!" # $ $ $ $ & % $ & # ' # ' $ # + *(, &! + ! " # % & ' ( ) $ % + ! + ( ! (+! ! (! +. ( +& , '- ! /! 0 -' 1!1 + *( * ,( 2334 ! + ! ! +( !,/ &-5 ,( ! ( $$ + / ! + ( ,( 0 ( ') ! !" # # 6 7 " : + # , 6 " , , , ! ": 8 8 ( ) " 9 : ( < ( " ! $7 " - - 8 ( ) ; ,; , % " ; ; :! ( < , # % ; * + & 7 " ! :, ( # / =# : ! $7 " ;8 ) = = 1 = :; # = 7 = ? 7 + > = ! >= 7 ; 1 ) = + *(, &! + + ! + ( ! (+! ! (! +. ( +& , '- ! /! 0 -' 1!1 + *( ,( 2334 ! + ! ! +( 1. TABLA DE CONTENIDO @1 - 21 B1 ( ! +-(+ +-, ,( !! + A (+ C 41 -, !- C D1 " (- * E D1@1 " (- * 0(+(, D121 " (- * F1 E ( %(! &! E " - &! ! .+ @3 A1 C1 4 ! +!( ( % 9 (-( ! +!(%- ' ! C1@1G9 # H @3 @@ @@ C121G9 # H C1B1G9 # 7 @@ ! C141G9 # H @2 7H C1D1 ; 7 ! C1F1G!7 ; @4 C1A121 ; = C1A1B1 0 *(, 7 @4 @D 2333H C1E1G9 # E1 @B ; H @4 C1A1@1 0 C1@31 ; H 7H C1A1G9 # C1C1G! ! @2 = G9 +( @F ; @D 7 H @D = 7 = H @F @B @31 ,(9 (, (+- ( , 5 ,( @C @@1 ,(9 (, (+- ( &-5 ,( @C @21 ! , !,/ - @C @21@1 G9 I !( !,/ - @2121 G!7 ; @21B1 G!7 @2141 G9 # = H ! 8 = G!7 @21F1 G!7 @21A1 = 7 G! H @21C1 G!7 @21E1 G!7 = = H 7 2B H 2A 2C ; = 8 = H BB H B4 BF ; @21@3121 ! @21@31B1 % @21@31D1 - @21@31F1 ! - @21@31A1 (6 @21@@121 !,/ - BF ! BA !: BC !: BA BE BE = (" ( % @21@@1@1 & = @21@3141 @B1@1 23 B@ @21@31@1 @B1 (6 H 7H @21@31 @21@@1 @E H 2B @2141@1 G!7 @21D1 H @C ( BE % ! ! .+ ( %, (, (" ( % 1J & (0 + - (" ( % 1J * ( 43 = , K 43 :K 44 FC 8 FE @B1@1@1 :& FE @B1@121 7 @B1@1B1 - !: FE FE @B121 A3 @B121@1 = A3 @B12121 ( 7 @B121B1 A3 @B12141 @41 A3 7 +' A3 ( (,, @41@1 (+8L @41@1@1 =- :& 7 @41@1B1 ! - !: AD AE @4121 C4 @4121@1 = @412121 ( C4 # (8 = 7 E3 @41B121 @D1 CD CF @41B1@1 - ; = @41B1B1 M A@ A@ @41@121 @41B1 A@ ED 7 ; 0, &N /5( 0, &N @3A @33 2. INTRODUCCION ! = ) ) > : ) 7 ) = = ; > = = ;; = = ( = ) ( #6 > ; 1 : ) > ) : = ! 7 ) = ) 1 % = 7 P 8 > ! = ! : = = 7 7 ) = 1 > : ( 6 7 (6 O> 7 = & = 7 > ) = 7 ) ; = 7 > 3. RESUMEN # = : 7 ) = Q = = (6 ; = 71 : : : = 7 : = ; 7 # ) : = = = : : > 7 = ! 7 ; > = = : = 1 > : % Q) = ; = ) = 7> = ; : 8 = ; ; Q > > ; > = 8 7 > 7 4. ABSTRACT -: : : : : = : : : ) : = R : : = = = : : : : = = P : : P Q : : 1 (6 : ; : > < : : : : P P < : = = ; ; = : : : P > < P 1 = : ; ; : ; S = S : : = == < 1 P: : P: : ! Q: == 5 : > : P: : : 5. OBJETIVOS 5.1. OBJETIVO GENERAL ! 8 O > ) ; = 7 ! ! • P = ! = ! ( 7 = = ; &!(1 OBJETIVOS ESPECIFICOS 8 ; • = ) ; ) ) 5.2. • : $ : ! 7 ) ) 7 P ) 7 = 1 = ! ) = ; 1 ! = = ; : ; = ! ! ( 7 O 1 6. JUSTIFICACIÓN = 7 = = = = 1 = 7 ; = = ; =T; ! = P Q = 7 ; 7 # = = 1 ! P = ) = = 7 = 7 > = = >: ( = = = 71 = 7 6 > ) > 7Q ; 1 % # 8 ) = = 7 > ! $ = 8 7 >= 7 7 : ; 7 = 1 7. ALCANCE DEL PAQUETE ( = = = = = = ) > = 1 7 7 ( : = ; 7 ) = ) = : ; ) = ) ; = = = ! ) = ;; > = # > > = = 7 ; ) 8 ; = ; ) = 7 = 7 = = 7 T 1 > = = 1 + = > = = = = ) = 1 8. CONCEPTOS BÁSICOS 8.1. ! ) ¿Qué es riesgo? 7 = 6= = =# #6 > 71 ; = ) ; ) = 1 = ; ) ; > = = ) 8.2. > = > = ; = > = 1 ¿Qué es un modelo? = = > ; = : 8 7 ) = = % > 7 = ! = 1 ; = > = ; ! = ) #> 1 ) > = ; 7 = = = 7 8 ; = = 7 ) ) 7= 7 > = 1 = 7> ; Ilustración 1. Ejemplo de Cristal Ball en MS Excel ! : ; = ) = : : = ) ) = ; 6 > ) = = = 8.4. 1 ¿Qué sucede durante una simulación? 7 8 = = = ;; 1 T = ; ; ! L M 2333 = ) > ! = ( = ;8 7 = 1 ( ; > 1 # = = ; ¿Qué es la simulación Monte Carlo? 7 = = = > 8.3. 7 = ; ; = ; ; 7 ; 1 1 2333 L = # = = ; : 8 7M ; 81 1 ; ; 7 ) 8.5. De donde obtiene la Simulación Monte Carlo su nombre? 7 ! = ; = > ( ! > 7 > Q 1 7 ; ; 7 > ) = T = 8.6. 1 % 8 = > @> 2> B> 4> D = 1 ( = L=1 1 = > 1M F = ; = #> = > = ; ) = = > > ¿Cómo analizar los resultados de una simulación? % : 8 = > = ; 7 >! = @1 1 ! = > > ) 2333 = = 7 = 7 1 7 @ ! 8 = 7 1 = 7 ; : > ) = ; : = ) ;; > 7> = ; 7 ; 1 = = 1 = 7 7 = # 1 Ilustración 2. Cuadro de diálogo - Define Forecast 8.7. ! = ¿Qué es la certeza o certidumbre? ; = 7 > = 1 ( = 8 ) = 1 % = ;# = 6 > ! 