@
7
; )
8
)
)
K
7
;
>
=
=
8
=
>
1
>
!
7
7
1
=
>
14.1.3.
)
7
=
)
1
Cuadro Tornado Chart
Ilustración 57 Asistente de Tornado Chart
(
:
=
>
:
=
; >
;
=
=
#
>
>
:
=
1
)
7Q
)
;#
>
Q
;
=
7>
)
=
=
;
=
#
7
;
)
;
;
;
J
=
;
;
;
7
>
= K J
=
( -
:
`-
#
K
1
=
=
;
7
!:
` =
!:
)
=
!
=
:
)
: 1
=
2D3
;
Tornado Chart
(
=
=
:
=
;
=
>
$
7 =
)
=
(
;
>
7=
=
=
6
; >
=
;
:
>
7
=
!
;
;
;
>
:
71
;
;
=
=
7
7 Q=
;
7
)
=
; )
=
>
#
)
$
81
(6
=
;
>
8
;
7
7
6
7
=
7
71
;
7
6
= 1
=
=
=
;
; >
;
U
Spider Chart
$
6
=
7 =
)
;
>
;
:
6
=
;
=
;
=
>
=
7Q
#
1 !
)
)
= ) $
;
;
=
71
Ejemplo:
%
8 =
: 8
)
;
#
>=
;
)
=
=
;
8
T
!-
1
>
;8
>
!:
L=
>
@
=
BM
1
!
;
=
L=
2
BM
1!
)
;
)
;
1
!
1
(
=
B
B
L
;
@3X
T
=
6
= 7M
(
= 7
=
= 7
=
7
(
#
; 1
=
!:
=
!:
1
:
=
8
=
8
=
-
=
DM
>
=
=
!
L
L
-
=
E3XM
!:
>
=
=
:
1
!:
Ilustración 58 - Tornado Chart
Ilustración 59 - Spider Chart
(
8 = >
4
=
=
;
;
> =
;
;
-
!:
7
; 81
=
=
!:
;
=
;
;
=
=
)
=
;
>
>
:
>
=
=
71
8
6
@33X
=
;
>
=
=
=
6
7 =
:
;
:
1 (
7
=
;
;
7
=
;8
;
=
)
=
;
1
;
>
14.2.
Herramientas de Análisis
14.2.1.
Bootstrap
Ilustración 60 - Asistente para Bootstrap
(
=
#
7
)
)
6
Q
:
= 6
)
>
;
7
=
1
:
#
;
)
=
=
=
!
>=
;
7
>
71
)
=
;
=>
=
>
;
>
=
6
=
;
7
>
#
=
=
1
7
;
;
=
;
7
;
1
(6
(
;
#
#
=
=
;
=
#
7 T
=
(
=
>
)#
1
;
7>
;
=
(
)
=
1
#
=
6
7
=
7
=
;
;
>
)
)
:
14.2.2.
7
;
Q
)
#
=
=
>
7
8
7
71
7
> =
=
;
>
=
=
=
7
7
M
1 %
=
;
71
= 7
=
=
U5:
)
#
Q
>
:
7
;
;
;
;
;
=
=
:
=
71
;
=
)
=
> =
=
= =
6
#
=
7
=
7
>
Q
T =
=
>
7
L
(
#
=
#
5
6 >
= ;
=
#
=
=
;
7
=
7
;
El método de la Multisimulación
!
(
=
7
;
=
=
1
>
= 8 >)
>
;
Ilustración 61 – Comparación única simulación vs. Multisimulación Fuente: Tools tutorial
14.3.
%
=
Ejemplo:
=
=
8 = > )
;
>
(
)
:
:
=
;
8
(6
=
:
;
)
)
7
:
;
!
=
=
=
;
7
1
;
1
)
Q
8 =
!
=
=
>
=
Ilustración 62 – Vision general Modelo “Planta energia nuclear”
!;
>
= 7
=
=
;8
)
1
6
=
=
=#
7>
7
=
#
)
( =
=
D33
=
2
T
B
7
=
=
#
=
B
B
T
=
)
#
1
=
)
=
> =
>
$
7
=
7
1!
T,
=
EEX>
=
=
=
1
1
>
1
=
@X
;
;
1 !
