Chapter 5 Trigonometric Identities Section 5.1 1. -2.6 Fundamental Identities 19. The quadrants are given so that one can determine which sign (+ or -) sin θ will 1 , the sign of sin θ csc θ will be the same as csc θ . take. Since sin θ = 2. -0.65 3. 0.625 4. -0.75 5. 2 3 6. 1 . 5 7. 8. 20. The range of cosine is [−1, 1], thus there is no number or angle whose cosine is 3. 21. -sin x 22. odd 23. cos x 7 4 11 6 5 26 9. 26 24. even 25. - tan x 26. odd 27. This is the graph of f ( x) = sec x. It is symmetric about the y-axis. Moreover, since 1 1 f (-x) = sec (-x) = = cos (-x ) cos x 10. - 3 10 10 11. - 2 5 5 28. f (-x) = - f ( x) 33 12. 6 29. f (-x) = - f ( x) 15 5 30. f (-x) = - f ( x) 13. - 77 11 105 15. 11 14. - = sec x = f ( x) , f (-x) = f ( x). 31. cos = cot = - 5 2 5 ; tan = ; 3 5 5 3 5 3 ;sec = ; csc = 2 5 2 6 2 6 ; ; tan = 2 6; cot = 12 5 16. - 3 5 7 32. sin = 17. - 4 9 18. - 5 8 5 6 12 17 4 17 ; cos = ; 33. cot = -4; sec = 4 17 sec = 5;csc = sin = - Copyright © 2013 Pearson Education, Inc. 17 ; csc = - 17 17 53 54 Chapter 5 Trigonometric Identities 2 21 21 2 ; ; tan = 34. sin = - ; cos = 21 5 5 cot = 54. cot x = 1- sin 2 x sin x 55. tan x = sec2 x -1 56. cot x = csc2 x -1 3 4 3 36. cos = - ; tan = ; cot = ; 5 3 4 5 5 sec = - ; csc = 3 4 57. csc x = 3 7 37. cos = ;sin = 4 4 7 3 7 4 7 tan = ;cot = ;csc = 3 7 7 15 15 ; tan = - 15;cot = ; 4 15 sec = -4;csc = 2 2 x + 4 x 53. sin x = 1- cos 2 x 21 5 21 ;sec = 2 21 3 5 4 35. tan = ;sec = ;cos = ; 4 4 5 3 5 sin = ; csc = 5 3 38. sin = 52. tan = 4 15 15 58. sec x = 1- cos 2 x 1- cos 2 x 1- sin 2 x 1- sin 2 x 59. cos 60. sin 61. 1 62. 1 63. cot 39. B 64. tan 40. D 65. cos 2 41. E 42. C 66. csc 2 43. A 67. sec - cos 44. C 68. tan 2 45. A 69. - cot + 1 46. E 70. tan + 1 47. D 71. sin 2 cos 2 48. B 2 2 49. It is incorrect to state 1 + cot = csc . Cotangent and cosecant are functions of some variable such as θ , x, or t. An acceptable 2 2 statement would be 1 + cot θ = csc θ . 50. In general, it is false that 2 2 x 2 + y 2 = x + y. Stating sin θ + cos θ = 1 implies sin θ + cos θ = 1 is a false statement. 2 x +1 51. sin = x +1 72. sin 2 cos 2 73. tan sin 74. cos 2 csc or cot cos 75. cot - tan 76. tan - cot 77. cos 2 78. - sin 2 79. tan 2 Copyright © 2013 Pearson Education, Inc. Section 5.2 Verifying Trigonometric Identities 80. tan 4 11. - 2 81. sec 12. - 82. - tan 2 83. - sec 2 cos x sin 2 x 2 2 cos or - 2 cot x csc x or - 2sec2 13. (sin + 1)(sin - 1) 84. - sin 14. (sec + 1)(sec - 1) 25 6 - 60 -25 6 - 60 ; 85. 12 12 2 2 + 8 -2 2 + 8 ; 86. 9 9 87. y = - sin (2 x) 15. 4sin x 16. 4 17. (2sin x +1)(sin x +1) 18. (4 tan - 3)( tan +1) 89. y = cos (4 x) 19. (cos2 x +1) 90. It is the same function. 20. csc2 x cot 2 x + 2 88. It is the negative of sin (2 x). ( 91. (a) y = - sin (4 x) (b) y = cos (2 x) (c) y = 5sin (3x) 1 or csc sec sin cos 1 2. or csc x sec x sin x cos x 3. 1 + sec x 4. 1 + cot 5. 1 6. 1 7. 1 - 2 sin cos 8. sec 2 x + csc 2 x 9. 2 + 2 sin t 21. (sin x - cos x)(1 + sin x cos x) 22. (sin + cos )(1- sin cos ) 24. cos identity not an identity not an identity identity 25. 1 26. 1 Section 5.2 Verifying Trigonometric Identities 1. ) 23. sin 92. Answers will vary. 93. 94. 95. 96. 2 27. tan 2 28. sec 2 29. tan 2 x 30. cot 2 t 31. sec 2 x 32. csc 2 33. cos 2 x 34. sin 2 x cos θ cot θ cos θ sin θ = sin θ = ⋅ = cos θ 35. 1 csc θ sin θ 1 sin θ 10. sec 2 Copyright © 2013 Pearson Education, Inc. 55 56 Chapter 5 Trigonometric Identities sin α tan α cos α = sin α ⋅ cos α = sin α 36. = 1 sec α cos α cos α 37. 38. 1- sin 2 β cos 2 β = = cos β cos β cos β æ sin 2 ö÷ 39. cos 2 (tan 2 + 1) = cos 2 ççç + 1÷÷÷ çè cos 2 ÷ø æ sin 2 cos 2 ö÷ ç ÷÷ = cos 2 çç + çè cos 2 cos 2 ÷÷ø æ sin 2 + cos 2 ÷ö ç ÷÷ = cos 2 çç ÷÷ çè cos 2 ø æ 1 ÷ö ÷=1 = cos 2 çç çè cos 2 ÷÷ø 40. sin 2 β (1 + cot 2 β ) = sin 2 β csc2 β 1 = sin 2 β ⋅ =1 sin 2 β cos sin 41. cot + tan = + sin cos cos 2 sin 2 = + sin cos sin cos cos 2 + sin 2 1 = cos sin cos sin 1 1 = ⋅ = sec csc cos sin = 42. sin 2 α + tan 2 α + cos 2 α ) = sin 2 α + cos 2 α + tan 2 α = 1 + tan 2 α = sec2 α 43. Working with the left side, we have cos α sin α cos α sin α + = + 1 1 sec α csc α cos α sin α 2 sec 2 α - tan 2 α = 1. cos α sin α + = 1 = sec 2 α - tan 2 α , sec α csc α the statement has been verified. Since 44. tan 2 α + 1 sec2 α = = sec α sec α sec α ( Working with the right side, we have 2 = cos α + sin α = 1 sin 2 θ 1- cos 2 θ 1 cos 2 θ = = cos θ cos θ cos θ cos θ = sec θ - cos θ 45. sin 4 θ - cos 4 θ ( )( ) = 1⋅ (sin 2 θ - cos 2 θ ) = sin 2 θ - cos 2 θ = sin 2 θ - (1- sin 2 θ ) = 2sin 2 θ -1 = sin 2 θ + cos 2 θ sin 2 θ - cos 2 θ 46. Simplify the left side. ( ) sec 4 x - sec2 x = sec 2 x sec 2 x -1 = sec 2 x tan 2 x = tan 2 x sec2 x Simplify the right side. ( ) tan 4 x + tan 2 x = tan 2 x tan 2 x + 1 = tan 2 x sec 2 x sec 4 x - sec 2 x = tan 2 x sec 2 x = tan 4 x + tan 2 x Thus, the statement has been verified. 47. Work with the left side. 1- cos x (1- cos x)(1- cos x) = 1 + cos x (1 + cos x)(1- cos x) = = 1- 2 cos x + cos2 x 1- cos2 x 1- 2 cos x + cos2 x sin 2 x Work with the right side. 2 æ cos x æ cos x -1ö÷2 1 ö÷ (cot x - csc x)2 = ççç ÷÷ = ççç ÷ è sin x sin x ø è sin x ø÷ = cos 2 x - 2 cos x + 1 sin 2 x 1- cos x cos 2 x - 2 cos x + 1 2 = = (cot x - csc x ) 1 + cos x sin 2 x Thus, the statement has been verified. Copyright © 2013 Pearson Education, Inc. Section 5.2 Verifying Trigonometric Identities 2 (sec - tan ) + 1 2 48. (sec α - tan α ) 50. = sec 2 α - 2sec α tan α + tan 2 α 1 sin α sin 2 α = - 2⋅ ⋅ + cos α cos α cos 2 α cos 2 α = 1- 2sin α + sin 2 α 2 cos α sec csc - tan csc = 1 2 = (1- sin α ) = 2 1- sin α 57 sec2 - 2sec tan + tan 2 + 1 csc (sec - tan ) ( ) sec2 - 2sec tan + tan 2 + 1 csc (sec - tan ) 2 = (1- sin α ) 1- sin α = (1- sin α )(1 + sin α ) 1 + sin α = 49. Work with the left side. cos θ + 1 cos θ + 1 cos θ + 1 = = 2 2 1 tan θ sec θ -1 -1 cos 2 θ = = = (cos θ + 1) cos 2 θ æ 1 ö 2 ççç 2 -1÷÷÷ cos θ è cos θ ø cos 2 θ (cos θ + 1) 51. 1- cos 2 θ cos 2 θ (cos θ + 1) (1 + cos θ )(1- cos θ ) = cos 2 θ 1- cos θ Now work with the right side. cos θ cos θ cos θ cos θ = = ⋅ 1 1 sec θ -1 -1 -1 cos θ cos θ cos θ = 2sec 2 - 2sec tan csc (sec - tan ) = 2sec (sec - tan ) csc (sec - tan ) = 2sec sin = 2⋅ = 2 tan csc cos 1 1 + 1- sin θ 1 + sin θ 1 + sin θ 1- sin θ = + (1 + sin θ )(1- sin θ ) (1 + sin θ )(1- sin θ ) = = 2 cos θ 1- cos θ cos θ + 1 cos 2 θ cos θ = = 2 1- cos θ sec θ -1 tan θ Thus, the statement has been verified. = sec 2 - 2sec tan + sec2 csc (sec - tan ) 52. (1 + sin θ ) + (1- sin θ ) 1 + sin θ + 1- sin θ = (1 + sin θ )(1- sin θ ) (1 + sin θ )(1- sin θ ) 2 2 1- sin θ = 2 cos 2 θ = 2sec 2 θ 1 1 sec + tan = ⋅ sec - tan sec - tan sec + tan sec + tan = sec2 - tan 2 = sec + tan 1 - 2 sin = sec + tan 1- sin 2 cos 2 cos 2 cos 2 sec + tan sec + tan = = 1 cos 2 cos 2 = sec + tan Copyright © 2013 Pearson Education, Inc. 58 Chapter 5 Trigonometric Identities 53. cos α cos α +1 +1 cot α + 1 sin α sin α = = sin α ⋅ cot α -1 cos α -1 cos α -1 sin α sin α sin α cos α + sin α = cos α - sin α 1 cos α + sin α cos α = ⋅ 1 cos α - sin α cos α cos α sin α + 1 + tan α = cos α cos α = cos α sin α 1- tan α cos α cos α 58. 