1( ; = = ;; 8.7.1. Grafica de sensibilidad: % ; = = 7> = 7 = L ) ; M = G9 # H ( ; ; 1 % ; = 1 8.7.2. La gráfica de sobreposición: ( = T = # 8 G! = : 8 8> 1 ( 1 ( = ) : = ; M H1 ; L 8.7.3. Gráfica de tendencia: % = ; 7 ) = 1 G!7 6 ; = H 8.8. ¿Cuales son los beneficios de realizar un análisis de riesgos con Crystal Ball 2000? ! 8 ! : ; > = ) ! = = = = 1 > = = + 7 : 6 : 8 7 ! 1 (6 T = = : 8 ; > : ! ; ! 1 ! ) 1 ! = ! > = 8.9. 1 7 = 1 + 7Q ; ) = L%1(8 1 0 = M ! = ) ; # ) = = ) 1 7 7 = = = = ; 1 : 8 = > = = ; 1 ! =9 = : ; 7= 6 = ; ; 8 : 8 ; 8 = > ; ; : ¿Qué es Optimización? = 7 = % ) 7 ) = = > = (6 > (6 1 = ! = > = ;8 ; 1 ; ; 8.10. = > =9 7= = 1 = ; ¿Que son los pronósticos de series de tiempo? 7 : 8 7 = 7 : # = = = 7 ) 1 ( J = K 1 9. VERSIONES ( = ) 7 = 5 ;2> 1 = ! > ) = ! = = = ; ! ! • ( 7 • ( % 7 • ( • ( ! % ! =9 7 % =9 > 7 L L + = $ L 2: = ? ? PPP1 ! > ! = 1 ! > ! % = = > ) M M ! ! - ;M # P ! # 1 ( = = = = = = : ; : 8 ! ( • 7 # * 7 6 K > = 1( 71 • * 7 ! ( ) 7 # : ( = = # 5 ; = $1 = = % 7 = 7 71 % 7 ; : = >= ; U: = = # ; = ; > ) : ; 5 ;1 = 7 ; > P > P ) ; = ) ) = > ) $1 = = ; : = 7 = # # $ : ; ) 1 7 7 J 7 1 % ;# ;# ; @43 : ; = - 7 = $1 = = • ! % = = 7 = % = • =9 % • = 1M > = % • L ! - ;> = L ! ! ; M % = = ; 7 % - > • 7 8 L = = ) = M = ! 7 7 L 7 : 7 = 7 1= > 1 M A 10. REQUERIMIENTOS DE HARDWARE • % % • F4 • B3 • ! U, • - 8 ) 433 M , = ; L( 7 ! ! M C336F33 = 6 7 11. REQUERIMIENTOS DE SOFTWARE % 8 ! P • > ) = 1 = 5 L M > 5 P +- 413 5 > 5 P 2333 % P V%% ( = 5 • (6 (6= ; P ; , 7 = = D13 413 EC> 5 P < > 5 EA> 2333> 2332 LV%M > • • ; % <F ( P V% 233B1 = 1L = > L M = = M 12. COMO USAR CRYSTAL BALL 12.1. ¿QUÉ HACE CRYSTAL BALL? ! 6 = (6 P • = = ; = = 1! 7 = ; = 1 ! > ) : J 5: U K = > = 1 ( ) 8 (6 > 6= = • : 8 = ; 7 ) 1 = ! = ;; T = • % ; = : 8 ; = = 1 ; = 1 ) • 6= = ' &!" $ = 7 = ;; 8 = 1 ) ; 8 = ! &> ! ) ;8 ; 8 = 1 12.2. ¿Cómo abrir el programa? ! P > = : : 8 ; = = (6 (6 ; ;8 1 % ; = = # >= 7 > ;8 ; O1 ( = ! > ! = 8 7 ! %: 1% ; ! > = : = : ; = ; ; > ) ; ; 7 ;; P > : ; ;8 8 = 8 = T = ; 1 7 T ! 1 = ! 7> : (6 M 1 L= ! ; = = ; ) Q 7 = : Ilustración 3 Barra de tareas ejecutando Crystal Ball ; +! 1 ! T Ilustración 4 Ubicación de Crystal Ball en el menú Inicio ! %: 8 = ; # 16 > ) ! 1 ( ; = ) ) ; ) = 7 L L M > ! > M > ; 81 ; = 8 1 ¿Cómo Crystal Ball mejora Excel? : 8 > = 7 = ; ! = = 1 % : 12.3. 7 = = (6 Q (6 7 6 : = : ) ) > = 1 = ; 1 8 (6 = ; ; = ; 1% : > ! T (6 1 Ilustración 5 Barra de Herramientas de CB ! = ; = T = ; ; ) = ! : = : 1 = = 8 6 7 1 ; ; = Q 1 T ! (,, (+- L !( L M > (" (! - , L M 1 Ilustración 6 Barra de Menús de Excel con CB ( T!( L M= ! Ilustración 7 Menú Cell ( T (" (! - , L 1 M > = 1 M Ilustración 8 Menú Run ( : ( T ! 7 % (,, (+7 ! L M > : 1 Ilustración 9 Menú CBTools = = 12.4. ( ¿Qué es un supuesto? ) ; ) = : 8 ; > 1 = = ( = = ;; J = = ; = K) 1 > ! = = ; = ;; ; ; 1 ( = 7 ; = = = 1 = 8 = L! %: M > > = 0 ( ;8 L ;# M 1 7 = ; = ¿Cómo definir un supuesto? = = ; > > ; ) ; 1 % = 1 12.4.1. ( = ; ; 7 ! 1 = ; ! (6 ; ;; ( 6 8 = ; = ! %: ) > = = 1 8 ; Ilustración 10 Hoja de Calculo del ejemplo CellPhone % = = : ; = ) ; ; 7 J ; 7 ! = 7> KL 1 L! L @@M = M = > ) @@M 1 ; 1 Ilustración 11 Cuadro de dialogo Distribution Gallery Ilustración 12 Distribución Triangular para la celda B11 1 = ; T 1 ) ) = ;8 = = = ;; 1 ( = = ) 8 = ! %: 1% L = > > = 1 T U = 6 ; > = : > ; 7 : J ; = K M 1 Ilustración 13 Celda supuesto % Long Distance (B11) ; L @3M 1 = KL J : M 1 : = ; ; 7 ; 7 1 ; ) ) = = B43 7 = 7> ; : ; 4F31 = 231 43 Ilustración 14 Distribución Normal para la celda B10 : = ; = = L M ) 1 ( 1 ! > Ilustración 15 Celda supuesto Actual Minutes (B10) ( = = 7 ! 1 12.5. ¿Cómo definir un pronóstico? : = = = #> ) + ; 7 ! > U 7 >!= = 7 = 7 , = 7 7> = 8 ) ) 1 7 J ; 7 &E> > = = : ; > M : L @4M 1 % 7 KL & % L! # (6 1 = ; ; 7 M 1 @4 & = = ! 1 L! = 1 ! = = ; ; > * + ) = = ) 0 % 1 ( ) 1 Q = = 1 ( M ; = LWM Ilustración 16 Cuadro de dialogo Define Forecast ! : L! M : ; > ) ) = 7 = ! 1 Ilustración 17 Celda pronostico B14 : = 12.6. 71 ¿Cómo correr una simulación? ! 