Cálculo del coeficiente de transmisión térmica (Uf) Ventana y Puerta Corrediza M-Cinco (Lateral) – Mediterránea RPT Cliente: Cálculos realizados por Fecha: Alcemar Technoform BAUTEC Ibérica, s.l. Laia Cardona Tel: +34 93 238 64 38/ Fax: +34 93 415 40 37 Email: tb-es@technoform.es 09.03.2006 Resultados Corredera cerco y hoja interior corta mediante BISCO según norma EN ISO 10077-2:2003 Corredera cerco y hoja interior corta mediante RADCON con “Know-How” TECHNOFORM Uf = 5,95 W/m2K Uf = 4,57 W/m2K En este informe se detemina el coeficiente de transmisión térmica (Uf) mediante dos métodos de cálculo diferentes: A) Aplicando la norma EN ISO 10077-2:2003, y usando el software “BISCO” de la empresa Physibel. 1 B) Aplicando un método própio, “know-how” de Technoform, dónde se usa el software “RADCON”- también propiedad de Physibel - y el valor final equivale aproximadamente al resultado en el test de cálculo de nuestra HOT-BOX (La diferencia es de un 5%) según norma ISO/FDIS 12567:2000. Contenido • Dibujo sistema A) mediante BISCO según norma EN ISO 10077-2:2003 • • • • • Input – data BISCO Output – data BISCO Cálculo del coeficiente de transmisión térmica (Uf) Isotermas Flujo de calor B) mediante RADCON con “Know-How” TECHNOFORM • • • Input – data RADCON Output – data RADCON Cálculo del coeficiente de transmisión térmica (Uf) Dibujo sistema 2 A) mediante BISCO según norma EN ISO 10077-2:2003 Input – data BISCO Col. Name Type CEN-rule 8 24 28 44 60 67 119 135 151 167 170 174 214 215 216 217 218 219 220 221 222 223 224 MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL BC_SIMPL BC_SIMPL EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT HE HI_NORML CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I aluminium aluminium insulation polyamid reinf. EPDM PVC flexible temp. sensor 1 temp. sensor 2 temp. sensor 3 temp. sensor 4 exterior interior (norma cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) Coupled lambda [W/mK] 160.000 160.000 0.035 0.300 0.250 0.140 160.000 160.000 160.000 160.000 eps [-] t h [°C] [W/m²K] 0.0 20.0 NO NO NO NO NO NO NO NO NO NO NO 25.00 7.70 0.107 0.122 0.139 0.098 0.065 0.053 0.128 0.050 0.042 0.115 0.041 3 225 240 242 247 250 251 252 253 Col. cavity cavity cavity cavity cavity cavity cavity cavity (CEN) (CEN) (CEN) <7x7 mm2 <4x4 mm2 <3x3 mm2 <2x2 mm2 <1x1 mm2 q [W/m²] 8 24 28 44 60 67 119 135 151 167 170 174 214 215 216 217 218 219 220 221 222 223 224 225 240 242 247 250 251 252 253 EQUIMAT EQUIMAT EQUIMAT MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL ta hc [°C] [W/m²K] CEN_VF_I CEN_VF_E CEN_VF_E qc [W/m] NO NO NO 0.113 0.098 0.094 0.046 0.037 0.034 0.031 0.028 tr [°C] C1 [-] C2 [-] C3 [-] 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0 0 Calculation parameters Contour approximation margin (triangulation) = 0 pixels Iteration cycles = 5 Recalculation of CEN values (before each iteration cycle) Maximum number of iterations (per iteration cycle) = 10000 Maximum temperature difference = 0.0001°C Max. heat flow divergence for total object = 0.001 % Max. heat flow divergence for any node = 1 % Output – data BISCO Col. Name 8 24 28 aluminium aluminium insulation Type MATERIAL MATERIAL MATERIAL tmin [°C] 0.26 0.31 1.10 tmax [°C] 12.91 12.87 16.35 ta [°C] flow in [W/m] flow out [W/m] 4 44 60 67 119 135 151 167 170 174 214 215 216 217 218 219 220 221 222 223 224 225 240 242 247 250 251 252 253 polyamid reinf. EPDM PVC flexible temp. sensor 1 temp. sensor 2 temp. sensor 3 