55. cos θ = sin θ cot θ = (1 + cos θ ) cos θ cos θ = 2 sin θ (1 + cos θ ) sin 2 θ = 1 cos θ ⋅ = csc θ cot θ sin θ sin θ ) ( (sin 2 α + cos2 α )(sin 2 α - cos2 α ) sin 2 α - cos 2 α = sin 2 α + cos 2 α = 1 59. Simplify the right side 1 tan t tan t - cot t t tan = tan t + cot t tan t + 1 tan t 1 tan t tan t ⋅ tan t = 1 tan t tan t + tan t = tan 2 t + 1 = tan 2 t -1 sec 2 t cos 2 t cos 2 t 1 -1 2 cot 2 t -1 sin 2 t sin 2 t = = sin t ⋅ 1 + cot 2 t cos 2 t cos 2 t sin 2 t 1+ 1+ 2 2 sin t sin t = cos 2 t - sin 2 t sin 2 t + cos2 t = cos 2 t - sin 2 t 1 ( ) = cos 2 t - sin 2 t = 1- sin 2 t - sin 2 t = 1- 2sin 2 t sin 2 α sec2 α + sin 2 α csc2 α ) 56. sin 2 θ 1 + cot 2 θ -1 = sin 2 θ csc 2 θ -1 æ 1 ö÷ = sin 2 θ çç ÷ -1 çè sin 2 θ ÷÷ø 61. = sin 2 α ⋅ = sin 2 α cos 2 α = 1 -1 = 0 57. tan 2 t -1 60. cos θ cos θ = =1 cos θ cos θ sin θ ⋅ sin θ ( sin 2 α - cos 2 α = 54. 1 cos θ + csc θ + cot θ sin θ sin θ = sin θ tan θ + sin θ + sin θ cos θ 1 + cos θ sin θ cos θ sin θ = ⋅ æ 1 ö sin θ cos θ sin θ çç + 1÷÷÷ çè cos θ ø sin 4 α - cos 4 α sec4 θ - tan 4 θ sec2 θ + tan 2 θ sec2 θ + tan 2 θ )(sec2 θ - tan 2 θ ) ( = sec2 θ + tan 2 θ = sec2 θ - tan 2 θ Copyright © 2013 Pearson Education, Inc. 1 2 cos α + sin 2 α ⋅ 1 sin 2 α + 1 = tan 2 α + 1 = sec 2 α Section 5.2 Verifying Trigonometric Identities 62. Work with the left side. 2 2 ( 2 2 tan α sin α = tan α 1- cos α 65. ) 1 + cos x 1- cos x 1- cos x 1 + cos x = tan 2 α - tan 2 α cos 2 α = (1 + cos x)2 (1- cos x)2 (1 + cos x)(1- cos x) (1 + cos x)(1- cos x) = 1 + 2 cos x + cos 2 x 1- 2 cos x + cos 2 x (1 + cos x)(1- cos x) (1 + cos x)(1- cos x) tan 2 α + cos 2 α -1 = tan 2 α - sin 2 α = = tan 2 α + cos 2 α -1 Thus, the statement has been verified. 1 + 2 cos x + cos 2 x -1 + 2 cos x - cos 2 x (1 + cos x)(1- cos x) = 2 2 = tan α - sin α Now work with the right side. ( tan 2 α + cos 2 α -1 = tan 2 α - 1- cos 2 α ) = tan 2 α - sin 2 α 63. 59 tan x sin x + 1 + cos x 1- cos x tan x (1- cos x) sin x (1 + cos x) = + (1 + cos x)(1- cos x) (1 + cos x)(1- cos x) = = tan x (1- cos x) + sin x (1 + cos x) tan x - sin x + sin x + sin x cos x 2 1- cos x tan x + sin x cos x tan x sin x cos x = = + 2 sin x sin 2 x sin 2 x 1 cos x sin x 1 = tan x ⋅ + = ⋅ + cot x 2 sin x sin x cos x sin 2 x 1 1 = ⋅ + cot x = sec x csc x + cot x cos x sin x 66. = sin θ (1 + cos θ ) - sin θ cos θ (1- cos θ ) (1 + cos θ )(1- cos θ ) = sin θ + sin θ cos θ - sin θ cos θ + sin θ cos 2 θ = sin θ + sin θ cos 2 θ = 1- cos 2 θ sin 2 θ = 1 + cos 2 θ sin θ 1 1 + cos 2 θ = csc θ 1 + cos 2 θ sin θ ( ) ( ) = 4 cos x 2 = 4⋅ cos x 1 ⋅ sin x sin x 1 + sin θ 1- sin θ 1- sin θ 1 + sin θ (1 + sin θ )2 - (1- sin θ )2 (1- sin θ )(1 + sin θ ) 1 + 2sin θ + sin 2 θ ) - (1- 2sin θ + sin 2 θ ) ( = 1- sin 2 θ 4sin θ sin θ 1 = =4 ⋅ = 4 tan θ sec θ 2 cos cos θ θ cos θ 67. Simplify the right side sec2 θ - 2sec θ tan θ + tan 2 θ = 64. sin θ sin θ cos θ 1- cos θ 1 + cos θ sin θ (1 + cos θ ) sin θ cos θ (1- cos θ ) = (1 + cos θ )(1- cos θ ) (1 + cos θ )(1- cos θ ) 2 1- cos x sin x = 4 cot x csc x = (1 + cos x )(1- cos x) 4 cos x = 1 cos2 θ - 2⋅ 1 sin θ sin 2 θ ⋅ + cos θ cos θ cos2 θ 1- 2sin θ + sin 2 θ cos 2 θ 2 = (1- sin θ ) 1- sin 2 θ 2 = (1- sin θ ) 1- sin θ = (1 + sin θ )(1- sin θ ) 1 + sin θ 68. Simplify the right side. sin θ cos θ + 1- cot θ 1- tan θ sin θ cos θ = + cos θ sin θ 11sin θ cos θ sin θ sin θ cos θ cos θ = ⋅ + ⋅ cos θ sin θ sin θ cos θ 11sin θ cos θ Copyright © 2013 Pearson Education, Inc. 60 Chapter 5 Trigonometric Identities = sin 2 θ cos 2 θ + sin θ - cos θ cos θ - sin θ Working with the left side, we have = sin 2 θ cos 2 θ + sin θ - cos θ -(sin θ - cos θ ) = 1 + sin x + cos x + sin x + sin 2 x + sin x cos x 2 (1 + sin x + cos x )2 2 2 + cos x + sin x cos x + cos 2 x = 2 + 2sin x + 2 cos x + 2sin x cos x 2 sin θ cos θ sin θ - cos θ = sin θ - cos θ sin θ - cos θ sin θ - cos θ (sin θ + cos θ )(sin θ - cos θ ) = = sin θ + cos θ sin θ - cos θ = = 2 (1 + sin x )(1 + cos x ) Thus, the statement has been verified. 71. 69. -1 -1 + tan α - sec α tan α + sec α - tan α - sec α = ( tan α + sec α )( tan α - sec α ) = 2sin 2 α - sin 4 α - tan α + sec α + ( tan α + sec α )( tan α - sec α ) = = = - tan α - sec α - tan α + sec α ( tan α + sec α )( tan α - sec α ) -2 tan α 2 2 tan α - sec α = -2 tan α 2 ( ) 72. (sec + csc )(cos - sin ) æ 1 1 ö÷ = çç + cos - sin ) çè cos sin ø÷÷( cos sin cos sin = + cos cos sin sin = 1- tan + cot -1 = cot - tan tan α - tan 2 α + 1 -2 tan α 2 tan α - tan α -1 2 (1- cos2 α )(1+ cos2 α ) = sin 2 α (1+ cos2 α ) = sin 2 α (2 - sin 2 α ) = -2 tan α = 2 tan α -1 70. Working with the right side, we have 2 (1 + sin x)(1 + cos x) = 2 (1 + sin x + cos x + sin x cos x) = 2 + 2sin x + 2 cos x + 2sin x cos x 73. Work with the left side: 1- cos x 1- cos x 1- cos x 1- 2 cos x + cos 2 x 1- 2 cos x + cos 2 x = ⋅ = = 1 + cos x 1 + cos x 1- cos x 1- cos 2 x sin 2 x Work with the right side: 1 2 cos x cos 2 x 1- 2 cos x + cos 2 x csc 2 x - 2 csc x cot x + cot 2 x = + = sin 2 x sin 2 x sin 2 x sin 2 x 1- cos x 1- 2 cos x + cos 2 x Since = = csc2 x - 2 csc x cot x + cot 2 x, the statement has been verified. 2 1 + cos x sin x Copyright © 2013 Pearson Education, Inc. Section 5.2 Verifying Trigonometric Identities 61 74. Work with the left side: 1- cos θ 1- cos θ 1- cos θ 1- 2 cos θ + cos 2 θ 1- 2 cos θ + cos 2 θ = ⋅ = = 1 + cos θ 1 + cos θ 1- cos θ 1- cos 2 θ sin 2 θ Work with the right side: ( ) 2 csc 2 θ - 2 csc x cot θ -1 = 2 csc 2 θ - 2 csc θ cot θ - csc2 θ - cot 2 θ = csc2 θ - 2 csc θ cot θ + cot 2 θ = Since 1 sin 2 θ - 2 cos θ sin 2 θ + cos 2 θ sin 2 θ = 1- 2 cos θ + cos 2 θ sin 2 θ 1- cos θ 1- 2 cos θ + cos 2 θ = = 2 csc 2 θ - 2 csc x cot θ -1, the statement has been verified. 2 1 + cos θ sin θ 2 2 ( ) ( 75. (2sin x + cos x ) + (2 cos x - sin x ) = 4sin 2 x + 4sin x cos x + cos 2 x + 4 cos 2 x - 4sin x cos x + sin 2 x ( ) ( ) ) = 4 sin 2 x + cos 2 x + cos 2 x + sin 2 x = 4 + 1 = 5 76. sin 2 x (1 + cot x) + cos 2 x (1- tan x ) + cot 2 x = sin 2 x + sin 2 x cot x + cos 2 x - cos2 tan x + cot 2 x æ cos x ö÷ æ sin x ö÷ = sin 2 x + cos 2 x + sin 2 x çç - cos2 çç + cot 2 x çè sin x ø÷÷ çè cos x ø÷÷ ( ) = 1 + sin x cos x - sin x cos x + cot 2 x = 1 + cot 2 x = csc2 x 77. sec x - cos x + csc x - sin x - sin x tan x = æ sin x ö÷ 1 1 - cos x + - sin x - sin x çç çè cos x ÷÷ø cos x sin x æ 1 ö æ 1 ö sin 2 x = çç - cos x÷÷÷ + çç - sin x÷÷÷ çè cos x ø çè sin x ø cos x 1- cos 2 x 1- sin 2 x sin 2 x + cos x sin x cos x æ1- cos 2 x sin 2 x ö÷ 1- sin 2 x 1- cos 2 x - sin 2 x cos 2 x ç ÷÷ + = çç = + cos x ÷ø÷ sin x cos x sin x çè cos x = = ( ( 1- cos 2 x + sin 2 x cos x ) + cos2 x = 1-1 + cos x ⋅ cos x = cos x cot x sin x cos x sin x ) 78. sin3 θ + cos3 θ = (sin θ + cos θ ) sin 2 θ - sin θ cos θ + cos2 θ = (cos θ + sin θ )(1- sin θ cos θ ) 79. (sec + tan )(1- sin ) = cos 80. (csc + cot )(sec -1) = tan 81. cos + 1 = cot sin + tan 82. 83. 84. 85. 