Cálculo del coeficiente de transmisión térmica (Uf) Ventana y Puerta

Anuncio
Cálculo del coeficiente de transmisión
térmica (Uf)
Ventana y Puerta Corrediza M-Cinco (Lateral) –
Mediterránea RPT
Cliente:
Cálculos realizados por
Fecha:
Alcemar
Technoform BAUTEC Ibérica, s.l.
Laia Cardona
Tel: +34 93 238 64 38/ Fax: +34 93 415 40 37
Email: tb-es@technoform.es
09.03.2006
Resultados
Corredera cerco y hoja interior corta
mediante BISCO según norma EN
ISO 10077-2:2003
Corredera cerco y hoja interior corta
mediante RADCON con “Know-How”
TECHNOFORM
Uf = 5,95 W/m2K
Uf = 4,57 W/m2K
En este informe se detemina el coeficiente de transmisión térmica (Uf) mediante dos
métodos de cálculo diferentes:
A) Aplicando la norma EN ISO 10077-2:2003, y usando el software “BISCO” de la
empresa Physibel.
1
B) Aplicando un método própio, “know-how” de Technoform, dónde se usa el
software “RADCON”- también propiedad de Physibel - y el valor final equivale
aproximadamente al resultado en el test de cálculo de nuestra HOT-BOX (La
diferencia es de un 5%) según norma ISO/FDIS 12567:2000.
Contenido
•
Dibujo sistema
A) mediante BISCO según norma EN ISO 10077-2:2003
•
•
•
•
•
Input – data BISCO
Output – data BISCO
Cálculo del coeficiente de transmisión térmica (Uf)
Isotermas
Flujo de calor
B) mediante RADCON con “Know-How” TECHNOFORM
•
•
•
Input – data RADCON
Output – data RADCON
Cálculo del coeficiente de transmisión térmica (Uf)
Dibujo sistema
2
A) mediante BISCO según norma EN ISO 10077-2:2003
Input – data BISCO
Col. Name
Type
CEN-rule
8
24
28
44
60
67
119
135
151
167
170
174
214
215
216
217
218
219
220
221
222
223
224
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
BC_SIMPL
BC_SIMPL
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
HE
HI_NORML
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
aluminium
aluminium
insulation
polyamid reinf.
EPDM
PVC flexible
temp. sensor 1
temp. sensor 2
temp. sensor 3
temp. sensor 4
exterior
interior (norma
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
Coupled
lambda
[W/mK]
160.000
160.000
0.035
0.300
0.250
0.140
160.000
160.000
160.000
160.000
eps
[-]
t
h
[°C] [W/m²K]
0.0
20.0
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
25.00
7.70
0.107
0.122
0.139
0.098
0.065
0.053
0.128
0.050
0.042
0.115
0.041
3
225
240
242
247
250
251
252
253
Col.
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
(CEN)
(CEN)
(CEN)
<7x7 mm2
<4x4 mm2
<3x3 mm2
<2x2 mm2
<1x1 mm2
q
[W/m²]
8
24
28
44
60
67
119
135
151
167
170
174
214
215
216
217
218
219
220
221
222
223
224
225
240
242
247
250
251
252
253
EQUIMAT
EQUIMAT
EQUIMAT
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
ta
hc
[°C] [W/m²K]
CEN_VF_I
CEN_VF_E
CEN_VF_E
qc
[W/m]
NO
NO
NO
0.113
0.098
0.094
0.046
0.037
0.034
0.031
0.028
tr
[°C]
C1
[-]
C2
[-]
C3
[-]
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0.333333
0
0
Calculation parameters
Contour approximation margin (triangulation) = 0 pixels
Iteration cycles = 5
Recalculation of CEN values (before each iteration cycle)
Maximum number of iterations (per iteration cycle) = 10000
Maximum temperature difference = 0.0001°C
Max. heat flow divergence for total object = 0.001 %
Max. heat flow divergence for any node = 1 %
Output – data BISCO
Col. Name
8
24
28
aluminium
aluminium
insulation
Type
MATERIAL
MATERIAL
MATERIAL
tmin
[°C]
0.26
0.31
1.10
tmax
[°C]
12.91
12.87
16.35
ta
[°C]
flow in
[W/m]
flow out
[W/m]
4
44
60
67
119
135
151
167
170
174
214
215
216
217
218
219
220
221
222
223
224
225
240
242
247
250
251
252
253
polyamid reinf.