6
%
7
;
=
>
=
6
=
>
>
7
<
=
>
:
>
7Q
=
1
=;
=
=
=
;
)
>
=
)
=
)
=
7
>
=
1
Ilustración 63 – Frecuency chart para la variable “Mean”
!
7
L
7
=
;
(
M
>
)
=
;
)
1
6
Q
7
7
;
%
7 )
;
>
;
7
71
=
;
=
>
8
=
>
>
6=
$
7
!
B>3A
3>32
7
7
^
<P
*
(
3>C2
,
3>C2
3>32
3>33
3>33
!
3>AC3
U
U
U
U
3>3EA 3>3EA 3>3@4 3>@FB 3>@2B
@>333
U
U
U
U
U
3>3EC 3>3EC 3>2EB 3>3FA 3>@@E
@>333
7
(
U
@>333 @>333 3>@CF 3>@A2 3>EEE
*
U
@>333 3>@CF 3>@A2 3>EEE
<P
U
U
@>333 3>BFD 3>@CF
^
@>333 3>@AD
!
*
7
@>333
Ilustración 64
14.3.1.
Tabla para la toma de decisiones
Ilustración 65 - Asistente para la Tabla de decisiones
;
7
)
8
;
(
;
;
7
:
;
7
=
=
>
>
=
;
=
=
;
1 +
;
)
71
7
;
7
71
%
)
)
>
+
; >
;
=
=
) =
=
;
;
8;
=
=9
=9
7>
=
!
>
7
1
)
:
J
7=
=
:
;
Q
=
K)
=
1E
;
;
J= 9
K
!
7>
Ejemplo
!
;
8
!
8
7
= 7 =
=
;
7 =
8
%
;
TJ
>
1
:
;
K
!
=
>
T
T
EEE1
•
7
;
=
:
!
=
> ;
=
T, 1
!
^1
•
= 7
!;8
7>
1
E
;
;
=
>
(
)
)
7>
=
7
•
>
;
=
•
;
8
=
!;
=
> )
=
;
71
)
;
:
!
:
%
233312>
7 =
1
•
!
>
= 7
=
•
;
)
7 )
71 !
=
=
1
=
1!
=
;
1
=
=
>
7 L=
$
;
;
>
;
)
=
T
D33M
1!
1
L3>44M
L3>4B@@@@@@M
L3>42222222M
L3>4@BBBBBBM
L3>43444444M
L3>BEDDDDDFM
L3>BCFFFFFAM
L3>BAAAAAACM
L3>BFCCCCCEM
L3>BFM
%
L@BD33M
3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE @
%
L@BCBB>BBBBBM
3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE 2
%
L@4@FF>FFFFAM
3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE B
%
L@4D33M
3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE 4
%
L@4CBB>BBBBBM
3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE D
%
L@D@FF>FFFFAM
3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE F
%
L@DD33M
3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE A
%
L@DCBB>BBBBBM
3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE C
%
3>C@ 3>C2 3>CB 3>C4 3>C4 3>CD 3>CF 3>CA 3>CC 3>CE E
L@F@FF>FFFFAM
%
L@FD33M
3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE @3
@
:
2
B
8
D
F
;
;
7>
71
=
=
>
=
7>
7
;
>
7
$
T
>
L
1
7
6=
>
>
)
1M
=
7K
>
>
=
= >
)
=
; 1
7>
=
)
>
8
>
#
=
J ;
=
;
=
=
)
Q
;
:
%
=
T
:
7
E
7 )
=
6
C
;
;#
7
;
A
7 =
=
%
4
> )
7 )
7 7=
=
8
;
@3
=
=
>
=
>
;
= ;
7
=
= ;
7
G(
H
;
= ) $
=
!
= ;
=
;
= 7
; >
;
>
;
=
=
7
U
*1 1
= ;
7
(6
=
= $
>
>
>
a G 8
=
6=
;
G
7
;
;
=
H
>
G
>
!=
=
7
*
>
=
7
=
7
;
7
742
>
)
)
7
=
8
8
>
%
;
=
;
8
;
%
;
=
=
7 J
, K
)
; >
71 (
=
>
=
;
7
7
8
@D31
;
8
7>
>
=
:
1
14.3.2.