86. tan sin + cos = sec identity identity not an identity not an identity 87. Show that sin (csc t ) = 1 is not an identity. We need to find only one value for which the statement is false. Let t = 2. Use a calculator to find that sin (csc 2) ≈ 0.891094, which is not equal to 1. sin (csc t ) = 1 does not hold true for all real numbers t. Thus, it is not an identity. Copyright © 2013 Pearson Education, Inc. 62 Chapter 5 Trigonometric Identities 88. Show that cos 2 t = cos t is not an identity. π π 1 Let t = . We have cos = and 3 2 3 æ 1 ö2 1 1 = çç ÷÷÷ = = . cos ç è 2ø 3 4 2 ( 93. (a) I = k cos 2 θ = k 1- sin 2 θ (b) For θ = 2π n for all integers n, cos 2 θ = 1, its maximum value and I attains a maximum value of k. 2π Now, let t = cos 2 1 2π . We have, cos t = - and 2 3 94. (a) P = 16k cos 2 (2 t ) (b) P = 16k éê1- sin 2 (2 t )ùú ë û 2 æ 1ö 2π 1 1 = çç- ÷÷÷ = = . ç è 2ø 3 4 2 ) 95. (a) The sum of L and C equals 3. cos 2 t = cos t does not hold true for all real numbers t. Thus, it is not an identity. 89. Show that csc t = 1 + cot 2 t is not an identity. Let t = π 4 1 + cot 2 . We have csc π 4 π 4 = 2 and = 1 + 12 = 1 + 1 = 2. But let æ πö π t = - . We have csc çç- ÷÷÷ = - 2 and çè 4 ø 4 (b) Let Y1 = L (t ) , Y2 = C (t ) , and Y3 = E (t ) Y3 = 3 for all inputs. æ πö 2 1 + cot 2 çç- ÷÷÷ = 1 + (-1) = 1 + 1 = 2. çè 4 ø csc t = 1 + cot 2 t does not hold true for all real numbers t. Thus, it is not an identity. 90. Show that cos t = 1- sin 2 t is not an identity. π π 1 Let t = . We have cos = and 3 2 3 1- sin 2 = 3cos 2 (6, 000, 000t ) + 3sin 2 (6, 000, 000t ) æ 3 ö÷2 3 1 1 = 1- ççç ÷÷ = 1- = = . çè 2 ÷ø 3 4 4 2 = 3 éêcos 2 (6, 000, 000t ) + sin 2 (6, 000, 000t )ùú ë û = 3 ⋅1 = 3 π But let t = 1- sin 2 (c) E (t ) = L (t ) + C (t ) 2π 2π 1 . We have cos = - and 3 3 2 æ 3 ö2 2π 3 = 1- ççç ÷÷÷ = 1çè 2 ÷ø 3 4 1 1 = = 4 2 Section 5.3 Sum and Difference Identities for Cosine 1. F 2. A 3. E cos t = 1- sin 2 t does not hold true for all real numbers t. Thus, it is not an identity. 91. a true statement when sin x £ 0 92. a true statement when cos x £ 0 4. B 5. E 6. C 7. 6- 2 4 Copyright © 2013 Pearson Education, Inc. Section 5.3 Sum and Difference Identities for Cosine 8. 6+ 2 4 9. 2- 6 4 10. 2- 6 4 27. csc (-56 42 ¢) 28. cot (-843¢) 29. tan (-86.9814) 30. cos (-8.0142) 31. tan 11. 2- 6 4 32. cos 12. 6+ 2 4 34. tan 13. 6+ 2 4 36. tan 14. 2- 6 4 33. cos 35. csc For exercises 37−42, other answers are possible. 37. 15 38. 20 15. 0 16. -1 17. The answer to exercise 15 is 0. Using a calculator to evaluate cos 40 cos 50 - sin 40 sin 50 also gives a value of 0. (Make sure that your calculator is in DEGREE mode.) 18. The answer to exercise 16 is −1. Using a calculator to evaluate 7π 2π 7π 2π also gives a cos cos sin - sin 9 9 9 9 value of −1. (Make sure that your calculator is in RADIAN mode.) 19. cot 3° 20. cos 75 21. sin 22. cos 39. 140 3 40. 348 5 41. 20 42. 40 43. cos 44. sin 45. - cos 46. - sin 47. cos 48. - sin 5 12 49. - cos 50. sin 10 23. sec 7536¢ 24. cos (-5214 ¢) æ ö 25. cos çç- ÷÷÷ çè 8 ø æ 2 ö 26. tan çç- ÷÷÷ çè 5 ø 16 56 ;65 65 36 84 52. - ; 85 85 51. 53. 4-6 6 4 + 6 6 ; 25 25 54. -2 10 + 2 -2 10 - 2 ; 9 9 Copyright © 2013 Pearson Education, Inc. 63 64 55. Chapter 5 Trigonometric Identities 2 638 - 30 2 638 + 30 ; 56 56 73. 62 - 70 62 + 70 ; 24 24 57. true 56. - 6- 2 4 74. (a) 58. false (b) 59. false 2- 6 4 - 6- 2 4 60. true 75. (a) 3 cycles 61. true (b) 163; –163; no 62. true æ 20 ö -1026t ÷÷÷ 76. (a) Graph P = 0.04 cos çç çè 4.9 ø 63. true 64. true 65. false 66. false æπ ö π π 67. cos çç + x÷÷÷ = cos cos x - sin sin x çè 2 ø 2 2 = (0) cos x - (1) sin x = - sin x 68. sec (π - x) = 1 cos (π - x) 1 cos π cos x + sin π sin x 1 = (-1) cos x + (0)sin x = =- The pressure P is oscillating. æ 2 r ö 3 -10, 260÷÷÷ (b) Graph P = cos çç ç è ø r 4.9 1 = - sec x cos x 69. cos 2 x = cos ( x + x) = cos x cos x - sin x sin x = cos 2 x - sin 2 x 70. From exercise 65, cos 2 x = cos 2 x - sin 2 x . 1 + cos 2 x - cos 2 x = 1 + cos 2 x - sin 2 x - cos 2 x = 1- sin 2 x = cos 2 x The pressure oscillates, and amplitude decreases as r increases. 71. cos195 = cos (180 + 15) = cos180 cos15- sin180 sin15 = (-1) cos15- (0) sin15 = - cos15- 0 = - cos15 72. - 6- 2 4 (c) a cos (ct ) n 77. cos (90 + ) = - sin 78. cos ( 270- ) = - sin 79. cos (180 + ) = - cos Copyright © 2013 Pearson Education, Inc. Section 5.4 Sum and Difference Identities for Sine and Tangent 80. cos (180- ) = - cos 24. - 3 81. cos (270 + ) = sin 25. 1 26. 1 82. cot Section 5.4 Sum and Difference Identities for Sine and Tangent 1. C 2. A 3. E 4. F 27. 3 cos - sin 2 28. 3 cos + sin 2 29. cos - 3 sin 2 30. 5. B 6. D Answers will vary. 7.−8. 65 31. 9. 6+ 2 4 32. 10. 2- 6 4 33. 11. 2 - 3 34. 12. 2 + 3 13. 2+ 6 4 35. 14. 6- 2 4 36. - 6- 2 15. 4 2 (cos + sin ) 2 2 (sin x - cos x ) 2 2 (sin + cos ) 2 3 tan + 1 3 - tan 1 + tan x 1 - tan x 2 (cos x + sin x) 2 2 (cos x + sin x ) 2 37. - cos 38. tan 39. - tan x - 2- 6 16. 4 40. - sin x 17. 2 - 3 41. - tan x 18. 2 + 3 42. To follow the method of Example 2 to find tan (270-θ ) , we need to use the tangent of a 19. 2 2 20. 1 21. -1 22. -1 difference formula: tan 270- tan θ tan (270- θ ) = 1 + tan 270 tan θ However, tan 270º is undefined. 43. Answers will vary. 23. 0 Copyright © 2013 Pearson Education, Inc. 66 Chapter 5 Trigonometric Identities 44. If A, B, and C are angles of a triangle, then A + B + C = 180. Therefore, we have sin ( A + B + C ) = sin180 = 0. 45. (a) 63 65 (b) 63 16 - (b) - 51. 63 65 - 6- 2 4 53. -2 + 3 54. -2 - 3 55. -2 + 3 63 16 56. æ 3 ö 58. equivalent; sin çç + ÷÷÷= - cos çè 2 ø (c) quadrant II - (b) 36 77 36 85 æ ö 59. equivalent; tan çç + ÷÷÷= - cot çè 2 ø æ ö 60. equivalent; tan çç - ÷÷÷= cot çè 2 ø 61. Verify sin 2 x = 2 sin x cos x is an identity. sin 2 x = sin ( x + x ) = sin x cos x + cos x sin x (c) quadrant III 49. (a) (b) 6- 2 4 æ ö 57. equivalent; sin çç + ÷÷÷ = cos çè 2 ø 77 36 48. (a) 6- 2 4 52. 77 85 (b) - -8 6 - 3 25 6 +6 4 (c) quadrant III (c) quadrant IV 47. (a) 50. (a) (b) (c) quadrant I 46. (a) (c) quadrant II 4 2+ 5 9 = 2sin x cos x - 5- 2 - 2- 5 or 2 2 62. Verify sin ( x + y ) + sin ( x - y ) = 2sin x cos y is an identity. sin ( x + y ) + sin ( x - y ) = (sin x cos y + cos x sin y ) + (sin x cos y - cos x sin y ) = 2sin x cos y æ 7π ö æ 2π ö 63. Verify sin çç + x÷÷÷ - cos çç + x÷÷÷ = 0 is an identity. çè 6 ç ø è 3 ø æ 7π ö÷ æ 2π ö÷ æ 7π ö æ ö 7π 2π 2π sin çç + x÷÷ - cos çç + x÷÷ = ççsin cos x + cos sin x÷÷÷ - ççcos cos x - sin sin x÷÷÷ çè 6 ç ç ç ø è 3 ø è ø è ø 6 6 3 3 æ 1 ö÷ æ 1 ö÷ 3 3 sin x÷÷ - ççç- cos x sin x÷÷ = 0 = ççç- cos x ÷ 2 2 èç 2 ø èç 2 ø÷ Copyright © 2013 Pearson Education, Inc. Section 5.4 Sum and Difference Identities for Sine and Tangent 64. Verify tan ( x - y ) - tan ( y - x ) = tan ( x - y ) - tan ( y - x ) = 2 ( tan x - tan y ) 1 + tan x tan y 67 is an identity. tan x - tan y tan y - tan x tan x - tan y - tan y + tan x 2 ( tan x - tan y ) = = 1 + tan x tan y 1 + tan y tan x 1 + tan x tan y 1 + tan x tan y cos (α - β ) = tan α + cot β is an identity. cos α sin β cos (α - β ) cos α cos β + sin α sin β cos α cos β sin α sin β cos β sin α = = + = + = cot β + tan α cos α sin β cos α sin β cos α sin β cos α sin β sin β cos α 65. Verify sin ( s + t ) = tan s + tan t is an identity. cos s cos t sin ( s + t ) sin s cos t + cos s sin t sin s cos t cos s sin t sin s sin t = = + = + = tan s + tan t cos s cos t cos s cos t cos s cos t cos s cos t cos s cos t 66. Verify 67. Verify that sin ( x - y ) sin ( x + y ) = tan x - tan y is an identity tan x + tan y sin x cos y cos x sin y sin x cos y cos x sin y ⋅ ⋅ sin x cos y - cos x sin y cos x cos y cos x cos y cos x cos y cos x cos y = = = sin x cos y cos x sin y sin x cos y cos x sin y sin ( x + y ) sin x cos y + cos x sin y + ⋅ + ⋅ cos x cos y cos x cos y cos x cos y cos x cos y sin x sin y sin x sin y ⋅1-1⋅ tan x - tan y cos y cos x cos y cos x = = = sin x sin y sin x sin y tan x + tan y ⋅1 + 1⋅ + cos x cos y cos x cos y sin ( x - y ) 68. Verify sin ( x + y ) cos ( x - y ) = cot x + cot y is an identity. 