7 ! B = : 8 1 ( ) = > = % = > U= L 7 =M BE3 ;) : ; 7 J % ; = 3 ; ! = = " J 5: U K 1 ; % 1 L http://www.decisioneering.com/models/beginner.html = =M ! 1 : BBX1 K Ilustración 18 Nuevos valores para el modelo al correr la simulación (6 = 7 W41F@1 : 8 W21DB1 ( : ! ; 7 = = : 8 7 ; = KL =M 1 ) = U= = # 7 L M >) >: 433 ; 7 J , = > ) B3X = > M ) = 1 1 8 = 8 ; = ; K 7 % 7 1 ; % ; = ; = % X J % : J (8 L, 7K 7 T ) > Ilustración 19 Cuadro de dialogo Run Preferences #( T 6 @3333 : ; 7 J (8 K L, M L = (8 = 7M 1 ; = = U 7 Y: 1 ; = Ilustración 20 Gráfica de pronósticos para la celda Cost Savings (B14) 12.7. ¿Como analizar los resultados arrojados por el cuadro de pronósticos? 7 8 = 1 >= #% = ; 7 = 1 ( = 7 = ; = 7 ; > = ; = = ; = 6 = = = T *(, # = = 7 8 = ) ; > = 1 ; ) ) L 7 M > = ! %: = 1 = Ilustración 21 Cuadro de estadísticas para la celda B14 ( = = 7 = 8 ; ) W@1A31 = ; : 1 % 8 = C3X : Ilustración 22 Cuadro de Percentiles para la celda B14 ( : ; ) ) : : = = = ; ! 7 W41F@ ) = 1 ! ; : ; = : ; 8 L ; !: M 1 12.8. ¿Cómo usar el cuadro de sensibilidad? = ; = ; ; = % ) 1 6 = : > : !: = > = # ; 7 ; $ = J ! M 7 ! ; KL = 1 % 1 Ilustración 23 Cuadro de Sensibilidad medida por el rango de correlación = L! % ' % L% > ; M ; 71 M > : ; % & = ; ) = ; 7 = A41B X M > : ; = 7 $ L ! : 1 Ilustración 24 Cuadro de Sensibilidad medida por la Contribución a ala varianza ; ) 7 > : ; ) ) ) > : " 7 : ) > = 1% ! ) = > 8 8 ( + ! = T = > : T ) 8 = > 7 > = ) Q 1 : = 8 = > = = = ; ) = > 1 ¿Cómo generar un reporte? % % = ) ; = 1% = = 12.9. ; = = : 7 ; : ; 7 ! J ! ! = 1 1 KL! ,= M Ilustración 25 – Cuadro de diálogo Create Report = ) ) = ) = = = ) 7 ; ; = LZM 1 ? ;8 ( = ) $ LZM > LZM > LZM > ; = = (6 7 ; ! ;8 LZM Q ; > : = 8 8 = 7 ; $ = ) ) 8 #( 71 ! > = = 1 = 7 ) 7 2DM 1 = > L = T > : 1 ; : 6= ) = : : ; = ; = ) 12.10. Otros recursos 12.10.1. = Distribution Fitting : 7 = 7 J ; ; ) & 0 = = ; K 1 Ilustración 26 Galería de Distribuciones Ilustración 27 Cuadro de dialogo Fit Distribution = > ; 7 J &K 12.10.2. : Correlated Assumptions ; = 7 71 ( : ;8 (6 1 : 8 ( ; 7 > 7 ) > = : % : ) = = ) 1 Ilustración 28 Cuadro de dialogo Correlación 12.10.3. ( ! Precision Control % 7 ! = ) = = % T 1 ( = ! 1 ) 8 = 7 ; 7 Ilustración 29 Cuadro PrecisionControl 12.10.4. Overlay Chart ) = = = T = 1( : = 7 7 = ; ; Ilustración 30 Cuadro de dialogo Overlay Chart > J : ; 7 T ( K 12.10.5. * Trend Chart + T = = ; ; 1 ( T = : = 7 ; ; > = ; ( Ilustración 31 Cuadro de Tendencias 12.10.6. = CB Tools = = ) = ! 12.10.7. = 7 : 1 Example Models ! : ;8 = 8 = # 8 = : T ) = 1 = 7 12.11. EJEMPLOS DE APLICACIÓN DE MODELOS 12.11.1. ( & B3 PRIMER EJEMPLO. “Futura Apartments” 8 = > = 1 = 7 ) ;8 ; = 8 7 = = 71 Ilustración 32 Hoja de Calculo “Futura Apartments” ! ;8 • WD33 = • ( T B3 43 ) = = = = 8 = = 71 ( : ; L ! = = (6 1 > : ; J 5: U J > = = • = : 7 = 8 > ) ; = M > W@D1333 >= ; = ) ; : ) : 8 = ) : ) = = ; ;8 : 8 # = 1 / ) ; ) 71 ! ! ; 1 Correr la simulación % 7 • ; = , • 8 = 7 6= * 8 6 7 ! 8 = " ! + = ; ( = 7 * = # LD33 = 1 = # > = 7 + : ; M > T 6 1 Ilustración 33 Pronósticos de Ganancia/Perdida para FA • • + (6 = = % : 8 7 = > 1 = 7 7> [- ;1 7 > ; , [ =1 = = > ( = = 7 = : = = = 1 ( = = ;; > 1 ! W4AD3 = = ) 7 ; & = = ;; =# 1 ! ; = ;# = = W2D3 > ) = W2333 WA3331 8 Determinar el beneficio : = ! = ; = ;; 1 % = • % = ; ; > ;; ( • % = > 7 $ ; 3L ;; ; 8 = ) • = = M ) 7 = Ilustración 34 Probabilidad de Ganancia para FA ( = : = ; ;; = 7> > ) : L! = M ; = 8 W3 = : 8 = 1 ! 7 = 7 ; + & 7 B> W3M L0 ;# ) = = 6 W2333> = ; > 1 - = : EBX1 1 Como usa Crystal Ball la simulación de Montecarlo ( = : : ; = 8 ) ; = 1 T ) T 7 # ; = 1 ) • • T = ( ) T 7 : 6 ( 7 ( = U 7 = ! 8 ; = = 1, = > ; = 6 = • 7 1 = : ; 1 = ;# = 8 1 % ; = 6 = 7 ; ) 7 6 ! ! = ; ) 1 (6 = ; ) : 8 ; ) ) ; 8 = , [, • = = ; 1 • • 7 = • ! ; = 1 : 8 8 = 7 12.11.2. ( 6 SEGUNDO EJEMPLO. “Vision Research” 8 = 7 : ! : : ( = 8 = = ) 1 ) * , ; 1 :4 7 = * > = = > = = = * P> ) = = 76 ;8 ; = 1 ( = $ = ; & ) * , ; : = = > = ; = = = = = & ; , = 1 > = ; ! : : ! U ) #6 = 1 ) 1 ( = 1 ! 