temp. sensor 4 exterior interior (norma cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity (CEN) cavity <7x7 mm2 cavity <4x4 mm2 cavity <3x3 mm2 cavity <2x2 mm2 cavity <1x1 mm2 MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL BC_SIMPL BC_SIMPL EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL 0.34 1.76 0.22 8.79 8.51 12.86 12.89 0.21 8.51 8.45 0.37 8.35 0.35 0.31 12.72 2.63 2.55 12.80 2.60 2.56 2.50 8.72 0.21 0.27 0.28 1.92 2.48 0.34 12.82 13.93 8.51 8.79 8.51 12.87 12.89 8.52 16.35 8.73 8.45 8.81 8.41 0.37 12.87 12.79 2.73 12.85 12.81 2.62 12.91 10.69 0.37 8.52 13.30 13.63 12.95 12.82 0.00 22.44 22.44 0.00 5 Cálculo del coeficiente de transmisión térmica (Uf) THERMAL TRANSMITTANCE ACCORDING TO prEN 10077-2 Theory The thermal transmittance of a frame according to PrEN 10077-2: Uf = L2 D − U p * l p lf and with: q l , tot ∆θ Uf : thermal transmittance of the window frame [W/m2K] Up : lp : lf : L2D : ql,tot : ∆θ : Calculation input data: L2D = thermal transmittance of the flanking panel [W/m2K] projected width of the flanking panel [m] projected width of the window frame [m] two-dimensional coupling coefficient [W/mK] total heat flow through the window frame and the flanking panel [W/m] temperature difference between inside (θi) and outside (θe) [K] Item: ql,tot = 22,440 W/m θe = 0,0 o C Rse = 0,04 m2K/W Rsi = 0,13 m2K/W L2D = 1,12 W/mK θi = 20,0 oC di = 0,0190 m λi = 0,035 W/m*K Up = lp = 1,403 W/m2K 0,190 m calculation results: lf = 0,1437 m Uf = input data using the Physibel Software BISCO ql,tot : alphanumeric output BISKO heat losses per boundary condition input data, surface boundary conditions: ∆θ : inside temperature minus outside temperature Up : calculation, using the following formula: U p with: 1 di 1 = +∑ + λ i h i he he / hi di λi 5,95 W/m2K −1 ext./int. surface heat transfer coeff. [W/m2K] thickness of layer i [m] thermal conductivity of layer i [W/mK] lp / lf : input data: dimensions of the item PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842 6 Isotermas 7 Flujo de calor 8 B) mediante RADCON con “Know-How” TECHNOFORM Input – data RADCON Col. Name Type 8 24 28 44 60 67 119 135 151 156 167 170 174 182 190 214 215 216 217 218 219 220 221 222 223 224 225 240 242 247 250 251 252 253 MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL BC_SKY BC_SKY BC_SKY BC_SKY BC_FREE BC_FREE BC_FREE BC_FREE EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL Col. 8 24 28 44 60 67 119 135 151 156 167 170 174 182 190 aluminium aluminium epsil insulation polyamid reinf. EPDM PVC flexible temp. sensor 1 temp. sensor 2 temp. sensor 3 insulation far temp. sensor 4 exterior interior 1 interior 2 interior 3 cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity <7x7 mm2 cavity <4x4 mm2 cavity <3x3 mm2 cavity <2x2 mm2 cavity <1x1 mm2 q [W/m²] 0 0 0 0 ta hc [°C] [W/m²K] 0.0 20.0 20.0 20.0 12.00 2.50 2.88 3.22 CEN-rule Coupled NIHIL NIHIL NIHIL NIHIL CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_I CEN_VF_E CEN_VF_E NO NO NO NO NO NO NO NO NO NO NO NO NO NO qc [W/m] tr [°C] lambda [W/mK] 160.000 160.000 0.035 0.300 0.250 0.140 160.000 160.000 160.000 0.035 160.000 eps [-] 0.90 0.30 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.064 0.053 0.118 0.050 0.043 0.105 0.040 0.104 0.098 0.092 0.046 0.037 0.034 0.031 0.028 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 C1 [-] C2 [-] t h [°C] [W/m²K] C3 [-] 0.0 20.0 20.0 20.0 9 214 215 216 217 218 219 220 221 222 223 224 225 240 