1 + cot x cot y Working with the right side, we have cos x cos y cos x cos y + + cot x + cot y sin x sin y sin x sin y sin x sin y cos x sin y + sin x cos y sin ( x + y ) = = ⋅ = = 1 + cot x cot y 1 + cos x cos y 1 + cos x cos y sin x sin y sin x sin y + cos x cos y cos ( x - y ) sin x sin y sin x sin y sin ( s - t ) cos ( s - t ) sin s is an identity. sin t cos t sin t cos t sin ( s - t ) cos ( s - t ) sin s cos t - sin t cos s cos s cos t + sin t sin s + = + sin t cos t sin t cos t 69. Verify + = = = sin s cos 2 t - sin t cos t cos s sin t cos t cos s + sin 2 t sin s sin s cos 2 t + sin s sin 2 t + = sin t cos t sin t cos t sin t cos t ( sin s cos 2 t + sin 2 t sin t cos t )= sin s sin t cos t Copyright © 2013 Pearson Education, Inc. 68 Chapter 5 Trigonometric Identities 70. Verify tan (α + β ) - tan β 1 + tan (α + β ) tan β identity. tan (α + β ) - tan β 1 + tan (α + β ) tan β = tan α is an = tan éë(α + β ) - β ùû (b) V = 50 sin (120πt – 5.353). = tan α (c) 50sin (120π t - 5.353) 71. 180- é(sin120π t )(cos 5.353) ù ú = 50 êê ú cos120 π t sin 5.353 ( )( ) ëê ûú é ù » 50 (sin120π t )(0.5977) ê ú ê ú cos120 π 0.8017 t ( )( ) ëê ûú » 29.89sin120π t + 40.09 cos120π t » 30sin120π t + 40 cos120π t 72. = - 73. tan = tan - tan 1 + tan tan 74. Substituting m1 for tan α and m2 for tan β into the expression in exercise 69, we have m - m1 tan β - tan α = 2 tan θ = 1 + tan α tan β 1 + m1m2 82. z ¢ = z cos R + y sin R 75. θ » 18.4 76. » 80.8 77. (a) 425 lb (b) F = = = = = 81. y ¢ = y cos R - z sin R Chapter 5 Quiz (Sections 5.1−5.4) 0.6W sin (θ + 90) sin12 0.6W (sin θ cos 90 + sin 90 cos θ ) sin12 0.6W (sin θ ⋅ 0 + 1⋅ cos θ ) sin12 0.6W (0 + cos θ ) sin12 0.6 W cos θ » 2.9W cos θ sin12 (c) θ = 0 7 24 24 ; tan = - ; cot = - ; 24 25 7 25 25 sec = ; csc = 24 7 1. cos = 2. 1 + cos 2 x sin 2 x - 6- 2 4 4. - cos 3. 5. (a) - 78. (a) 408 lb (b) θ » 46.1. 79. -20 cos (b) - t 16 65 63 65 (c) quadrant III 4 80. (a) The calculator should be in radian mode. 6. -1 + tan x 1 + tan x 7. Working with the right side, we have sin θ sin θ csc θ + 1 = ⋅ csc θ -1 csc θ -1 csc θ + 1 sin θ csc θ + sin θ 1 + sin θ = = csc2 θ -1 cot 2 θ Copyright © 2013 Pearson Education, Inc. Section 5.5 Double-Angle Identities æπ ö æπ ö 8. sin çç + θ ÷÷÷ - sin çç -θ ÷÷÷ çè 3 ç ø è3 ø æ π ö π = ççsin cos θ + cos sin θ ÷÷÷ çè 3 ø 3 æ π ö π - ççsin cos θ - cos sin θ ÷÷÷ çè 3 ø 3 æ1ö π = 2 cos sin θ = 2 çç ÷÷÷ sin θ = sin θ çè 2 ø 3 10. Verify cos ( x + y ) + cos ( x - y ) sin ( x - y ) + sin ( x - y ) cos ( x + y ) + cos ( x - y ) sin ( x + y ) + sin ( x - y ) Section 5.5 = 9. sin 2 - cos 2 sin 4 - cos 4 = sin 2 - cos 2 1 = =1 1 sin - cos sin + cos ( 2 )( 2 2 2 ) = cot x is an identity. (cos x cos y - sin x sin y ) + (cos x cos y + sin x sin y ) 2 cos x cos y cos x = = = cot x (sin x cos y + cos x sin y ) + (sin x cos y - cos x sin y ) 2sin x cos y sin x Double-Angle Identities 1. C 16. cos = - 30 6 ; sin = 6 6 17. 2. E 3. B (sin x + cos x)2 = sin 2 x + 2sin x cos x + cos 2 x 4. A ( ) = sin 2 x + cos 2 x + 2sin x cos x 5. F = 1 + sin 2 x 6. D 4 21 17 ; sin 2 = 25 25 120 119 8. sin 2 = ;cos 2 = 169 169 7. cos 2 = 16 4 3 9. cos 2 x = - ; sin 2 x = = . 25 5 5 8 15 10. cos 2 x = - ; sin 2 x = 17 17 39 4 55 11. cos 2 = ;sin 2 = 49 49 12. cos 2 = 13. cos = 69 19 2 66 ;sin 2 = 25 25 2 5 5 ; sin = 5 5 14. cos = - 18. Work with the right side. sec2 x + sec4 x 2 + sec 2 x - sec4 x 1 1 + 2 4 = cos x cos x 1 1 2+ 2 cos x cos 4 x 1 = = = 2 14 ; sin = 4 4 42 102 ; sin = 15. cos = 12 12 = 1 + 4 cos x cos 4 x ⋅ cos x 1 1 cos 4 x 2+ cos 2 x cos 4 x 2 cos 2 x + 1 2 cos 4 x + cos 2 x -1 cos 2 x + 1 (2 cos2 x -1)(cos2 x +1) 1 2 2 cos x -1 Copyright © 2013 Pearson Education, Inc. = 1 = sec 2 x cos 2 x 70 Chapter 5 Trigonometric Identities ( 2 19. (cos 2 x + sin 2 x) = cos 2 2 x + 2 cos 2 x sin 2 x + sin 2 2 x ( ) = cos 2 2 x + sin 2 2 x + 2 cos 2 x sin 2 x = 1 + sin 4 x 2 20. (cos 2 x + sin 2 x) = cos 2 2 x - 2 cos 2 x sin 2 x + sin 2 2 x ( ) = cos 2 2 x + sin 2 2 x - 2 cos 2 x sin 2 x 27. Work with the right side. cos θ sin θ cot θ - tan θ = sin θ cos θ cos θ cos θ sin θ sin θ = ⋅ ⋅ sin θ cos θ cos θ sin θ = 1- sin 4 x = 21. tan 8θ - tan 8θ tan 2 4θ ( 2 = tan 8θ 1- tan 4θ = ) = 2 tan 4θ 1- tan 2 1- tan 2 4θ ) = 2 tan 4θ ( 4θ 22. Working with the right side, we have sin x sin x 2⋅ 2⋅ 2 2 tan x cos x = cos x ⋅ cos x = 1 + tan 2 x sin 2 x sin 2 x cos 2 x 1+ 1 + cos 2 x cos 2 x 2sin x cos x = = 2sin x cos x cos 2 x + sin 2 x 28. cot 4θ = = = 2 cos 2 θ -1 = cos 2θ 1 = 2 tan θ 1- tan 2 θ ( 2 cos 2 θ - sin 2 θ 2sin θ cos θ ) = 2 cos 2θ sin 2θ 1- tan 2 2θ 2 tan 2θ 29. tan x + cot x = sin x sin x cos x cos x ⋅ + ⋅ cos x sin x sin x cos x sin 2 x + cos 2 x 1 = cos x sin x cos x sin x 2 2 = = = 2 csc 2 x 2 cos x sin x sin 2 x = 30. Work with the right side. 1- tan 2 x 1 + tan 2 x 24. Working with the right side, we have -2 tan θ 2 tan θ 2 tan θ ==2 2 sec θ - 2 tan 2 θ -1 1 + tan θ - 2 ( cos 2 θ - sin 2 θ sin θ cos θ 1 1 1 = = 2 tan 2θ tan 4θ tan 2 (2θ ) 1- tan 2 2θ = sin 2 x 23. Working with the right side, we have 1 1 222 2 2 2 - sec θ cos θ = cos 2 θ ⋅ cos θ = 1 1 sec 2 θ cos 2 θ cos 2 θ cos 2 θ ) 2 1 + cos 2 x 1 + 2 cos x -1 2 cos 2 x = = 26. sin 2 x 2sin x cos x 2sin x cos x cos x = = cot x sin x ) = tan 2θ 25. sin 4 x = sin 2 (2 x) = 2sin 2 x cos 2 x = 2 (2sin x cos x) cos 2 x = 4sin x cos x cos 2 x Copyright © 2013 Pearson Education, Inc. 1= 1+ = sin 2 x cos 2 x = sin 2 x cos 2 x 11+ cos 2 x - sin 2 x cos 2 x + sin 2 x sin 2 x 2 cos 2 x ⋅ cos x sin 2 x cos 2 x cos 2 x = cos 2 x - sin 2 x 1 = cos 2 x - sin 2 x = cos 2 x Section 5.5 Double-Angle Identities 31. 