7> $ = ! * P = = 1 % ; • ; 8 = ! : 8 * P = 4 ;8 ! : 8 ! [ (6 7 ' > = = T ! [% [ = = > http://www.crystalball.com/models/pharma.html * , 7 2B1 := = ! Ilustración 35 Hoja de calculo ejemplo Vision Research ( : 8 = ; ) * , : 1 Definir supuestos ( ! > ; = ; ) ; : 7 @A 0 ; ; ; : = 7 G!7 = = ; ) = = = = U 8 = ; ; = = U ; ) 1 % > = > 0 ! L ; ) = ;; 7 = 1 ( : 8 = ;; ) ! * P1 ; 7 ; > ) 7 DM 1 H1 ( ; 6 = ; 7 ; 8 = > * , : ; ( = 8 = > = 6= = = ; 7 1 Definir Testing Costs. La Distribución Uniforme : > * ! * P = D13331333 = = 1% ) = ;; ! = , ; : : > ; ; > J WB13331333 > * J - ; , ! 6 > 8 = = : 7 K 7 6 ; 7 = $ = ; ) W@313331333 WB13331333 W = ; K >* , : ) W D13331333 1 7 = ) ! ; ;1 = 8 7 ; 7 ;; % ; ; 1 = U = ; 1 % 7> = = = ! • • !D ( T > : = ! 1( ; : J = 7 ; $ ) , : -+ = - Ilustración 36 Cuadro de dialogo “Distribution Gallery” • ; • ; 7 ( ' , ( J ; 7 K = Ilustración 37 Cuadro de dialogo “Distribución Uniforme” ) > !D ; = = 1 1 ; 71 ; ; ; 7 6 1 * WB13331333 ) = ; 7 • ( ; = ; = ) ! > = , : 6 = ! ; B = = WD133313331 = = > L ) 7 = ( , = : • % WB13331333> = = + ; = > J ; : 8 + K = > = ; = T : 8 M 1 ) ; L8 ! = M 1 * • ( ( = ; D = = ; L- WD13331333> ! M 1 ; ; = 6 = • 7 8 ; ) 7 2F > : : : Ilustración 38 Distribución Uniforme para la celda C5 ; 7 > = 7> ! ; = 1 > 7 2F1 = B • = = = #> ! = D 7 !D ) 1 : 8 Definir Costos de marketing: La Distribución Triangular * , ! : = ; * P> = ; = = = $ = ; = = ; > * W@C13331333> = & = 1 ( < = =T; 1 , : = W@F13331333 W@213331333 = ;; 1 * ! , : < > 7 ) U = ; 7 ; 7 6 > = = ; 7 = ;; ; 1 % ! = ! < L < M • !F • ; = = 7 : ; $ J • ; J ; : ) , 7 - ! -+ = 1 ( 1 K • ( J ; 7 - K = Ilustración 39 Cuadro de dialogo “Distribución Triangular” : = = ; ; 7 7 ) ; = = ; 7 1 2A> 7 = = 1 ! = = • ( , ( ; @2 = = : • W@213331333> ! < = % = = ". ; 1 @F> ( ! = < • ; @C = ! / W@F13331333> % ( ) # = * $$ 0 ( ;; = = W@C13331333> 6 = < • ; 7 ; = 8 1 Ilustración 40 Distribución Triangular para la celda C6 7> ! ) @F • @2 = @C1 : 8 Definir pacientes curados: La Distribución Binomial ) ; = $1 * ! * P ) = # > & = ; ! * P> * , : ; ; @33 = , : = ) & = ; = = = 23 = > ) T 1 ( = ; > 23X = ; 7 ! * P= $1 * , : = # = ; = ) = 8 #6 2DX1 % ; > J = = ; = G* , : = = > * , : 7 ; ) = ; ; T = L@33M 1 % U = K > * >) : #6 & ; = • , 7 ; 7Q ) 6 L2DM J % 2DX1 ! ; ; 7 H1 = K > T = !@3 • ; = 7 ; • ( '* = ; 7 • • • ( ) D3XM 1 * = = $ = ) + = = ;; 1 L&8 31D Ilustración 41 Cuadro de dialogo “Distribución Binomial” • ; L = 7 $1M 8 > 6 = ;; 6 1 = • = 1 ; L 0 ( 2DX 312D ; ) = = 6= @> 3 = 8> = * ; = ; % ;; : ) , = = ) = ;; 313B> T BX1 • • ; ) = ; & @33 = > = ) * , : @33 = 6= ; 7 ; 1% = • • ( • ( ; 312D = = 2DX = = ;; • = • ( • ( = • @33> = ; @33 = = & $ @33 = ) 1 : • ; 7 ; = 8 • Ilustración 42 Distribución Binomial para la celda C10 7> ! T @33> = & ) 3 = 1 • = : 8 Tasa de crecimiento: La Distribución Personalizada * , : : 4313331333 = 3X DX $ ) ! * P ; 6 > = ) = 8 = 7 = ; 1 < 2DX 6 = = ; = ( ) : = ) = = * P ! ( 1 ( DX ; J ; ; , = = K 7 ; 1 % = = ( = 7 # = ;; ) 7 = = = : ; = @DX1 = 1 ! ; ) = ; > : = ; = 0 ; = 7 ; 7 ; = 7 > 1 = = = > B1 = 7 = = = > 1 = ; ) > * T = = % = • ! * P1 % = U !@D • ; • = 7 ; 7 L% M • ( ) ; 8 ; 7 B@ ) ) > 1 7 % = = 1 +7 8 Ilustración 43 Cuadro de dialogo “Distribución Personalizada” % = • ( ; 3X ( = = • % • ( 3X ; DX ( = = • % • ( ( , = DX ; ADX = = = = : * , ;; ) = 7 = = * = 7 :1 • ; 7 3X DX = 1 Ilustración 44 Distribución Personalizada para C15 % • ( ; U@DX ( = • % • ( = @DX ; UDX ( % • ( ( , = 7 = = = • 7 DX ; 2DX = : = 2DX DX = ; ) = 7 = = * = 7 UDX = * @DX • ; ; 7 = = $ + 1 @DX : 1 Ilustración 453 Distribución personalizada para C15 (2 Supuesto) % ; 7 : 8 = = T ; = 1 ( 7 ! ) = = • 1 = : 8 Definir penetración en el mercado: La distribución normal ( = = = < ) 7 = = * , ; * 7 , FCX FX : = 2X1 J + ; = ; 7 7 = ; 7 : CX K ) = = = = ;8 7 > @3X1 ( > CX> = ; = 1 ) > = < DX> = = = * J = , < : 7 K 1 % % 7 • # 1 ; 7 = ; U = ; = !