EPDM
PVC flexible
temp. sensor 1
temp. sensor 2
temp. sensor 3
temp. sensor 4
exterior
interior (norma
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity (CEN)
cavity <7x7 mm2
cavity <4x4 mm2
cavity <3x3 mm2
cavity <2x2 mm2
cavity <1x1 mm2
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
BC_SIMPL
BC_SIMPL
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
0.34
1.76
0.22
8.79
8.51
12.86
12.89
0.21
8.51
8.45
0.37
8.35
0.35
0.31
12.72
2.63
2.55
12.80
2.60
2.56
2.50
8.72
0.21
0.27
0.28
1.92
2.48
0.34
12.82
13.93
8.51
8.79
8.51
12.87
12.89
8.52
16.35
8.73
8.45
8.81
8.41
0.37
12.87
12.79
2.73
12.85
12.81
2.62
12.91
10.69
0.37
8.52
13.30
13.63
12.95
12.82
0.00
22.44
22.44
0.00
5
Cálculo del coeficiente de transmisión térmica (Uf)
THERMAL TRANSMITTANCE ACCORDING TO prEN 10077-2
Theory
The thermal transmittance of a frame according to PrEN 10077-2:
Uf =
L2 D − U p * l p
lf
and
with:
q l , tot
∆θ
Uf : thermal transmittance of the window frame [W/m2K]
Up :
lp :
lf :
L2D :
ql,tot
:
∆θ :
Calculation
input data:
L2D =
thermal transmittance of the flanking panel [W/m2K]
projected width of the flanking panel [m]
projected width of the window frame [m]
two-dimensional coupling coefficient [W/mK]
total heat flow through the window frame and the flanking panel [W/m]
temperature difference between inside (θi) and outside (θe) [K]
Item:
ql,tot
= 22,440 W/m
θe =
0,0
o
C
Rse =
0,04 m2K/W
Rsi =
0,13 m2K/W
L2D =
1,12 W/mK
θi =
20,0 oC
di = 0,0190 m
λi = 0,035 W/m*K
Up =
lp =
1,403 W/m2K
0,190 m
calculation results:
lf = 0,1437 m
Uf =
input data using the Physibel Software
BISCO
ql,tot
:
alphanumeric output BISKO
heat losses per boundary condition
input data, surface boundary conditions:
∆θ :
inside temperature minus outside temperature
Up :
calculation, using the following formula:
U
p
with:
 1
di
1 
=
+∑
+
λ i h i 
 he
he / hi
di
λi
5,95 W/m2K
−1
ext./int. surface heat transfer coeff.
[W/m2K]
thickness of layer i [m]
thermal conductivity of layer i [W/mK]
lp / lf
:
input data: dimensions of the item
PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842
6
Isotermas
7
Flujo de calor
8
B) mediante RADCON con “Know-How” TECHNOFORM
Input – data RADCON
Col. Name
Type
8
24
28
44
60
67
119
135
151
156
167
170
174
182
190
214
215
216
217
218
219
220
221
222
223
224
225
240
242
247
250
251
252
253
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
BC_SKY
BC_SKY
BC_SKY
BC_SKY
BC_FREE
BC_FREE
BC_FREE
BC_FREE
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
Col.
8
24
28
44
60
67
119
135
151
156
167
170
174
182
190
aluminium
aluminium epsil
insulation
polyamid reinf.