71 32. æ 2 tan x ÷ö ÷ 1 + tan x tan 2 x = 1 + tan x çç çè1- tan 2 x ø÷÷ = 1+ cos A sin A cot A - tan A = sin A cos A cot A + tan A cos A + sin A sin A cos A cos A sin A sin A cos A = sin A cos A ⋅ cos A sin A sin A cos A + sin A cos A 2 tan 2 x 1- tan 2 x 1- tan 2 x) + 2 tan 2 x ( = 1- tan 2 x = 2 1 + tan x 2 1- tan x 1+ = 1= 1+ = 1- sin 2 x 2 = 2 = cos x sin 2 x cos x 2 sin x cos 2 A - sin 2 A cos 2 A + sin 2 A cos 2 A - sin 2 A 1 = cos 2 A - sin 2 A = cos 2 A 2 cos x ⋅ cos x sin 2 x cos 2 x 2 cos 2 x cos 2 x + sin 2 x 2 2 cos x - sin x = sec 2 x = 1 cos 2 x 33. Verify sin 2 A cos 2 A = sin 2 A - 4 sin 3 A cos A is an identity. ( ) sin 2 A cos 2 A = (2sin A cos A) 1- 2sin 2 A = 2sin A cos A - 4sin 3 A cos A = sin 2 A - 4sin 3 A cos A 34. Verify sin 4 x = 4 sin x cos x - 8sin 3 x cos x is an identity. ( ) sin 4 x = sin 2 (2 x) = 2sin 2 x cos 2 x = 2 (2sin x cos x) 1- 2sin 2 x = 4sin x cos x - 8sin 3 x cos x 35. Verify tan (θ - 45) + tan (θ + 45) = 2 tan 2θ is an identity. tan (θ - 45) + tan (θ + 45) = = = tan θ - tan 45 tan θ + tan 45 tan θ -1 tan θ + 1 tan θ -1 tan θ + 1 + = + = 1 + tan θ tan 45 1- tan θ tan 45 1 + tan θ 1- tan θ tan θ + 1 tan θ -1 2 2 ( tan θ -1)2 - ( tan θ + 1)2 ( tan θ - 2 tan θ + 1) - ( tan θ + 2 tan θ + 1) = ( tan θ + 1)( tan θ -1) tan 2 θ -1 2 (2 tan θ ) -4 tan θ 4 tan θ tan 2 θ -1 = 1- tan 2 θ = 1- tan 2 θ = 2 tan 2θ æπ ö 36. Verify cot θ tan (θ + π ) - sin (π -θ ) cos çç -θ ÷÷÷ = cos2 θ is an identity. çè 2 ø æπ ö cot θ tan (θ + π ) - sin (π -θ ) cos çç -θ ÷÷÷ çè 2 ø æ π ö π tan θ + tan π - (sin π cos θ - cos π sin θ )ççcos cos θ + sin sin θ ÷÷÷ ç è ø 1- tan θ tan π 2 2 tan θ + 0 tan θ = cot θ ⋅ - (0 ⋅ cos θ - (-1) sin θ )(0 ⋅ cos θ + 1⋅ sin θ ) = cot θ ⋅ - (0 + sin θ )(0 + sin θ ) 1- tan θ (0) 1- 0 = cot θ ⋅ = cot θ tan θ - sin 2 θ = 1- sin 2 θ = cos 2 θ Copyright © 2013 Pearson Education, Inc. 72 Chapter 5 Trigonometric Identities 37. 3 2 59. sin 38. 3 3 60. 39. 3 2 40. 2 2 41. 42. 43. 2 - sin 6 5 5 cos 5 x + cos x 2 2 61. 3cos x - 3cos 9 x 62. 4 cos 2 x - 4 cos16 x 63. -2 sin 3 x sin x 64. 2 cos 6.5 x cos1.5 x 65. -2 sin11.5 cos 36.5 2 2 66. 2 cos 98.5 sin 3.5 67. 2 cos 6 x cos 2 x 2 4 68. 2 cos 6 x sin 3 x 1 tan102 2 69. a = –885.6; c = 885.6; = 240 70. (a) Graph W = VI = éë163sin (120π t )ùû éë1.23sin (120π t )ùû over the interval 0 ≤ t ≤ 0.05. 1 44. tan 68 4 45. 1 cos 94.2 4 46. 1 sin 59 16 47. - cos 4 5 48. cos 4x 49. 4 sin x cos3 x - 4 sin 3 x cos x (b) The minimum wattage is 0 and the maximum wattage is 200.49 watts 50. cos 3 x = -3cos x + 4 cos3 x 51. tan 3 x = (c) a = –100.245; ω = 240π ; c = 100.245 3 tan x - tan 3 x 2 1 - 3 tan x (d) The graphs of W = éë163sin (120π t )ùû éë1.23sin (120π t )ùû 52. cos 4 x = 8 cos 4 x - 8 cos 2 x + 1 53. equivalent; cos 4 x - sin 4 x = cos 2 x 54. equivalent; 55. equivalent; 4 tan x cos 2 x - 2 tan x 1- tan 2 x 2 tan x 2 - sec2 x = sin 2 x = tan 2 x cot 2 x -1 = cot 2 x 2 cot x 57. sin160 - sin 44 56. equivalent; and W = -100.245cos 240π t +100.245 are the same. (e) 100 watts 58. sin 225 + sin 55 Copyright © 2013 Pearson Education, Inc. Section 5.6 Half-Angle Identities Section 5.6 Half-Angle Identities 18. Show 3 - 2 2 = 2 -1. 1. the negative square root. 3- 2 2 = 3- 2 2 2. the positive square root. 3 - 2 2 = 2 - 2 2 +1 3. the positive square root. 3- 2 2 = 4. the negative square root. 2 - 2 2 + 12 5. C ( 6. A If a 2 = b2 , then a = b. Thus, 3- 2 2 7. D 9. F 19. 10 4 20. 13 4 10. B 2+ 2 2 12. - 21. 3 2- 3 2 22. - 13. 2 - 3 14. - 2+ 3 2 15. - 2+ 3 2 16. = ( 17. To find sin 7.5º, you could use the half-angle formulas for sine and cosine as follows: 1- cos15 and sin 7.5 = 2 1+ 1 + cos 30 = 2 2 3 2 2+ 3 2+ 3 = = 4 2 = 50 -10 5 10 24. 50 -15 10 10 1- cos15 = 2 1- 26. 5 5 27. 5 5 28. - 3 2 29. - 42 12 30. - 6 6 31. 0.127 Thus, sin 7.5 = 23. 25. - 7 2- 3 2 cos15 = 5 5 2+ 3 2 2 2- 2 + 3 2- 2 + 3 = 4 2 32. 2.646 33. sin 20 34. cos 38 35. tan 73.5 36. cot 82.5 37. tan 29.87 Copyright © 2013 Pearson Education, Inc. 2 ) 2 -1 3 - 2 2 = 2 -1. 8. E 11. ) 2 ( 2) 73 74 Chapter 5 Trigonometric Identities Work with the right side. x x 1 + cos x 1- cos x cos 2 - sin 2 = 2 2 2 2 2 cos x = = cos x 2 sin 2 x x x Since = cos x = cos 2 - sin 2 , the 2sin x 2 2 statement has been verified. 38. tan 79.1 39. cos 9 x 40. cos10 41. tan 4 42. tan 5A 2 43. cos x 8 44. sin 3 10 45. sec 2 æ 1- cos x ö÷2 2 2 2 x 49. - tan = - çç ÷÷ 1 + cos x 2 1 + cos x çèç 1 + cos x ÷ø 2 1- cos x 1 + cos x 1 + cos x 2 -1 + cos x = 1 + cos x 1 + cos x = =1 1 + cos x = x 1 1 = = 2 cos 2 x æ 1 + cos x ö2 ÷÷ ç 2 ç ÷ çç 2 è ø÷ = 1 2 = 1 + cos x 1 + cos x 2 50. tan 2 æ ÷÷ö çç (1 + cos x)2 x ç 1 ÷÷ 1 46. cot 2 = çç ÷÷ = = 2 çç tan x ÷÷ sin 2 x æ sin x ö÷2 ÷ø çç ÷ ççè ÷ 2 çè1 + cos x ÷ø 47. Work with the left side. 2 x æ 1- cos x ö÷÷ 1- cos x sin 2 = ççç ÷÷ = 2 çè 2 2 ø Work with the right side. sin x - sin x tan x - sin x cos x = sin x 2 tan x 2⋅ cos x sin x - sin x cos x = cos x ⋅ sin x cos x 2⋅ cos x sin x - cos x sin x = 2sin x sin x (1- cos x ) 1- cos x = = 2sin x 2 x 1 cos x tan x sin x Since sin 2 = = , the 2 2 2 tan x statement has been verified. θ 2 sin θ sin θ 1- cos θ = ⋅ 1 + cos θ 1 + cos θ 1- cos θ sin θ (1- cos θ ) sin θ (1- cos θ ) = = 1- cos 2 θ sin 2 θ 1- cos θ 1 cos θ = = sin θ sin θ sin θ = csc θ - cot θ = 51. 1- tan 2 æ sin θ ö÷2 sin 2 θ = 1- çç = 1 ÷ çè1 + cos θ ÷ø 2 (1 + cos θ )2 θ 48. Work with the left side. sin 2 x 2sin x cos x = = cos x 2sin x 2sin x Copyright © 2013 Pearson Education, Inc. = = = 2 (1 + cos θ ) - sin 2 θ 2 (1 + cos θ ) 1 + 2 cos θ + cos 2 θ - sin 2 θ 2 (1 + cos θ ) ( 1 + 2 cos θ + cos 2 θ - 1- cos 2 θ 2 (1 + cos θ ) = 1 + 2 cos θ + 2 cos 2 θ -1 = 2 cos 2 θ + 2 cos θ = (1 + cos θ )2 (1 + cos θ )2 2 cos θ (1 + cos θ ) 2 (1 + cos θ ) = 2 cos θ 1 + cos θ ) Section 5.6 Half-Angle Identities 52. Working with the right side, we have 1- cos x 1- tan 2 2x 1- 1 + cos x = 1 + tan 2 2x 1 + 1- cos x 1 + cos x 1- cos x 11 + cos x ⋅ 1 + cos x = 1- cos x 1 + cos x 1+ 1 + cos x + 1 ( cos x) - (1- cos x) = (1 + cos x) + (1- cos x) = 53. tan 54. tan 2 æ xö sin x = tan çç ÷÷÷ ç è 2ø 1 + cos x tan cot x + cot x 2 2 x - tan x 2 2 58. equivalent; 1- 8sin 2 59. 106 60. 84 61. m = 2 69. AD 2 = AC 2 + CD 2 2 ) ( = 8+ 4 3 = = 1+ 4 + 4 3 + 3 6+ 2 2 ) 70. 6+ 2 4 6- 2 4 72. 2 - 3 71. 73. cos18 = 10 + 2 5 4 74. Use the result from exercise 73. (-5 + 3 5)( 10 - 2 5 x x cos 2 = cos 2 x 2 2 tan18 = ) 20 Alternative solution = sec x AD = 6 + 2 (5 - 5)( 10 - 2 5 ) 20 Use a calculator to show that the two forms for tan 18° are equal. 75. Use the result from exercise 73. cot18 = 62. m » 3.9 ( 10 + 2 5 )( ) 5 +1 4 76. Use the result from exercise 73. θ R -b 63. (a) cos = 2 R b (b) tan = 4 50 64. 54 68. 2 + 3 tan18 = 1- cos x x 56. equivalent; = tan sin x 2 57. equivalent; 67. The sum of the measures of angles DAB and ADB is 180º − 150º = 30º. mDAB = mADB , so the measure of each is 15º. ( 1 1 + cos A = sin A sin A 1 + cos A 55. equivalent; 66. mABD = 150 because it is the supplement of a 30º angle. AD 2 = 12 + 2 + 3 A sin A 1 = = 2 1 + cos A cot A A cot = 2 65. AB = BD because they are both radii of the circle. 2 cos x = cos x 2 A sin A sin A 1- cos A = = ⋅ 2 1 + cos A 1 + cos A 1- cos A sin A(1- cos A) sin A(1- cos A) = = 1- cos 2 A sin 2 A 1- cos A = sin A 75 sec18 = (5 - 5) 10 - 2 5 10 Alternate solution 50 + 10 5 5 Use a calculator to show that the two forms for sec 18° are equal. sec18 = Copyright © 2013 Pearson Education, Inc. 76 Chapter 5 Trigonometric Identities Summary Exercises on Verifying Trigonometric Identities 77. csc18 = 5 + 1 78. cos 72 = 5 -1 4 79. sin 72 = 10 + 2 5 4 80. tan 72 = 81. tan 72 = 1. Verify tan θ + cot θ = sec θ csc θ is an identity. sin θ cos θ tan θ + cot θ = + cos θ sin θ ( 10 + 2 5 )( ) = 5 +1 10 - 2 5 20 ( 10 + 2 5 )( tan 72 = (5 - 5 ) ) 5 +1 10 82. csc 72 = 10 - 2 5 = ) or 4 csc 72 = sin 2 θ + cos 2 θ 1 = cos θ sin θ cos θ sin θ 1 1 = ⋅ = sec θ csc θ cos θ sin θ 4 (-5 + 3 5 )( or 2. Verify csc θ cos 2 θ + sin θ = csc θ is an identity. 