@E • = 7 • ; 7 + • ( J + ; K = Ilustración 34 Cuadro de dialogo “Distribución Normal” : = ) = = ; 7 7 • = = = • % • ( ( C133X> = = 7 ; 2X 1 = ! ; CX CX = ( = 2X = 7 1 • • ; 7 ) = • % • ( • ( = ; 8 7 ; > ; 1 = ; DX = = = 1 = = DX ) > ; ) = 7 = • • ; 7 ; = 8 1 Ilustración 35 Distribución Normal para la celda C19 7> ! ; ) 7 ) = = Definir pronósticos ;8 DX ) : 8 CX 1 1 = # U U= 1 = = * U = 1( 7 , ; ; : = = 7 L!2BM= > = ;; = ;; 1 ( > > = ; ! * P1 = = = ) L!2@M ; Calcular el beneficio total ! = = 71 ( > ; = 1 % 1 U= = • ; = = : 8 ; = = ; = # = L!@EM 7 ; = # > = 1% ( = U= T ( ; 7 ; ; = !@F\!@E\!231 ! = $ L!@FM = = L!23M 1 1 = • ; !2@ ( = 7 = : J % = = ; = ; 7 + = 1 = ; = 7 1( ; 1 % 1 ; ; = " = > : 8 ; ) > Ilustración 36 “Definir Pronostico” para C21 • % • ( ; J ) K = # > = 8 • = : 8 Calcular el beneficio neto ; = • • = ; > !2B ( = ; : 8 & ; L!2@M 1 & M > = ; L!@@ * M > L!AM ; > & ( U= T ; + L!DM) = : ; = ; % ( = = ] L!@@Q !2@U!AQ U!4U!DM 1( L!4M ! • U= ; L!@@ : : 1 ; ; = 7 " Ilustración 46 “Definir Pronostico “ para C23 + ; = = ) = 7 ) = = # 1 • % • ( ; J K • = # = > : 8 : , * = :> ; ; = = 7 : 8 Q = ) 71 Correr la simulación ! ; 7 7 1 ! > ) T = 7 = = T1 1 = 7> = ) > = % 7 = ) T 7 • ( 8 1 = 7 $% ( 1 8 = > T • • -% = 7> J , = ; D33 .' ' &[ % '/ ( ' K = &L T 1 6 M > • (L • = 7 '/ • ( M J ' 0 T 1L = ) ! ( $' M ; EEE • Ver los cuadros de pronósticos ; ) = 1 ; = ; 7 = > 6 = 7 = 7 : 1 ( ; 1 = ( ( ; L0 % ( ** M = $ > 7 BC Ilustración 47 Cuadro de Pronostico para “Net Profit” = 7 2" * " > = 7 T = % 1 7 = + ,& > = = 8 ; 7 ; U= 1 ; 7 = ; ; 7 T = ; 1 ( = 7 = ) @F 7 + @F = 1 ( = , ) 1 ) = ; = ) 7 ; 7 BC> = > ! 7 = U= 6 8 7 1 T = ) 1 Interpretar los resultados Entender el cuadro de pronóstico ! * T = = , :1 ; > > ) 6 6= 8 ) ( W@41A : + ( = 6 = = ! T ; 1 ( @33X> ) = ; 1 , ) = ; ; = ; 1 = T ; > = 8 = : ; ; ; ) : 8 1 = = = ) 8 = >! = : > ) 7 ;# > = ) ) 1 = : ( 7 7 BC> WB414> 1 = 7 1 % 7 = = = 6 6 7> T 1 ( 7 = = 6 1 = > T 6 = ) 71 Determinar el nivel de certidumbre : = = = 1 * ; , : ) ; = ; % ) ; = • ( • ( • % ! ) = ; 3 7 + -; ( > = ; 1 ; W313 = ; AE1C3X = = = J + = % AE1C3X1 ( = ; = ) 6 L@33X AE1C3XM 1 * , ; = >= = = : % = K > = ; = = ; ; ) * ; ; : ) W2133313331 ! 1 ) , : 1 2312X ; ! Ilustración 48 Pronostico para “Net Profit” con valores positivos • ( • % ; 2 = ! ; 7 BE> ! W213 ; 1 Ilustración 49 Pronostico para “Net Profit” * , : = ; ; W2133313331 * , = 7 1 = ! AB1F3X = ; ) ; = >! • ( • % = ; 4 : : ; = ; ) W4133313331 = ; * , W413331333 = = : = ; = = > 7 = ; ; 1 1 = ! = W413 Ilustración 50Pronostico para “Net Profit” (2) ( = 7 ; ; = ! = J & FFX1 ! W4133313331 * * P = 1 7 4@ ; , : = ; 13. CRYSTAL BALL TOOLS : ! = 1 % = * ) 7 : = = 7> ) 7 = ; > 7 ) = ( : 1 D ) ! = 7 :& ! ( - 7 !: = -; = ( 7 7 ; > = 5 http://www.crystalball.com/crystal_ball/cbtools.html 8> ; > 8 13.1. Herramientas de Montaje del modelo 7 13.1.1. : & Batch Fit : F = ! ! > ; 1 (6 T! : &1 13.1.2. ( = ; : = = > Matriz de correlación : = ) ) = Q = ;8 6 : = = > > ; 7> = = 1 ) = 13.1.3. ( 6 >= 8 = 1 Tornado Chart = = ; ; : 6 > ;8 = > http://www.crystalball.com/spotlight/spotlight10.html ) ; 8 = 6 1 13.2. Herramientas de análisis 13.2.1. ( = Bootstrap # = = 7 ? = = = 1 > > = = 1 7> ( 7 ) : ; 13.2.2. ; = 7 = > > Escenario de decisión = = 6 ; 7 7Q 71 13.2.3. Análisis de escenarios > = ( = ) = ) ) > ; = 13.2.4. = ; = = = = 1 = 7> = 7> > 7 1 Simulación Bidimensional: = = = ; ) = 7 > = 7 1 ( ; ) = ; = 7> 7 ; = $ = ; 6= L M > ) 7 = ) ; > L: 67 > M > ; T = ; L 7 T = M 14. ANÁLISIS DE LAS HERRAMIENTAS : = = 8 = 1 : L 7 = = 1 Herramientas de Montaje (Setup Tools) : ; ! = M > = ; 7 % 8 = 8 = 14.1. ; ) 8 * ; 7 14.1.1. = * 1 Batch Fit o Herramientas de serie Ilustración 51 Asistente de Batch Fit ( # = ; > L = ;; = > > # ; > = = T = 1M = = : = ) 7 ) ;; T ; 1 = 7 > ; 1 8 ( 7 = : > = 7 = 8 1 ( = 7 = ; = ;; = > ; = ; ; = 8 > !: U Q ; = : = = ; > = = = > ) 7 7 ) 7 : ) ; > = ) > 8 = 8 (6 > ) Q = > 1 Ejemplo ( = ; ! 8 ; Q= = > % 7 ; 8 ( = ; 8 = ; @EEC ; = = = = ; > : ; 233B> = 1 :& = ! ; > : !