Análisis de escenario
Ilustración 66 - Asistente para el análisis de escenario
(
=
=
=
7
>
=
=
)
7 ;
=
=
; 8 L@X1M
%
=
=
=
EE
>
=
7> )
=
;
=
>
)
) !
7>
=
L@XM
:
)#
=
=
1
Ejemplo
;
:
J
=
=
=
> ;8
;
>
=
=
=
=
K
>
=
=
>
Q
:
)
=
=
8
7
=
=
> =
=
=
!
!
=
;
:
(
>
=
=
(6 >
T!>
;8
1
(
;
!
=
8
7
7
=
:
Q
7
=
7
=
7
3 @33 =
=
;8
:
6=
:
7
=
1
;
7 =
;
)
( =
)
1 !
>
=
)
1
7>
=
=
=
71
%
7
6
233B>
=
;
> =
)
8
1 /
=
)
@333
T
=
;
;
T
=
1
,
8 =
=
7
7Q
=
)
)
:
=
;8
=
@333
3
@333
>
;
=
7> =
:
;
!
)
=
=
7Q
;
)
=
6
7
:
;>
=
;
3:
8
K
;
=
)
1
=
(
Q
=
7=
J
=
@33> =
=
@331
%
=
>
>
=#
=
=
=
76 1 %
)
=
=
=
=
=
7
=
(6
EA
(
=
(6
23331
)
) =
(6
EA
2333>
) =
>
%
)
;8
;
;
!
;
8 =
=
1
=
= 7
>
=
1
:
:
=
7
1
(
= >
)
1
(
;
%
)
)
>
>
=
8
=
;
=
7
=
>
=
)
7
=
=
=
>
7
)
>
=
7
1
A1 9
=
=
; 1
!
=
,
-
-
, <
$
=
7 L!
7
M
3>3@X
3>AD BBE@4EF>3DF BEEE>ED3FE
DX
22X
3>32X
3>AD DEED@FE>42B BEEE>EC242A DX
22X
3>3BX
3>AD 4F2BA4F>@B@ BEEE>E23@BE DX
22X
3>34X
3>AF D2C2BCB>3@E 4333>@3EAD
DX
2@X
3>3DX
3>AF 444CF4D>AAA BEEE>ECFC34 DX
2@X
3>3FX
3>AF 4AA3B4F>ADD BEEE>E4D@
FX
2@X
3>3AX
3>AF DCA@@BA>C4D BEEE>EAEBCD DX
2@X
3>3CX
3>AF 4B3B@@@>AB@ 4333>@3@F2F DX
2@X
3>3EX
3>AF D4F4C2E>@CA BEEE>E3342F 4X
2@X
3>@3X
3>AF 4E3B@24>@2A 4333>@@BBCB DX
2@X
3>@@X
3>AF 4EACAB4>FA4 4333>344ED
4X
2@X
3>@2X
3>AF D@@4C24>BDC BEEE>E4B3FD DX
2@X
3>@BX
3>AF 44CFD@3>CFD BEEE>CCE242 FX
2@X
3>@4X
3>AF 4D@ABFF>E32 BEEE>CDFFE2 FX
2@X
3>@DX
3>AF D2F24@F>E4F 4333>3B2CEF FX
2@X
3>@FX
3>AF BCD2@BE>C
4333>342D4C DX
2@X
@>FDX
3>AC D4ABE@A>4EF 4333>34BEC4 DX
@EX
@>FFX
3>AC DDDBECE>42A BEEE>E2DCAD DX
@EX
@>FAX
3>AC DD3D32B>4D@ BEEE>EE3D4B DX
@EX
@>FCX
3>AC D22EDDD>E42 4333>3D4CE@ DX
@EX
@>FEX
3>AC 4CF4AEF>23B BEEE>E@4BF2 DX
@EX
@>A3X
3>AC 4CE3F43>F2D BEEE>EA@E3@ DX
@EX
@>A@X
3>AC 4FEE2@D>B2B BEEE>E3BFCE 4X
@EX
@>A2X
3>AC D3D4AFF>EC2 4333>@AEBEE DX
@EX
@>ABX
3>AC DFCBF33>AF@ 4333>2@@3FA 4X
@EX
@>A4X