EPDM
PVC flexible
temp. sensor 1
temp. sensor 2
temp. sensor 3
insulation far
temp. sensor 4
exterior
interior 1
interior 2
interior 3
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity <7x7 mm2
cavity <4x4 mm2
cavity <3x3 mm2
cavity <2x2 mm2
cavity <1x1 mm2
q
[W/m²]
0
0
0
0
ta
hc
[°C] [W/m²K]
0.0
20.0
20.0
20.0
12.00
2.50
2.88
3.22
CEN-rule
Coupled
NIHIL
NIHIL
NIHIL
NIHIL
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_I
CEN_VF_E
CEN_VF_E
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
qc
[W/m]
tr
[°C]
lambda
[W/mK]
160.000
160.000
0.035
0.300
0.250
0.140
160.000
160.000
160.000
0.035
160.000
eps
[-]
0.90
0.30
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.064
0.053
0.118
0.050
0.043
0.105
0.040
0.104
0.098
0.092
0.046
0.037
0.034
0.031
0.028
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
C1
[-]
C2
[-]
t
h
[°C] [W/m²K]
C3
[-]
0.0
20.0
20.0
20.0
9
214
215
216
217
218
219
220
221
222
223
224
225
240
242
247
250
251
252
253
0
0
0
0
1.59
1.95
1.17
2.07
0
0
0
0
0.0249
0.0245
0.0249
0.0245
0.0242
0.0252
0.0248
0.0244
0.0252
0.0248
0.0244
0.0248
0.025
0.0242
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.25
0.25
0.25
0.25
0.25
0.25
0.333333
0.25
0.25
0.333333
0.25
0.333333
0.25
0.25
Calculation parameters
Contour approximation margin (triangulation) = 0 pixels
Iteration cycles = 5
Nonlinear radiation
Recalculation of CEN values (before each iteration cycle)
Smallest accepted viewfactor = 0.001
Number of visibility rays between radiative surfaces = 100
Black radiation heat transfer coeff. (linear radiation) = 5.25 W/m²K
Maximum number of iterations (per iteration cycle) = 10000
Maximum temperature difference = 0.0001°C
Max. heat flow divergence for total object = 0.001 %
Max. heat flow divergence for any node = 1 %
10
Output – data RADCON
Col. Name
Type
8
24
28
44
60
67
119
135
151
156
167
170
174
182
190
214
215
216
217
218
219
220
221
222
223
224
225
240
242
247
250
251
252
253
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
BC_SKY
BC_SKY
BC_SKY
BC_SKY
BC_FREE
BC_FREE
BC_FREE
BC_FREE
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
EQUIMAT
MATERIAL
MATERIAL
MATERIAL
MATERIAL
MATERIAL
aluminium
aluminium epsil
insulation
polyamid reinf.
EPDM
PVC flexible
temp. sensor 1
temp. sensor 2
temp. sensor 3
insulation far
temp. sensor 4
exterior
interior 1
interior 2
interior 3
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity
cavity <7x7 mm2
cavity <4x4 mm2
cavity <3x3 mm2
cavity <2x2 mm2
cavity <1x1 mm2
tmin
[°C]
0.62
0.67
1.68
0.70
2.73
0.66
9.08
8.82
12.97
1.68
13.02
0.49
13.77
12.90
8.81
8.78
0.73
8.71
0.72
0.67
12.83
3.65
3.59
12.92
3.62
3.59
3.53
9.02
0.49
0.67
0.65
2.90
3.49
0.70
tmax
[°C]
13.03
12.98
16.30
12.95
13.81
8.81
9.08
8.82
12.97
16.40
13.02
8.81
16.40
13.77
12.90
9.03
8.79
9.09
8.75
0.73
12.98
12.92
3.75
12.98
12.94
3.64
13.03
10.98
0.73
8.83
13.30
13.63
13.08
12.95
ta
[°C]
flow in
[W/m]
flow out
[W/m]
8.90
4.67
8.91
4.61
0.10
5.12
5.36
7.73
0.01
0.54
0.02
0.85
18.32
0.00
0.00
0.00
0.01
0.54
0.02
0.85
11
Cálculo del coeficiente de transmisión térmica (Uf)
THERMAL TRANSMITTANCE ACCORDING TO prEN 10077-2
Theory
The thermal transmittance of a frame according to PrEN 10077-2:
Uf =
L2 D − U p * l p
lf
and
with:
q l , tot
∆θ
Uf : thermal transmittance of the window frame [W/m2K]
Up :
lp :
lf :
L2D :
ql,tot
:
∆θ :
Calculation
input data:
L2D =
thermal transmittance of the flanking panel [W/m2K]
projected width of the flanking panel [m]
projected width of the window frame [m]
two-dimensional coupling coefficient [W/mK]
total heat flow through the window frame and the flanking panel [W/m]
temperature difference between inside (θi) and outside (θe) [K]
Item:
ql,tot
= 18,320 W/m
θe =
0,0
o
C
Rse =
0,06 m2K/W
Rsi =
0,13 m2K/W
L2D =
0,92 W/mK
θi =
20,0 oC
di = 0,0190 m
λi = 0,035 W/m*K
Up =
lp =
1,365 W/m2K
0,190 m
calculation results:
lf = 0,1437 m
Uf =
input data using the Physibel Software
BISCO
ql,tot
:
alphanumeric output BISKO
heat losses per boundary condition
input data, surface boundary conditions:
∆θ :
inside temperature minus outside temperature
Up :
calculation, using the following formula:
U
p
with:
 1
di
1 
=
+∑
+
λ i h i 
 he
he / hi
di
λi
4,57 W/m2K
−1
ext./int. surface heat transfer coeff.
[W/m2K]
thickness of layer i [m]
thermal conductivity of layer i [W/mK]
lp / lf
input data: dimensions of the item
:
PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842
12
Descargar