- T = (6 > : : &> = @ 1 B ; ( = 2 = 1 B = > = = 1 > = > ! : = ; ; 7 : 8 1 = 1 = 7 ; 7 7 = ;; = > 1 % B B ) = ( = 1 = >) ; 7 = 3 = 7 >= ; = = : > ! (6 > = 7 = ; 7 1 = = = @1 : 8 = = T = ; 7 : 1 ( T, = 7 = ; 7 7 ^ ! = T >= = 7 , :& 8 > = = = > = 1 % : = 1 Ilustración 52. Vista “Statistics”. Observese que el coeficiente de variación es del 9%. : 7 = = = > = 8 = ! : J 7 : &K = $ = = ! % 8 8 ; > = 71 > 8 7> ; > ) 1 ( = = 7 ; ) L& M= ; 7 = = WD1233> ) = : ; = E@>2X 1 Ilustración 53 . “Frequency chart” del ejemplo = 6 7 14.1.2. Matriz de correlación Ilustración 54 Matriz de Correlación ) = > > = = 7 U= 6 ; = = 7 ; = = = 7 = 71 6 = ) ; 6 ; = > A (6 7 7 = ( 7 7 $ ) ; Cárdenas Héctor, Curso de Econometría, capitulo 2. Profesor de la Facultad de Ciencias Económicas de la Universidad Nacional de Colombia 6= M > = L 7 = 8 = = Q= = ; 7 6= = /] @2>B2@4CEEC _ 3>3EACDFCB V@ _ 3>42F4442@ V2_ 3>4DBF4CFA VB - ; V@ = V2 6= 7 VB 6= 7 ; = / 67 6= 7 = 7 Q ) : ; 6= ) ; = 7 = 7 7 ! ; 6= > > ; 7 7 6 ; = > Q ) = 6= = = = @ 8 7 = 7C = 7 : 6= ; > ) 8 ) ; = ; = ) = 7 6 = 1 ; 6 ) 7 > 6 > ; ; 6 ) ; 1 Mide el grado de asociación lineal entre la variable dependiente (endógena) y la independiente o exógena, eliminando el efecto de las demás variables del modelo ! = = 7 ; > >= > ( = = 7 T != 7 > ; : ; = ) ; = 1 > = = 7 > = = = > = T = 6 7 ; 1 > = = 71 7 : = = $ = : 8 ) = = > 7 ; : > 1 = Ilustración 55 – Matriz de correlación 7> ! 8 >= ) ; 1 Ejemplo ! 8 = > = L > 6= 7 * ; > = = ; 7 = 7 Q 1 = 7M 7 T = % ! 8 81 8 ! ; ! 7> (6 = = ; : 8 > = LEEEM ; ! 7 L 1 LK > = D33M > K M > , 7 7 L = 7 J K M 1 = 7 = ; 7 DF1 Ilustración 56 Cuadro de EStadisticas !- > 7 = ; ; ;# ; 7Q = = = = : 8 = 1 ( $ = > > = 8 233B 2332 7 2333 ! 233@ 2333 ! 7 7 7 @>333 3>233 3>B33 3>@33 1 ( ! @>333 3>@33 3>B33 2332 @>333 3>433 233B @>333 7 ! ( = J 233@ 7 ; ) 8 ) ) K 7 ; > = = 8 = > 1 > ! 7 7 1 = > 14.1.3. ) 7 = ) 1 Cuadro Tornado Chart Ilustración 57 Asistente de Tornado Chart ( : = > : = ; > ; = = # > > : = 1 ) 7Q ) ;# > Q ; = 7> ) = = ; = # 7 ; ) ; ; ; J = ; ; ; 7 > = K J = ( - : `- # K 1 = = ; 7 !: ` = !: ) = ! = : ) : 1 = 2D3 ; Tornado Chart ( = = : = ; = > $ 7 = ) = ( ; > 7= = = 6 ; > = ; : > 7 = ! ; ; ; > : 71 ; ; = = 7 7 Q= ; 7 ) = ; ) = > # ) $ 81 (6 = ; > 8 ; 7 7 6 7 = 7 71 ; 7 6 = 1 = = = ; ; > ; U Spider Chart $ 6 = 7 = ) ; > ; : 6 = ; = ; = > = 7Q # 1 ! ) ) = ) $ ; ; = 71 Ejemplo: % 8 = : 8 ) ; # >= ; ) = = ; 8 T !- 1 > ;8 > !: L= > @ = BM 1 ! ; = L= 2 BM 1! ) ; ) ; 1 ! 1 ( = B B L ; @3X T = 6 = 7M ( = 7 = = 7 = 7 ( # ; 1 = !: = !: 1 : = 8 = 8 = - = DM > = = ! L L - = E3XM !: > = = : 1 !: Ilustración 58 - Tornado Chart Ilustración 59 - Spider Chart ( 8 = > 4 = = ; ; > = ; ; - !: 7 ; 81 = = !: ; = ; ; = = ) = ; > > : > = = 71 8 6 @33X = ; > = = = 6 7 = : ; : 1 ( 7 = ; ; 7 = ;8 ; = ) = ; 1 ; > 14.2. Herramientas de Análisis 14.2.1. Bootstrap Ilustración 60 - Asistente para Bootstrap ( = # 7 ) ) 6 Q : = 6 ) > ; 7 = 1 : # ; ) = = = ! >= ; 7 > 71 ) = ; => = > ; > = 6 = ; 7 > # = = 1 7 ; ; = ; 7 ; 1 (6 ( ; # # = = ; = # 7 T = ( = > )# 1 ; 7> ; = ( ) = 1 # = 6 7 = 7 = ; ; > ) ) : 14.2.2. 7 ; Q ) # = = > 7 8 7 71 7 > = = ; > = = = 7 7 M 1 % = ; 71 = 7 = = U5: ) # Q > : 7 ; ; ; ; ; = = : = 71 ; = ) = > = = = = 6 # = 7 = 7 > Q T = = > 7 L ( # = # 5 6 > = ; = # = = ; 7 = 7 ; El método de la Multisimulación ! ( = 7 ; = = 1 > = 8 >) > ; Ilustración 61 – Comparación única simulación vs. Multisimulación Fuente: Tools tutorial 14.3. % = Ejemplo: = = 8 = > ) ; > ( ) : : = ; 8 (6 = : ; ) ) 7 : ; ! = = = ; 7 1 ; 1 ) Q 8 = ! = = > = Ilustración 62 – Vision general Modelo “Planta energia nuclear” !; > = 7 = = ;8 ) 1 6 = = =# 7> 7 = # ) ( = = D33 = 2 T B 7 = = # = B B T = ) # 1 = ) = > = > $ 7 = 7 1! T, = EEX> = = = 1 1 > 1 = @X ; ; 1 ! 6 % 7 ; = > = 6 = > > 7 < = > : > 7Q = 1 =; = = = ; ) > = ) = ) = 7 > = 1 Ilustración 63 – Frecuency chart para la variable “Mean” ! 