3>AC 4AC33A4>E4
@EX
@>ADX
3>AC 44CC3FA>2D4 BEEE>E3F4C
DX
@EX
@>AFX
3>AC DDE2CD3>EA4 4333>3F22@F DX
@EX
@>AAX
3>AC 4@E3D4B>3EA 4333>@@@DDF DX
@EX
4333>@@@CE4 DX
@>ACX
3>AC D3@@BC@>EDF 4333>3D33E
FX
@EX
@>AEX
3>AC DC2@42E>A4B 4333>@4DACA DX
@EX
@>C3X
3>AC 4FE@D4C>4DC 4333>3DE@D2 DX
@EX
@>C@X
3>AC 423@@C4>E42 4333>2B@BAA DX
@EX
@>C2X
3>AC 4A4B43B>22
BEEE>E4ABE@ 4X
@EX
@>CBX
3>AC D@2ABCB>EB4 4333>3DE@CD FX
@EX
@>C4X
3>AC DB2DD34>BF2 4333>@2DF4E DX
@EX
@>CDX
3>AC BFAFD3B>3F@ BEEE>CCE4CE DX
@EX
@>CFX
3>AC 4CEA@AA>B2F 4333>3BA3A
DX
@EX
@>CAX
3>AC D3D2@F4>4AF BEEE>AE24DE DX
@EX
@>CCX
3>AC 43AC244>2FC BEEE>EB@@@@ FX
@EX
@>CEX
3>AC 4DEB3C3>B@2 BEEE>E@34F4 DX
@EX
@>E3X
3>AC 42D2@DF>B3@ BEEE>E4D3FF DX
@EX
@>E@X
3>AC DDBED@E>F
BEEE>ACAAAF 4X
@EX
@>E2X
3>AC DCC44F4>@@@ BEEE>EAAFFA DX
@EX
@>EBX
3>AC D@CEBD2>E4D 4333>@4F@FA DX
@EX
@>E4X
3>AC F4ADCF@>3@C 4333>3@3CDA DX
@EX
@>EDX
3>AC 4FA33D@>44E 4333>3DF4@D FX
@EX
@>EFX
3>AC 4DBF@BA>A@E 4333>33FAAD DX
@EX
@>EAX
3>AC 44DBA33>FD@ 4333>3CB424 FX
@EX
(
Q
=
)
=
)
>
)
=
=
=
=
=
; ;
)
)
)
7
)
=
7
7
14.3.3.
Simulación bidimensional
Ilustración 67 - Asistente para la simulación bidimensional
;
7
;
=
=
;
;
)
=
=
7
;;
=
)
;
1
(
=
=
7
)
=
71 (
;
;
=
1
=
*
;
(
;
>
>
= $
;
;
#6
)
)
=
=
)
)
Q
7>
=
;
7 =
;
=
; 1
;
;
= ; 7
;
>
=
1
%
:
;
7
=
>
@3
;
=
>
;
=
=
7
=
;
=
= ;
(
7 =
7
=
71
:
;8
7
>
=
=
;;
;
=
Q
8
)
7
7
=
1
(
=
7
>
)
= ;
;
=
71
=
;
Ejemplo
=
:
)
)
!
)
8
: 8
:
10
> =
;
)
=
=
8
1
Hoffman, F. O. and J. S. Hammonds. “Propagación de la incertidumbre en situaciones de riesgo: La
necesidad de distinguir entre incertidumbre debida a la falta de conocimiento y la incertidumbre ocasionada
por la variabilidad” Análisis de Riesgo, vol. 14, no. 5. pp 707-712, 1994.
(
=
=
7 ;
:
:
7
(
7
;
:
7
8
7
=
T
=
= 7
; >
7
;8
:
)
= 7
= $ >
1!
=
=
>
7Q
%
@>333 >
=
EEE>
T! >
;
= 7
;8
1
!
>
=
J
, K
T
!