1 ⋅ cos 2 θ + sin θ csc θ cos 2 θ + sin θ = sin θ = 50 -10 5 5 cos 2 θ sin 2 θ + sin θ sin θ cos 2 θ + sin 2 θ 1 = sin θ sin θ = csc θ = 83. sec 72 = 1 + 5 84. sin162 = sin 2 θ cos 2 θ + cos θ sin θ cos θ sin θ x = csc x - cot x is an identity. 2 Starting on the right side, we have 1 cos x 1 - cos x x csc x - cot x = = = tan sin x sin x sin x 2 5 -1 4 3. Verify tan 4. Verify sec (π - x) = - sec x is an identity. sec (π - x ) = 1 1 1 1 1 = = = == - sec x cos (π - x ) cos π cos x + sin π sin x (-1) cos x + (0) sin x - cos x + 0 cos x sin t 1- cos t is an identity. = 1 + cos t sin t sin t sin t 1- cos t sin t (1- cos t ) sin t (1- cos t ) 1- cos t = ⋅ = = = 1 + cos t 1 + cos t 1- cos t sin t 1- cos 2 t sin 2 t 5. Verify 1- sin t 1 is an identity. = cos t sec t + tan t 1 1 1 cos t cos t 1- sin t = = = = ⋅ 1 sin t 1 + sin t 1 + sin t 1 + sin t 1- sin t sec t + tan t + cos t cos t cos t cos t (1- sin t ) cos t (1- sin t ) 1- sin t = = = cos t 1- sin 2 t cos 2 t 6. Verify Copyright © 2013 Pearson Education, Inc. Summary Exercises on Verifying Trigonometric Identities 2 tan θ 7. Verify sin 2θ = is an identity. 1 + tan 2 θ Starting on the right side, we have sin θ 2⋅ 2 tan θ 2 tan θ sin θ cos 2 θ = = cos θ = 2 ⋅ ⋅ = 2sin θ cos θ = sin 2θ 1 cos θ 1 1 + tan 2 θ sec2 θ cos 2 θ 8. Verify 2 x - tan 2 = 1 is an identity. 1 + cos x 2 2 (1 + cos x ) æ sin x ö÷2 2 2 2 sin 2 x sin 2 x x - tan 2 = - çç = = ÷ 1 + cos x 2 1 + cos x çè1 + cos x ø÷ 1 + cos x (1 + cos x )2 (1 + cos x )2 (1 + cos x )2 = = 2 + 2 cos x - sin 2 x 2 (1 + cos x) cos 2 x + 2 cos x + 1 (1 + cos x)2 9. Verify cot θ - tan θ = cot θ - tan θ = = = = ( 2 + 2 cos x - 1- cos 2 x 2 2 (1 + cos x) (1 + cos x)2 (1 + cos x)2 ) = 2 + 2 cos x -1 + cos2 x (1 + cos x) =1 2 cos 2 θ -1 is an identity. sin θ cos θ ( 2 2 cos θ sin θ cos 2 θ sin 2 θ cos 2 θ - sin 2 θ cos θ - 1- cos θ = = = sin θ cos θ sin θ cos θ sin θ cos θ sin θ cos θ sin θ cos θ ) cos 2 θ -1 + cos 2 θ 2 cos 2 θ -1 = sin θ cos θ sin θ cos θ 1 1 + = 2 cot t csc t is an identity. sec t -1 sec t + 1 1 1 1 1 1 cos t 1 cos t cos t cos t + = + = ⋅ + ⋅ = + 1 1 1 1 sec t -1 sec t + 1 -1 +1 -1 cos t + 1 cos t 1- cos t 1 + cos t cos t cos t cos t cos t 10. Verify = = 11. Verify sin ( x + y ) cos ( x - y ) = cos t 1 + cos t cos t 1- cos t cos t + cos 2 t cos t - cos 2 t ⋅ + ⋅ = + 1- cos t 1 + cos t 1 + cos t 1- cos t 1- cos 2 t 1- cos2 t cos t + cos 2 t + cos t - cos2 t 2 1- cos t = 2 cos t 2 1- cos t = 2 cos t 2 sin t = 2⋅ cos t 1 ⋅ = 2 cot t csc t sin t sin t cot x + cot y is an identity. 1 + cot x cot y 1 sin x cos y cos x sin y + sin x cos y + cos x sin y sin x cos y + cos x sin y cos x cos y cos x cos y cos x cos y = = ⋅ = 1 cos x cos y sin x sin y cos ( x - y ) cos x cos y + sin x sin y cos x cos y + sin x sin y + cos x cos y cos x cos y cos x cos y sin x sin y + cot x + cot y cos x cos y = = sin x sin y 1 + cot x cot y 1+ ⋅ cos x cos y sin ( x + y ) Copyright © 2013 Pearson Education, Inc. 77 78 Chapter 5 Trigonometric Identities 12. Verify 1- tan 2 θ = 2 2 cos θ is an identity. 1 + cos θ 2 æ sin θ ö÷2 (1 + cos θ ) sin 2 θ sin 2 θ 1 + 2 cos θ + cos 2 θ sin 2 θ 1- tan = 1- çç = 1 = = ÷ 2 2 2 2 2 çè1 + cos θ ÷ø 2 (1 + cos θ ) (1 + cos θ ) (1 + cos θ ) (1 + cos θ ) (1 + cos θ ) 2θ = 1 + 2 cos θ + cos 2 θ - sin 2 θ = 2 cos θ + 2 cos 2 θ 2 (1 + cos θ ) 2 (1 + cos θ ) = = ( 2 cos θ + cos 2 θ + 1- sin 2 θ 2 (1 + cos θ ) 2 cos θ (1 + cos θ ) 2 (1 + cos θ ) = ) = 2 cosθ + cos2 θ + cos2 θ 2 (1 + cos θ ) 2 cos θ 1 + cos θ sin θ + tan θ = tan θ is an identity. 1 + cos θ sin θ sin θ sin θ + sin θ + sin θ + tan θ cos cos θ θ ⋅ cos θ = sin θ cos θ + sin θ = sin θ (cos θ + 1) = sin θ = tan θ = = 1 + cos θ 1 + cos θ 1 + cos θ cos θ cos θ (1 + cos θ ) cos θ (1 + cos θ ) cos θ 13. Verify 14. Verify csc4 x - cot 4 x = 4 4 csc x - cot x = = 1 sin 4 x 1 + cos 2 x 1- cos 2 x - cos 4 x sin 4 x 1 + cos 2 x sin 2 x = = is an identity. 1- cos 4 x sin 4 x 1 + cos 2 x)(1- cos 2 x) (1 + cos 2 x)(sin 2 x) ( = = sin 4 x sin 4 x 1 + cos 2 x 1- cos 2 x x 2 is an identity. 15. Verify cos x = 2 x 1 + tan 2 1- tan 2 2 2 2 (1- cos x) (1- cos x) x 1- æç1- cos x ö÷ 112 ÷÷ 2 çèç 2 2 ø sin x sin x = sin 2 x ⋅ sin x = sin x - (1- cos x ) 2= = x æ1- cos x ö÷2 (1- cos x)2 (1- cos x)2 sin 2 x sin 2 x + (1- cos x)2 1 + tan 2 çç 1 + ÷ 1+ 1+ 2 çè sin x ÷ø sin 2 x sin 2 x 1- tan 2 2 2 ( ) sin 2 x -1 + 2 cos x - cos 2 x (1- cos x) -1 + 2 cos x - cos x = = = 2 2 sin 2 x + (1- 2 cos x + cos 2 x) sin x + 1- 2 cos x + cos x (sin 2 x + cos2 x) +1- 2 cos x sin 2 x - 1- 2 cos x + cos 2 x = 1- cos 2 x -1 + 2 cos x - cos 2 x 2 cos x - 2 cos 2 x 2 cos x (1- cos x ) = = = cos x 1 + 1- 2 cos x 2 - 2 cos x 2 (1- cos x ) 16. Verify cos 2 x = 2 - sec 2 x sec 2 x 2 - sec 2 x 2= sec 2 x 1 is an identity. Starting on the right side, we have 2 2 cos 2 x ⋅ cos x = 2 cos x -1 = 2 cos 2 x -1 = cos 2 x 1 1 cos 2 x cos 2 x Copyright © 2013 Pearson Education, Inc. Summary Exercises on Verifying Trigonometric Identities 17. Verify tan 2 t + 1 tan t csc2 t 79 = tan t is an identity. sin 2 t sin 2 t sin 2 t + + +1 1 1 2 2 2 tan 2 t + 1 cos 2 t sin t sin 3 t + cos 2 t sin t = cos t = cos t = cos t ⋅ = 2 sin t 1 1 1 cos t t t tan t csc2 t cos sin ⋅ 2 cos t sin t cos t sin t cos t sin t = 18. Verify ( sin t sin 2 t + cos 2 t cos t ) = sin t (1) = sin t = tan t cos t cos t sin s 1 + cos s + = 2 csc s is an identity. 1 + cos s sin s ( 2 sin 2 s + 1 + 2 cos s + cos 2 s sin 2 s + (1 + cos s ) (1 + cos s )2 sin s 1 + cos s sin 2 s + = + = = 1 + cos s sin s sin s (1 + cos s ) sin s (1 + cos s ) sin s (1 + cos s ) sin s (1 + cos s ) = 19. Verify tan 4θ = (1- cos2 s) +1 + 2 cos s + cos2 s = sin s (1 + cos s ) 2 (1 + cos s ) 2 + 2 cos s 2 = = = 2 csc s sin s (1 + cos s ) sin s (1 + cos s ) sin s 2 tan 2θ is an identity. 2 - sec2 2θ sin 2θ sin 2θ 2⋅ 2⋅ 2 é ù 2 tan 2θ cos 2 θ cos 2θ ⋅ cos 2θ = 2sin 2θ cos 2θ = sin ë 2 (2θ )û = sin 4θ = tan 4θ = = 1 cos éë 2 (2θ )ùû cos 4θ 2 - sec2 2θ 2 - 1 cos2 2θ 2 cos 2 2θ -1 22 2 cos 2θ cos 2θ æx π ö 20. Verify tan çç + ÷÷÷ = sec x + tan x is an identity. çè 2 4 ø sin x sin x x x x π +1 +1 tan + 1 tan + 1 æ x π ö÷ tan 2 + tan 4 1 + cos x 2 2 tan çç + ÷÷ = = = = 1 + cos x = 1 + cos x ⋅ çè 2 4 ø æ ö x x x x sin sin π x 1 + cos x 1- tan tan 111- çç tan ÷÷÷(1) 1- tan çè 2 4 2 1 + cos x 1 + cos x 2ø sin x + (1 + cos x ) = = sin x + 1 + cos x sin x + 1 + cos x cos x sin x cos x + cos x + cos 2 x ⋅ = = 1 + cos x - sin x 1 + cos x - sin x cos x cos x (1 + cos x - sin x ) (1 + cos x) - sin x cos x (1 + sin x ) + (1 + sin x )(1- sin x ) (1 + sin x )(cos x + 1- sin x ) = = cos x (1 + cos x - sin x ) cos x (1 + cos x - sin x ) = 1 + sin x 1 sin x = + = sec x + tan x cos x cos x cos x cot s - tan s cos s - sin s is an identity. = cos s + sin s sin s cos s cos s sin s cos s sin s cot s - tan s sin s cos s cos 2 s - sin 2 s = sin s cos s = sin s cos s ⋅ = cos s + sin s cos s + sin s cos s + sin s sin s cos s (cos s + sin