7 L 7 = ; ( M > ) = ; ) 1 6 Q 7 7 ; % 7 ) ; > ; 7 71 = ; = > 8 = > > 6= $ 7 ! B>3A 3>32 7 7 ^ <P * ( 3>C2 , 3>C2 3>32 3>33 3>33 ! 3>AC3 U U U U 3>3EA 3>3EA 3>3@4 3>@FB 3>@2B @>333 U U U U U 3>3EC 3>3EC 3>2EB 3>3FA 3>@@E @>333 7 ( U @>333 @>333 3>@CF 3>@A2 3>EEE * U @>333 3>@CF 3>@A2 3>EEE <P U U @>333 3>BFD 3>@CF ^ @>333 3>@AD ! * 7 @>333 Ilustración 64 14.3.1. Tabla para la toma de decisiones Ilustración 65 - Asistente para la Tabla de decisiones ; 7 ) 8 ; ( ; ; 7 : ; 7 = = > > = ; = = ; 1 + ; ) 71 7 ; 7 71 % ) ) > + ; > ; = = ) = = ; ; 8; = =9 =9 7> = ! > 7 1 ) : J 7= = : ; Q = K) = 1E ; ; J= 9 K ! 7> Ejemplo ! ; 8 ! 8 7 = 7 = = ; 7 = 8 % ; TJ > 1 : ; K ! = > T T EEE1 • 7 ; = : ! = > ; = T, 1 ! ^1 • = 7 !;8 7> 1 E ; ; = > ( ) ) 7> = 7 • > ; = • ; 8 = !; = > ) = ; 71 ) ; : ! : % 233312> 7 = 1 • ! > = 7 = • ; ) 7 ) 71 ! = = 1 = 1! = ; 1 = = > 7 L= $ ; ; > ; ) = T D33M 1! 1 L3>44M L3>4B@@@@@@M L3>42222222M L3>4@BBBBBBM L3>43444444M L3>BEDDDDDFM L3>BCFFFFFAM L3>BAAAAAACM L3>BFCCCCCEM L3>BFM % L@BD33M 3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE @ % L@BCBB>BBBBBM 3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE 2 % L@4@FF>FFFFAM 3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE B % L@4D33M 3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE 4 % L@4CBB>BBBBBM 3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE D % L@D@FF>FFFFAM 3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE F % L@DD33M 3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE A % L@DCBB>BBBBBM 3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE C % 3>C@ 3>C2 3>CB 3>C4 3>C4 3>CD 3>CF 3>CA 3>CC 3>CE E L@F@FF>FFFFAM % L@FD33M 3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE @3 @ : 2 B 8 D F ; ; 7> 71 = = > = 7> 7 ; > 7 $ T > L 1 7 6= > > ) 1M = 7K > > = = > ) = ; 1 7> = ) > 8 > # = J ; = ; = = ) Q ; : % = T : 7 E 7 ) = 6 C ; ;# 7 ; A 7 = = % 4 > ) 7 ) 7 7= = 8 ; @3 = = > = > ; = ; 7 = = ; 7 G( H ; = ) $ = ! = ; = ; = 7 ; > ; > ; = = 7 U *1 1 = ; 7 (6 = = $ > > > a G 8 = 6= ; G 7 ; ; = H > G > != = 7 * > = 7 = 7 ; 7 742 > ) ) 7 = 8 8 > % ; = ; 8 ; % ; = = 7 J , K ) ; > 71 ( = > = ; 7 7 8 @D31 ; 8 7> > = : 1 14.3.2. Análisis de escenario Ilustración 66 - Asistente para el análisis de escenario ( = = = 7 > = = ) 7 ; = = ; 8 L@X1M % = = = EE > = 7> ) = ; = > ) ) ! 7> = L@XM : )# = = 1 Ejemplo ; : J = = = > ;8 ; > = = = = K > = = > Q : ) = = 8 7 = = > = = = ! ! = ; : ( > = = (6 > T!> ;8 1 ( ; ! = 8 7 7 = : Q 7 = 7 = 7 3 @33 = = ;8 : 6= : 7 = 1 ; 7 = ; ) ( = ) 1 ! > = ) 1 7> = = = 71 % 7 6 233B> = ; > = ) 8 1 / = ) @333 T = ; ; T = 1 , 8 = = 7 7Q = ) ) : = ;8 = @333 3 @333 > ; = 7> = : ; ! ) = = 7Q ; ) = 6 7 : ;> = ; 3: 8 K ; = ) 1 = ( Q = 7= J = @33> = = @331 % = > > =# = = = 76 1 % ) = = = = = 7 = (6 EA ( = (6 23331 ) ) = (6 EA 2333> ) = > % ) ;8 ; ; ! ; 8 = = 1 = = 7 > = 1 : : = 7 1 ( = > ) 1 ( ; % ) ) > > = 8 = ; = 7 = > = ) 7 = = = > 7 ) > = 7 1 A1 9 = = ; 1 ! = , - - , < $ = 7 L! 7 M 3>3@X 3>AD BBE@4EF>3DF BEEE>ED3FE DX 22X 3>32X 3>AD DEED@FE>42B BEEE>EC242A DX 22X 3>3BX 3>AD 4F2BA4F>@B@ BEEE>E23@BE DX 22X 3>34X 3>AF D2C2BCB>3@E 4333>@3EAD DX 2@X 3>3DX 3>AF 444CF4D>AAA BEEE>ECFC34 DX 2@X 3>3FX 3>AF 4AA3B4F>ADD BEEE>E4D@ FX 2@X 3>3AX 3>AF DCA@@BA>C4D BEEE>EAEBCD DX 2@X 3>3CX 3>AF 4B3B@@@>AB@ 4333>@3@F2F DX 2@X 3>3EX 3>AF D4F4C2E>@CA BEEE>E3342F 4X 2@X 3>@3X 3>AF 4E3B@24>@2A 4333>@@BBCB DX 2@X 3>@@X 3>AF 4EACAB4>FA4 4333>344ED 4X 2@X 3>@2X 3>AF D@@4C24>BDC BEEE>E4B3FD DX 2@X 3>@BX 3>AF 44CFD@3>CFD BEEE>CCE242 FX 2@X 3>@4X 3>AF 4D@ABFF>E32 BEEE>CDFFE2 FX 2@X 3>@DX 3>AF D2F24@F>E4F 4333>3B2CEF FX 2@X 3>@FX 3>AF BCD2@BE>C 4333>342D4C DX 2@X @>FDX 3>AC D4ABE@A>4EF 4333>34BEC4 DX @EX @>FFX 3>AC DDDBECE>42A BEEE>E2DCAD DX @EX @>FAX 3>AC DD3D32B>4D@ BEEE>EE3D4B DX @EX @>FCX 3>AC D22EDDD>E42 4333>3D4CE@ DX @EX @>FEX 3>AC 4CF4AEF>23B BEEE>E@4BF2 DX @EX @>A3X 3>AC 4CE3F43>F2D BEEE>EA@E3@ DX @EX @>A@X 3>AC 4FEE2@D>B2B BEEE>E3BFCE 4X @EX @>A2X 3>AC D3D4AFF>EC2 4333>@AEBEE DX @EX @>ABX 3>AC