7
Q=
:
(6
;
>
=
=
1
1
$
=
=
=
8
=
7 =
@33
1
:
:
=
;
=
7
=
; 1
:
=
=
7
7
;
=
71
=
3>C2
, <
LAM
3>C2
, <
LFM
3>C2
, <
LDM
3>C2
, <
L4M
3>C2
, <
LBM
3>C2
, <
L2M
, <
L@M
3>C2
3
=
7 L!
M 4AA323@>FEE 4D33B@4>@B D32CEB4>CC@ D@AAD23>FB4 DAD2A3C>C3F DAF@CAB>FE2 4C2DD32>C@2 D
,
*
<P
^
!
1
6
,
*
;
FX
DX
DX
DX
DX
4X
DX
F
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3
3>32
3>32
3>32
3>32
3>32
3>32
3>32
3
3>33
3>33
3>33
3>33
3>33
3>33
3>33
3
U3>@3
3>@2
U3>3B
U3>3E
U3>3E
U3>32
U3>@@
3
2>EA
B>2A
2>A3
2>ED
2>CA
B>BB
2>C2
2
3>32
3>32
3>32
3>3B
3>32
3>32
3>32
3
3>AD
3>AF
3>AD
3>A4
3>A4
3>AD
3>AF
3
3>CA
3>CE
3>CC
3>CE
3>CC
3>CE
3>CE
3
3>@2
3>@B
3>@B
3>@4
3>@4
3>@4
3>@B
3
3>AE
3>AC
3>AE
3>AE
3>AE
3>AE
3>AE
3
%
DXU
@3XU
3>AE
3>AE
3>AE
3>AE
3>AE
3>AE
3>AE
3
@DXU
3>C3
3>C3
3>C3
3>C3
3>C3
3>C3
3>C3
3
23XU
3>C3
3>C3
3>C3
3>C3
3>C3
3>C3
3>C3
3
2DXU
3>C3
3>C@
3>C3
3>C3
3>C@
3>C@
3>C@
3
B3XU
3>C@
3>C@
3>C@
3>C@
3>C@
3>C@
3>C@
3
BDXU
3>C@
3>C@
3>C@
3>C@
3>C@
3>C@
3>C@
3
43XU
3>C@
3>C@
3>C@
3>C@
3>C@
3>C@
3>C@
3
4DXU
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3
D3XU
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3
DDXU
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3
F3XU
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3>C2
3
FDXU
3>CB
3>CB
3>CB
3>CB
3>CB
3>CB
3>CB
3
A3XU
3>CB
3>CB
3>CB
3>CB
3>CB
3>CB
3>CB
3
ADXU
3>CB
3>CB
3>CB
3>CB
3>CB
3>CB
3>CB
3
C3XU
3>CB
3>CB
3>C4
3>C4
3>C4
3>CB
3>C4
3
CDXU
3>C4
3>C4
3>C4
3>C4
3>C4
3>C4
3>C4
3
E3XU
3>C4
3>C4
3>C4
3>C4
3>CD
3>C4
3>C4
3
EDXU
3>CD
3>CD
3>CD
3>CD
3>CD
3>CD
3>CD
3
%2
=
L
#
=
=
M
7>
=
-
)
;
; >
;
71
Ilustración 68 - Overlay Chart
(
:
@3D
#
=
=
7 =
=
>
)
:
%2
#
-
)
Ilustración 69 - Grafico de tendencias
T
=
=
)
=
=
>
;
;
:
:
=
$
=
=
)
;;
>
;
1
= $
;
=
=
=
; 1
( =
;
=
=
EEXM
1
@3F
7
7
=
=
7
)
L
@X :
%2
#
-
)
Ilustración 70 - Trend Chart
=
=
)
:
=
)
=
8
:
>
8
#
!
;8
;
)
8
7>
)
8
7
>=
#6
=
;
;
1
15. BIBLIOGRAFÍA Y WEBGRAFÍA
•
(* + > "
2334>
•
( 1%
•
+>
@3A
,
0 +
>
1Q%
QJ
3 4
1 @U234
J=
,
:1
Q@EEAQ% 1 @UFA
":
:
Q
J ==
, <
K
> ( 1 ": 5
K
Q@ECCU
K
QF : (
1
233B1 ! ,
1
Q
Descargar
Colecciones de estudio