s ) sin s cos s 21. Verify = (cos s + sin s )(cos s - sin s ) cos s - sin s = sin s cos s (cos s + sin s ) sin s cos s Copyright © 2013 Pearson Education, Inc. ) 80 Chapter 5 Trigonometric Identities tan θ - cot θ = 1- 2 cos 2 θ is an identity. tan θ + cot θ sin θ cos θ sin θ cos θ tan θ - cot θ cos θ sin θ sin 2 θ - cos 2 θ sin 2 θ - cos 2 θ = cos θ sin θ = cos θ sin θ ⋅ = = sin θ cos θ sin θ cos θ cos θ sin θ sin 2 θ + cos 2 θ tan θ + cot θ 1 + + cos θ sin θ cos θ sin θ 22. Verify ( ) = sin 2 θ - cos 2 θ = 1- cos 2 θ - cos 2 θ = 1- 2 cos 2 θ 23. Verify tan ( x + y ) - tan y 1 + tan ( x + y ) tan y = tan x is an identity. tan x + tan y tan x + tan y - tan y - tan y 1- tan x tan y 1- tan x tan y 1- tan x tan y = = ⋅ 1 + tan ( x + y ) tan y 1 + tan x + tan y ⋅ tan y 1 + tan x + tan y ⋅ tan y 1- tan x tan y 1- tan x tan y 1- tan x tan y tan ( x + y ) - tan y = tan x + tan y - tan y (1- tan x tan y ) 1- tan x tan y + ( tan x + tan y ) tan y ( tan x 1 + tan 2 y = 24. Verify 2 cos 2 1 + tan 2 y = tan x + tan x tan 2 y 1- tan x tan y + tan x tan y + tan 2 y ) = tan x x tan x = tan x + sin x is an identity. 2 æ 1 + cos x ö÷2 sin x x 1 + cos x sin x sin x sin x ÷÷ ⋅ 2 cos tan x = 2 ççç = 2⋅ ⋅ = (1 + cos x )⋅ = + sin x = tan x + sin x ÷ çè 2 2 2 cos x cos x cos x ø cos x 2 25. Verify cos 4 x - sin 4 x 2 cos x cos 4 x - sin 4 x cos 2 x = = = 1- tan 2 x is an identity. (cos2 x + sin 2 x)(cos2 x - sin 2 x) = (1)(cos2 x - sin 2 x) = cos2 x - sin 2 x cos 2 x cos 2 x 2 cos x - sin 2 x 2 cos x cos 2 x cos 2 x = 1- tan 2 x csc t + 1 2 = (sec t + tan t ) is an identity. csc t -1 1 1 +1 +1 csc t + 1 sin t sin t 1 + sin t 1 + sin t 1 + sin t = = sin t ⋅ = = ⋅ 1 1 csc t -1 -1 -1 sin t 1- sin t 1- sin t 1 + sin t sin t sin t 26. Verify = (1 + sin t )2 1- sin 2 t = (1 + sin t )2 cos 2 t 2 æ1 + sin t ÷ö2 æ 1 sin t ÷ö 2 çç = çç = + = (sec t + tan t ) ÷ ÷ çè cos t ÷ø çè cos t cos t ÷ø Copyright © 2013 Pearson Education, Inc. Summary Exercises on Verifying Trigonometric Identities 27. Verify ( 2 sin x - sin 3 x cos x ( 3 2 sin x - sin x cos x 81 ) = sin 2 x is an identity. ) = 2sin x (1- sin 2 x) = 2sin x cos2 x = 2sin x cos x = sin 2 x cos x cos x 1 x 1 x cot - tan = cot x is an identity. 2 2 2 2 1 x 1 x 1 1 1 x 1 1 1 1- cos x 1 + cos x 1- cos x cot - tan = ⋅ - tan = ⋅ - ⋅ = 2 2 2 2 2 tan x 2 2 2 sin x 2 sin x 2sin x 2sin x 2 1 + cos x 1 + cos x - (1- cos x ) 1 + cos x -1 + cos x 2 cos x cos x = = = = = cot x 2sin x 2sin x 2sin x sin x 28. Verify 29. Verify sin (60 + x ) + sin (60- x ) = 3 cos x is an identity. sin (60 + x ) + sin (60- x ) = (sin 60 cos x + cos 60 sin x ) + (sin 60 cos x - cos 60 sin x ) æ 3 ö÷ = 2sin 60 cos x = 2 ççç ÷÷ cos x = 3 cos x çè 2 ÷ø 30. Verify sin (60- x) - sin (60 + x) = - sin x is an identity. sin (60- x) - sin (60 + x) = (sin 60 cos x - cos 60 sin x) - (sin 60 cos x + cos 60 sin x) æ1ö = -2 cos 60 sin x = -2 çç ÷÷÷ sin x = - sin x çè 2 ø 31. Verify cos ( x + y ) + cos ( y - x) sin ( x + y ) - sin ( y - x ) cos ( x + y ) + cos ( y - x) sin ( x + y ) - sin ( y - x) = = cot x is an identity. (cos x cos y - sin x sin y ) + (cos y cos x + sin y sin x) 2 cos x cos y cos x = = = cot x (sin x cos y + cos x sin y ) -(sin y cos x - cos y sin x) 2 cos y sin x sin x 32. Verify sin x + sin 3 x + sin 5 x + sin 7 x = 4 cos x cos 2 x sin 4 x is an identity. sin x + sin 3x + sin 5 x + sin 7 x = (sin x + sin 3x) + (sin 5 x + sin 7 x) æ x + 3x ö÷ æ x - 3x ö÷ æ 5 x + 7 x ÷ö æ 5 x - 7 x ÷ö = 2sin çç cos çç + 2sin çç cos ç ÷ ÷ ÷ ÷ çè 2 ÷÷ø ççè 2 ÷÷ø èç 2 ø èç 2 ø = 2sin 2 x cos (-x ) + 2sin 6 x cos (-x ) æ 2 x + 6 x ÷ö æ 2 x - 6 x ö÷ = 2 cos (-x ) (sin 2 x + sin 6 x) = 2 cos x ⋅ 2sin çç cos ç çè 2 ÷÷ø ççè 2 ÷÷ø = 4 cos x sin 4 x cos (-2 x ) = 2 cos x cos 2 x sin 4 x 33. Verify sin 3 θ + cos3 θ + sin θ cos 2 θ + sin 2 θ cos θ = sin θ + cos θ is an identity. ( ) ( ) = sin θ (sin 2 θ + cos 2 θ ) + cos θ (cos 2 θ + sin 2 θ ) = (sin θ + cos θ )(sin 2 θ + cos 2 θ ) = sin θ + cos θ sin 3 θ + cos3 θ + sin θ cos 2 θ + sin 2 θ cos θ = sin 3 θ + sin θ cos 2 θ + cos3 θ + sin 2 θ cos θ Copyright © 2013 Pearson Education, Inc. 82 Chapter 5 Trigonometric Identities 34. Verify cos x + sin x cos x - sin x = 2 tan 2 x cos x - sin x cos x + sin x 2 2 cos x + sin x cos x - sin x (cos x + sin x ) - (cos x - sin x ) = cos x - sin x cos x + sin x (cos x + sin x)(cos x - sin x ) cos 2 x + 2sin x cos x + sin 2 x) - (cos 2 x - 2sin x cos x + sin 2 x ) ( = cos 2 x - sin 2 x 4sin x cos x 2sin 2 x = = = 2 tan 2 x 2 2 cos 2 x cos x - sin x Chapter 5 Review Exercises 1. B 16. (a) sin 4. F 5. D 6. E (b) sin 7. 1 10. cos 2 sin 12. tan cos2 17. I 1 + cos sin 18. B cos sin 20. A 1 22. C 12 12 = 2- 3 ; 2 = 2+ 3 ; 2 = 2- 3 19. H 21. G 2 sin cos 2 23. J 4 4 3 13. sin x = - ; tan x = - ;cot x = 5 3 4 24. D 41 4 4 41 ; cot x = - ; cos x = 14. sec x = 5 41 4 26. B sin x = 12 cos 1 11. - 6- 2 ; 4 cos 3. C 9. 12 = 6+ 2 = ; 12 4 tan = 2 - 3 12 2. A 8. 5 41 41 ; csc x = 5 41 25. F 117 4 117 quadrant II ; ;125 5 44 44 3 44 28. ; quadrant I ; ; 125 5 117 27. 15. Use the fact that 165º = 180º − 15º. 6- 2 - 6- 2 sin165 = ; cos165 = ; 4 4 tan165 = -2 + 3; cot165 = -2 - 3; sec165 = - 6 + 2; csc165 = 6 + 2 29. 30. 2 + 3 7 2 3 + 21 2 + 3 7 ;quadrant II ; ; 10 10 2 3 - 21 -2 30 + 2 5 - 4 6 -2 30 + 2 ; ; ; 15 15 5+4 6 quadrant IV Copyright © 2013 Pearson Education, Inc. Chapter 5 Review Exercises 4 - 9 11 12 11 - 3 4 - 9 11 ; ; ; 50 50 12 11 + 3 quadrant IV 231 - 2 -2 3 + 77 231 - 2 32. ; ; ; 18 18 -2 3 - 77 quadrant II 31. 33. sin = 14 2 ; cos = 4 4 34. sin B = - 49. Verify sin 2 x - sin 2 y = cos 2 y - cos 2 x is an identity. ( = cos2 y - cos 2 x cos 2 x - sin 2 x is an sec x identity. Work with the right side. 7 3 ;cos B = 4 4 cos 2 x - sin 2 x cos 2 x - sin 2 x = 1 sec x cos x ( ) = cos 2 x - sin 2 x ⋅ cos x = cos3 x - sin 2 x cos x ( ) = cos3 x - 1- cos 2 x cos x = cos3 x - cos x + cos3 x 14 4 -1 + 5 39. 2 38. = 2 cos3 x - cos x 51. Verify 6 3 sin 2 x x = cos 2 is an identity. 2 - 2 cos x 2 sin 2 x 1- cos 2 x = 2 - 2 cos x 2 (1- cos x) 41. 0.5 42. -0.96 43. equivalent; - sin 2 x + sin x x = cot cos 2 x - cos x 2 44. equivalent; 1- cos 2 x = tan x sin 2 x 45. equivalent; sin x x = cot 1- cos x 2 47. equivalent; ) = 1- cos 2 x -1 + cos 2 y 1 37. 2 46. equivalent; ) ( sin 2 x - sin 2 y = 1- cos 2 x - 1- cos2 y 50. Verify 2 cos3 x - cos x = 4 3 35. cos 2 x = - ; sin 2 x = 5 5 24 7 36. sin 2 y = - ;cos 2 y = 25 25 40. 