DFCBF33>AF@ 4333>2@@3FA 4X @EX @>A4X 3>AC 4AC33A4>E4 @EX @>ADX 3>AC 44CC3FA>2D4 BEEE>E3F4C DX @EX @>AFX 3>AC DDE2CD3>EA4 4333>3F22@F DX @EX @>AAX 3>AC 4@E3D4B>3EA 4333>@@@DDF DX @EX 4333>@@@CE4 DX @>ACX 3>AC D3@@BC@>EDF 4333>3D33E FX @EX @>AEX 3>AC DC2@42E>A4B 4333>@4DACA DX @EX @>C3X 3>AC 4FE@D4C>4DC 4333>3DE@D2 DX @EX @>C@X 3>AC 423@@C4>E42 4333>2B@BAA DX @EX @>C2X 3>AC 4A4B43B>22 BEEE>E4ABE@ 4X @EX @>CBX 3>AC D@2ABCB>EB4 4333>3DE@CD FX @EX @>C4X 3>AC DB2DD34>BF2 4333>@2DF4E DX @EX @>CDX 3>AC BFAFD3B>3F@ BEEE>CCE4CE DX @EX @>CFX 3>AC 4CEA@AA>B2F 4333>3BA3A DX @EX @>CAX 3>AC D3D2@F4>4AF BEEE>AE24DE DX @EX @>CCX 3>AC 43AC244>2FC BEEE>EB@@@@ FX @EX @>CEX 3>AC 4DEB3C3>B@2 BEEE>E@34F4 DX @EX @>E3X 3>AC 42D2@DF>B3@ BEEE>E4D3FF DX @EX @>E@X 3>AC DDBED@E>F BEEE>ACAAAF 4X @EX @>E2X 3>AC DCC44F4>@@@ BEEE>EAAFFA DX @EX @>EBX 3>AC D@CEBD2>E4D 4333>@4F@FA DX @EX @>E4X 3>AC F4ADCF@>3@C 4333>3@3CDA DX @EX @>EDX 3>AC 4FA33D@>44E 4333>3DF4@D FX @EX @>EFX 3>AC 4DBF@BA>A@E 4333>33FAAD DX @EX @>EAX 3>AC 44DBA33>FD@ 4333>3CB424 FX @EX ( Q = ) = ) > ) = = = = = ; ; ) ) ) 7 ) = 7 7 14.3.3. Simulación bidimensional Ilustración 67 - Asistente para la simulación bidimensional ; 7 ; = = ; ; ) = = 7 ;; = ) ; 1 ( = = 7 ) = 71 ( ; ; = 1 = * ; ( ; > > = $ ; ; #6 ) ) = = ) ) Q 7> = ; 7 = ; = ; 1 ; ; = ; 7 ; > = 1 % : ; 7 = > @3 ; = > ; = = 7 = ; = = ; ( 7 = 7 = 71 : ;8 7 > = = ;; ; = Q 8 ) 7 7 = 1 ( = 7 > ) = ; ; = 71 = ; Ejemplo = : ) ) ! ) 8 : 8 : 10 > = ; ) = = 8 1 Hoffman, F. O. and J. S. Hammonds. “Propagación de la incertidumbre en situaciones de riesgo: La necesidad de distinguir entre incertidumbre debida a la falta de conocimiento y la incertidumbre ocasionada por la variabilidad” Análisis de Riesgo, vol. 14, no. 5. pp 707-712, 1994. ( = = 7 ; : : 7 ( 7 ; : 7 8 7 = T = = 7 ; > 7 ;8 : ) = 7 = $ > 1! = = > 7Q % @>333 > = EEE> T! > ; = 7 ;8 1 ! > = J , K T ! 7 Q= : (6 ; > = = 1 1 $ = = = 8 = 7 = @33 1 : : = ; = 7 = ; 1 : = = 7 7 ; = 71 = 3>C2 , < LAM 3>C2 , < LFM 3>C2 , < LDM 3>C2 , < L4M 3>C2 , < LBM 3>C2 , < L2M , < L@M 3>C2 3 = 7 L! M 4AA323@>FEE 4D33B@4>@B D32CEB4>CC@ D@AAD23>FB4 DAD2A3C>C3F DAF@CAB>FE2 4C2DD32>C@2 D , * <P ^ ! 1 6 , * ; FX DX DX DX DX 4X DX F 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3 3>32 3>32 3>32 3>32 3>32 3>32 3>32 3 3>33 3>33 3>33 3>33 3>33 3>33 3>33 3 U3>@3 3>@2 U3>3B U3>3E U3>3E U3>32 U3>@@ 3 2>EA B>2A 2>A3 2>ED 2>CA B>BB 2>C2 2 3>32 3>32 3>32 3>3B 3>32 3>32 3>32 3 3>AD 3>AF 3>AD 3>A4 3>A4 3>AD 3>AF 3 3>CA 3>CE 3>CC 3>CE 3>CC 3>CE 3>CE 3 3>@2 3>@B 3>@B 3>@4 3>@4 3>@4 3>@B 3 3>AE 3>AC 3>AE 3>AE 3>AE 3>AE 3>AE 3 % DXU @3XU 3>AE 3>AE 3>AE 3>AE 3>AE 3>AE 3>AE 3 @DXU 3>C3 3>C3 3>C3 3>C3 3>C3 3>C3 3>C3 3 23XU 3>C3 3>C3 3>C3 3>C3 3>C3 3>C3 3>C3 3 2DXU 3>C3 3>C@ 3>C3 3>C3 3>C@ 3>C@ 3>C@ 3 B3XU 3>C@ 3>C@ 3>C@ 3>C@ 3>C@ 3>C@ 3>C@ 3 BDXU 3>C@ 3>C@ 3>C@ 3>C@ 3>C@ 3>C@ 3>C@ 3 43XU 3>C@ 3>C@ 3>C@ 3>C@ 3>C@ 3>C@ 3>C@ 3 4DXU 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3 D3XU 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3 DDXU 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3 F3XU 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3>C2 3 FDXU 3>CB 3>CB 3>CB 3>CB 3>CB 3>CB 3>CB 3 A3XU 3>CB 3>CB 3>CB 3>CB 3>CB 3>CB 3>CB 3 ADXU 3>CB 3>CB 3>CB 3>CB 3>CB 3>CB 3>CB 3 C3XU 3>CB 3>CB 3>C4 3>C4 3>C4 3>CB 3>C4 3 CDXU 3>C4 3>C4 3>C4 3>C4 3>C4 3>C4 3>C4 3 E3XU 3>C4 3>C4 3>C4 3>C4 3>CD 3>C4 3>C4 3 EDXU 3>CD 3>CD 3>CD 3>CD 3>CD 3>CD 3>CD 3 %2 = L # = = M 7> = - ) ; ; > ; 71 Ilustración 68 - Overlay Chart ( : @3D # = = 7 = = > ) : %2 # - ) Ilustración 69 - Grafico de tendencias T = = ) = = > ; ; : : = $ = = ) ;; > ; 1 = $ ; = = = ; 1 ( = ; = = EEXM 1 @3F 7 7 = = 7 ) L @X : %2 # - ) Ilustración 70 - Trend Chart = = ) : = ) = 8 : > 8 # ! ;8 ; ) 8 7> ) 8 7 >= #6 = ; ; 1 15. BIBLIOGRAFÍA Y WEBGRAFÍA • (* + > " 2334> • ( 1% • +> @3A , 0 + > 1Q% QJ 3 4 1 @U234 J= , :1 Q@EEAQ% 1 @UFA ": : Q J == , < K > ( 1 ": 5 K Q@ECCU K QF : ( 1 233B1 ! , 1 Q