242 247 250 251 252 253 0 0 0 0 1.59 1.95 1.17 2.07 0 0 0 0 0.0249 0.0245 0.0249 0.0245 0.0242 0.0252 0.0248 0.0244 0.0252 0.0248 0.0244 0.0248 0.025 0.0242 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.25 0.25 0.25 0.25 0.25 0.25 0.333333 0.25 0.25 0.333333 0.25 0.333333 0.25 0.25 Calculation parameters Contour approximation margin (triangulation) = 0 pixels Iteration cycles = 5 Nonlinear radiation Recalculation of CEN values (before each iteration cycle) Smallest accepted viewfactor = 0.001 Number of visibility rays between radiative surfaces = 100 Black radiation heat transfer coeff. (linear radiation) = 5.25 W/m²K Maximum number of iterations (per iteration cycle) = 10000 Maximum temperature difference = 0.0001°C Max. heat flow divergence for total object = 0.001 % Max. heat flow divergence for any node = 1 % 10 Output – data RADCON Col. Name Type 8 24 28 44 60 67 119 135 151 156 167 170 174 182 190 214 215 216 217 218 219 220 221 222 223 224 225 240 242 247 250 251 252 253 MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL BC_SKY BC_SKY BC_SKY BC_SKY BC_FREE BC_FREE BC_FREE BC_FREE EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT EQUIMAT MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL aluminium aluminium epsil insulation polyamid reinf. EPDM PVC flexible temp. sensor 1 temp. sensor 2 temp. sensor 3 insulation far temp. sensor 4 exterior interior 1 interior 2 interior 3 cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity cavity <7x7 mm2 cavity <4x4 mm2 cavity <3x3 mm2 cavity <2x2 mm2 cavity <1x1 mm2 tmin [°C] 0.62 0.67 1.68 0.70 2.73 0.66 9.08 8.82 12.97 1.68 13.02 0.49 13.77 12.90 8.81 8.78 0.73 8.71 0.72 0.67 12.83 3.65 3.59 12.92 3.62 3.59 3.53 9.02 0.49 0.67 0.65 2.90 3.49 0.70 tmax [°C] 13.03 12.98 16.30 12.95 13.81 8.81 9.08 8.82 12.97 16.40 13.02 8.81 16.40 13.77 12.90 9.03 8.79 9.09 8.75 0.73 12.98 12.92 3.75 12.98 12.94 3.64 13.03 10.98 0.73 8.83 13.30 13.63 13.08 12.95 ta [°C] flow in [W/m] flow out [W/m] 8.90 4.67 8.91 4.61 0.10 5.12 5.36 7.73 0.01 0.54 0.02 0.85 18.32 0.00 0.00 0.00 0.01 0.54 0.02 0.85 11 Cálculo del coeficiente de transmisión térmica (Uf) THERMAL TRANSMITTANCE ACCORDING TO prEN 10077-2 Theory The thermal transmittance of a frame according to PrEN 10077-2: Uf = L2 D − U p * l p lf and with: q l , tot ∆θ Uf : thermal transmittance of the window frame [W/m2K] Up : lp : lf : L2D : ql,tot : ∆θ : Calculation input data: L2D = thermal transmittance of the flanking panel [W/m2K] projected width of the flanking panel [m] projected width of the window frame [m] two-dimensional coupling coefficient [W/mK] total heat flow through the window frame and the flanking panel [W/m] temperature difference between inside (θi) and outside (θe) [K] Item: ql,tot = 18,320 W/m θe = 0,0 o C Rse = 0,06 m2K/W Rsi = 0,13 m2K/W L2D = 0,92 W/mK θi = 20,0 oC di = 0,0190 m λi = 0,035 W/m*K Up = lp = 1,365 W/m2K 0,190 m calculation results: lf = 0,1437 m Uf = input data using the Physibel Software BISCO ql,tot : alphanumeric output BISKO heat losses per boundary condition input data, surface boundary conditions: ∆θ : inside temperature minus outside temperature Up : calculation, using the following formula: U p with: 1 di 1 = +∑ + λ i h i he he / hi di λi 4,57 W/m2K −1 ext./int. surface heat transfer coeff. [W/m2K] thickness of layer i [m] thermal conductivity of layer i [W/mK] lp / lf input data: dimensions of the item : PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842 12