83 ( 2 sin x - sin 3 x cos x ) = sin 2 x 48. equivalent; csc x - cot x = tan (1- cos x)(1 + cos x) 2 (1- cos x ) = x 1 + cos x = cos 2 2 2 sin 2 x 2 is an identity. = sin x sec x sin 2 x 2sin x cos x = = 2 cos x sin x sin x 2 2 = = 1 sec x cos x 52. Verify cos x sin 2 x = sin x 1 + cos 2 x = x 2 Copyright © 2013 Pearson Education, Inc. 84 Chapter 5 Trigonometric Identities 53. Verify 2 cos A - sec A = cos A - tan A is an csc A identity. Work with the right side. sin A 2 tan A A = cos A - sin A cos cos A = cos A 1 csc A cos A sin A = = 2 2 2 2 2 2 1- tan 2 x = ⋅ æ 2 tan x ö÷ tan x 2 tan x ç tan x ç ÷ çè1- tan 2 x ÷ø = 1- tan 2 x tan 2 x 1- sin 2 x 2 cos2 x ⋅ cos x sin 2 x cos 2 x = cos 2 x cos A - sin A cos A ( 2 cot x = csc 2 x - 2 is an identity. tan 2 x 2 cot x = tan 2 x cos A sin A cos A cos A 2 = 56. Verify = 2 ) cos A - 1- cos A cos A 2 cos 2 A -1 1 = = 2 cos A cos A cos A = 2 cos A - sec A 2 tan B = sec2 B is an identity. sin 2 B sin B 2⋅ 2 tan B 2sin B cos B = = sin 2 B 2sin B cos B 2sin B cos 2 B 1 = = sec 2 B cos 2 B cos 2 x - sin 2 x = sec2 α = 1 + tan 2 α 1- 2sin 2 x sin 2 x 2 = csc x - 2 57. Verify tan θ sin 2θ = 2 - 2 cos 2 θ is an identity. tan θ sin 2θ = tan θ (2sin θ cos θ ) = 54. Verify 55. Verify 1 + tan 2 α = 2 tan α csc 2α is an identity. Work with the right side. sin α 2⋅ 2 tan α cos α = 2 tan α csc 2α = sin 2α 2sin α cos α 2sin α 1 = = 2 2sin α cos α cos 2 α sin 2 x = sin θ (2sin θ cos θ ) = 2sin 2 θ cos θ ( ) = 2 1- cos 2 θ = 2 - 2 cos 2 θ 58. Verify csc A sin 2 A - sec A = cos 2 A sec A is an identity. csc A sin 2 A - sec A 1 1 = (2sin A cos A) sin A cos A = 2 cos A = 1 2 cos 2 A 1 = cos A cos A cos A 2 cos 2 A -1 cos 2 A = = cos 2 A sec A cos A cos A 59. Verify 2 tan x csc 2 x - tan 2 x = 1 is an identity. 2 tan x csc 2 x - tan 2 x = 2 tan x = 2⋅ = 1 - tan 2 x sin 2 x sin x 1 sin 2 x ⋅ cos x 2sin x cos x cos 2 x 1 cos 2 x Copyright © 2013 Pearson Education, Inc. - sin 2 x cos 2 x = 1- sin 2 x cos 2 x = cos 2 x cos 2 x =1 Chapter 5 Review Exercises 60. Verify 2 cos 2 θ -1 = 1- tan 2 θ 2 1 + tan θ Work with the right side. 1- 1- tan 2 θ = 1 + tan 2 θ 1+ = . = sin 2 θ = cos 2 θ = 2 cos 2 θ ⋅ cos θ sin 2 θ cos 2 θ cos 2 θ - sin 2 θ cos 2 θ + sin 2 θ = cos 2 θ - sin 2 θ 1 = cos 2 θ - sin 2 θ 2 an identity. Work with the right side. 2 tan θ cos 2 θ - tan θ 1- tan 2 θ = = = = ( 1 - tan θ cos 2 α - sin 2 α + 1 (1- cos2 α ) + sin 2 α cos 2 α + (1- sin 2 α ) sin 2 α + sin 2 α cos 2 α + cos 2 α is ( = ) ( ) 64. Verify sin 3 θ = sin θ - cos 2 θ sin θ is an identity. Work with the right side. ( = sin θ - sin θ + sin 3 θ ( ) = tan θ cos2 θ = sin 3 θ tan θ cos 2 θ 2 cos 2 θ -1 2 cos 2 θ -1 sec 2α -1 is an identity. sec 2α + 1 Work with the right side. sec 2α -1 sec 2α + 1 62. Verify sec2 α -1 = 2 cos α - sin α ) sin θ - cos 2 θ sin θ = sin θ - 1- sin 2 θ sin θ cos 2 θ - sin 2 θ 2 ) = 2sin 3 x - sin x tan θ cos 2 θ 2 cos 2 θ -1 2 2 = cos α - sin α 1 2sin 2 x -1 sin x ⋅ 1 sin x sin x ( tan θ 2 cos θ -1 cos 2 θ ⋅ sin 2 θ cos 2 θ 1cos 2 θ 1 -1 = cos 2α 1 +1 cos 2α 1 ) = 2sin 2 x -1 sin x 2 ( 2 cos 2 α 2 2 sin 2 x - cos 2 x sin x - 1- sin x = 1 csc x sin x ) 2 2sin 2 α = tan 2 α = sec 2 α -1 tan θ 2 cos 2 θ -1 1- tan θ = sin 2 x - cos 2 x = 2sin 3 x - sin x is an csc x identity. = cos 2θ = 2 cos θ -1 2 tan θ cos 2 θ - tan θ ) 63. Verify 2 61. Verify tan θ cos 2 θ = ( 1- cos 2 α - sin 2 α 85 -1 ⋅ 65. Verify tan 4θ = 2 tan 2θ is an identity. 2 - sec2 2θ 2 tan 2θ tan 4θ = tan éë 2 (2θ )ùû = 1- tan 2 2θ 2 tan 2θ 2 tan 2θ = = 2 2 - sec2 2θ 1- sec 2θ -1 cos 2 α - sin 2 α 2 2 + 1 cos α - sin α Copyright © 2013 Pearson Education, Inc. ( ) 86 Chapter 5 Trigonometric Identities x tan x = tan x + sin x is an 2 identity. Work with the right side. æ 1 ö sin x tan x + sin x = + sin x = sin x çç + 1÷ çè cos x ø÷÷ cos x cos 2x 66. Verify 2 cos 2 æ ö÷ çç ÷ 1 ç = sin x ç + 1÷÷ çç cos é 2 x ù ÷÷÷ êë ( 2 )úû ø èç = = ( ) -1 2sin x cos 2 ( 2x ) 2 cos 2 2x cos x = cos 2 1 x 1 x cot - tan = cot x is an identity. 2 2 2 2 1 x 1 x cot - tan 2 2 2 2 1 æç1 + cos x ö÷ 1 æç1- cos x ÷ö = ç ÷- ç ÷ 2 çè sin x ÷ø 2 çè sin x ÷ø 1 + cos x 1- cos x 2sin x 2sin x 2 cos x = = cot x 2sin x = cos éê 2 ( 2x )ùú ë û () = 2 cos 2 2x tan x 4 x sin 2 x + sin x is an identity. = 2 cos 2 x - cos x Work with the right side. sin 2 x + sin x 2sin x cos x + sin x = cos 2 x - cos x 2 cos 2 x -1 - cos x 69. Verify - cot 2 Working with the right side, we have 1 sin x 1 + sin x sec x + tan x = + = cos x cos x cos x 2 x 2 x cos 2 + sin 2 + sin éê 2 ( 2x )ùú ë û = é ù x cos ê 2 ( 2 )ú ë û = cos 2x 1- tan 2x 68. Verify æx π ö 67. Verify tan çç + ÷÷÷ = sec x + tan x is an çè 2 4 ø identity. Working with the left side, we have tan 2x + 1 æ x π ö tan 2x + tan π4 tan çç + ÷÷÷ = = çè 2 4 ø 1- tan x tan π 1- tan x ( sin 2x 2 2sin x cos 2 ( 2x ) 2 x 1 + tan 2x the statement is verified. ) 2sin x cos 2 ( 2x ) cos 2x = æ x π ö tan 2x + 1 Since tan çç + ÷÷÷ = = sec x + tan x , çè 2 4 ø 1- tan x æ ö÷ çç 1 ÷ = sin x çç + 1÷÷ 2 ÷ x ççè 2 cos ( 2 ) -1 ø÷÷ æ1 + 2 cos 2 x -1 ö÷ çç ( 2 ) ÷÷ ÷ = sin x çç çç 2 cos 2 ( x ) -1 ÷÷÷ çè 2 ø÷ ( = sin 2x + cos 2x cos 2x ) cos 2 2x + sin 2 2x + 2sin 2x cos 2x cos 2 x - sin 2 x 2 (cos 2x + sin 2x ) = (cos 2x + sin 2x )(cos 2x - sin 2x ) 1 cos 2x + sin 2x cos 2x = ⋅ 1 cos 2x - sin 2x cos 2x Copyright © 2013 Pearson Education, Inc. ( = = ) sin x (2 cos x + 1) 2 cos 2 x - cos x -1 sin x (2 cos x + 1) (2 cos x + 1)(cos x -1) sin x sin x =1- cos x cos x -1 1 1 x === - cot x sin x 2 tan 2 cos x -1 = Chapter 5 Test 5t sin 3t + sin 2t tan 2 is an identity. = sin 3t - sin 2t tan 2t Using sum-to-product identities, we have 70. Verify ( ( sin 3t + sin 2t 2sin = sin 3t - sin 2t 2 cos = ) cos ( )sin ( 3t -2t 2 3t -2t 2 ) ) sin 52t cos 2t cos 52t sin 2t = tan 71. (a) D = 3t +2t 2 3t +2t 2 tan 52t 5t t cot = 2 2 tan t 2 2 sin 2 1 72. (a) 6- 2 4 4. 5. (a) - sin x (b) tan x 6. - 2- 2 2 x 7. equivalent; cot - cot x = csc x 2 33 8. (a) 65 (b) - 32 (b) » 35 ft 63 16 (d) quadrant II (b) V = a sin 2πω t and I = b sin 2πω t W = VI = (a sin 2πωt )(b sin 2πωt ) = ab sin 2 2πωt 9. (a) - (b) - cos 2 A = 1- 2sin 2 A cos 2 A -1 = -2sin 2 A 1- cos 2 A , so 2 W = ab sin 2 2πωt = ab ⋅ 7 25 24 25 (c) 24 7 (d) 5 5 2sin 2 A = 1- cos 2 A (e) 2 1- cos 2 (2πωt ) 2 1- cos 4πωt = ab ⋅ 2 2π 2π 1 1 Thus, the period of V is = = ⋅ , b 4πω 2 ω which is one-half the period of the voltage. Additional answers will vary. Chapter 5 Test 7 7 24 ;tan = - ;cot = - ; 25 24 7 25 25 sec = ;csc = 24 7 1. sin = - 56 65 (c) . sin 2 A = 87 10. Verify sec2 B = 1 is an identity. 1- sin 2 B Work with the right side. 1 1 = = sec2 B 2 1- sin B cos 2 B cot A - tan A is an identity. csc A sec A Work with the right side. cos A sin A cot A - tan A sin A cos A = sin A cos A ⋅ æ 1 öæ csc A sec A ÷÷çç 1 ÷÷ö sin A cos A çç ÷ç cos A ÷ø èç sin A øè 11. Verify cos 2 A = 2. cos 3. -1 Copyright © 2013 Pearson Education, Inc. = cos 2 A - sin 2 A = cos 2 A 88 Chapter 5 Trigonometric Identities æπ ö 15. (a) V = 163cos çç - ω t ÷÷÷ . çè 2 ø sin 2 x = tan x is an identity. cos 2 x + 1 sin 2 x 2sin x cos x = cos 2 x + 1 2 cos 2 x -1 + 1 12. Verify ( = ) 2sin x cos x 2 2 cos x = (b) 163 volts; sin x = tan x cos x 2 13. Verify tan 2 x - sin 2 x = ( tan x sin x) is an identity. tan 2 x - sin 2 x = = = sin 2 x cos 2 x - sin 2 x sin 2 x - sin 2 x cos 2 x ( cos 2 x sin 2 x 1- cos 2 x cos 2 x ) = sin 2 x sin 2 x cos 2 x 2 = tan 2 x sin 2 x = ( tan x sin x ) tan x - cot x = 2sin 2 x -1 is an tan x + cot x identity. sin x cos x tan x - cot x cos x sin x = tan x + cot x sin x + cos x cos x sin x sin x cos x x sin x ⋅ cos x sin x cos = sin x cos x cos x sin x + cos x sin x 14. Verify = sin 2 x - cos 2 x sin 2 + cos 2 x = sin 2 x - cos 2 x ( = sin 2 x - 1- sin 2 x ) = 2sin 2 x -1 Copyright © 2013 Pearson Education, Inc. 1 sec 240