Capítulo 4. Resultados y Análisis de Resultados Después de hacer una revisión bibliográfica acerca de la conductividad térmica, se procedió a realizar un diagnóstico a la unidad experimental existente en el laboratorio de Transferencia de Calor de la UNET, obteniendo que la misma presenta fallas operativas, las cuales se mencionan a continuación: 1. El espacio anular donde se deposita el líquido a estudiar es mayor a 0.5 mm, lo que hace que el líquido presente coeficiente convectivo, es decir, no puede considerarse como un sólido, por lo que la conductividad térmica obtenida a partir del experimento no es correcta. 2. El diámetro de los agujeros donde se hacen las mediciones de temperatura son mayores al del termopar, lo que hace que no sea preciso el valor leído, lo que influye directamente en los cálculos a realizarse para obtener la conductividad térmica. 3. La potencia generada por el elemento calefactor no es la suficiente para generar altas diferencias de temperatura, esto acompañado a que el espacio anular por donde circula el agua de refrigeración, no permite que se desarrolle un coeficiente de convección alto, lo que influye en la velocidad con la que se extrae el calor generado por la resistencia eléctrica. 4. El potenciómetro de esta unidad se encuentra en mal estado. Luego de diagnosticar el equipo del laboratorio, se procedió a hacer una revisión bibliográfica para saber cuál es la geometría más adecuada para cumplir con el objetivo de este proyecto, se encontró información sobre estudios que se han realizado anteriormente para determinar la conductividad térmica en algunos líquidos. Según un informe del Laboratorio de Propiedades Termofísicas del Centro Nacional de Metrología (2009), uno de los métodos aplicables a fluidos viscosos consiste en una pequeña barra de conductor eléctrico que pasa a través de un tubo horizontal que se llena con el líquido a probar. El tubo se sumerge en un baño a temperatura constante. La resistencia del alambre se calibra contra su temperatura. Para cierta tasa de entrada de calor y para la temperatura del alambre obtenida de la medida de la resistencia, la conductividad puede calcularse usando ecuaciones apropiadas. Al revisar los resultados obtenidos con ese método y comparándolo con los que se obtuvieron con el empleo de cilindros concéntricos, se encontró que son más precisos y exactos los que se hallaron usando el arreglo de cilindros concéntricos, por lo tanto en esta investigación se aplica este método. Para el diseño de la propuesta planteada, se tomó como referencia el equipo existente en el laboratorio de transferencia de calor, a partir del esquema que se muestra en la Tabla 14, en el cual se establece un flujo de calor en la dirección radial, éste se evalúa mediante la Ecuación 4, definida en el capítulo 2. En la parte central del cilindro interno de aluminio, se encuentra un elemento calefactor, formado por una resistencia eléctrica tipo cartucho, sobre la cara superficial del cilindro externo de aluminio, se tiene un flujo de agua refrigerante, que mantiene dicha superficie a una temperatura baja. Las caras superior e inferior del arreglo se encuentran aislados térmicamente con una lámina de asbesto, considerando de esta manera que las pérdidas de calor en la dirección axial son despreciables; por lo que se asume que el calor que se genera fluye radialmente por el arreglo de cilindros hacia el depósito térmico, tal y como se indica. La película del líquido en estudio se encuentra en el espacio anular entre ambos cilindros, a determinados radios se instalaràn dos sensores de temperatura los cuales estarán dispuestos a la menor distancia posible de la pared en contacto con el fluido a evaluar, para obtener valores más precisos. Cilindro Interior Película de Líquido Cilindro Exterior Refrigerante Fuente de Calor Figura 14. Esquema de la propuesta planteada Criterios de diseño Los principales criterios aplicados en el diseño y la construcción del dispositivo para evaluar la conductividad térmica de líquidos son los siguientes: La unidad experimental deberá funcionar bajo la condición de estado estable en la que no habrá cambio en la cantidad de energía almacenada, para esto se diseñará un sistema de enfriamiento. El estudio del líquido se debe realizar en una película muy delgada de fluido ya que en películas gruesas se origina convección libre, por esto el espacio anular entre los cilindros concéntricos será de 0,5mm. La entrada y salida del agua de enfriamiento deberá ser uniforme para evitar la formación de remolinos que puedan causar perturbación en la medición de la conductividad térmica, es por ello que se dispondrá de la misma cantidad de agujeros para la entrada y salida del agua del volumen de control. La unidad experimental deberá ser didáctica y de fácil desarme, para que el instructor en cada práctica pueda explicar cada uno de los componentes del equipo y luego ensamblar adecuadamente, es por ello que para el ensamble del equipo se dispondrá deguías, que permitirán el ajuste adecuado de la unidad. Esto también facilitará el mantenimiento. La distancia entre los agujeros para medir la temperatura deberá ser adecuada para así obtener buenos resultados cuando se realicen los cálculos pertinentes. En el diseño se incluirá un cilindro transparente el cual permitirá observar el paso del agua de refrigeración. Se dispondrá de una serie de O-ring para evitar fugas, tanto del líquido de estudio como del agua de refrigeración. El calor generado por la resistencia eléctrica que se encuentra en contacto con el cilindro interno, permitirá manejar un rango de temperatura entre 20°C y 100°C. Diseño y Construcción de la Unidad Experimental Para saber la potencia que se requiere para conseguir el principal objetivo de esta investigación fueron realizados los cálculos pertinentes, utilizando las ecuaciones que rigen el proceso de transferencia de calor por conducción y convección, definidas en el Capítulo 2. Primero se seleccionó el material a utilizar para la construcción del equipo, al analizar costos y propiedades térmicas de diversos metales, se decidió que el Aluminio sería el material a usar, ya que posee alta conductividad térmica, y además estaba disponible en los laboratorios de la universidad. Conociendo las propiedades térmicas de dicho material, se procedió a realizar una serie de iteraciones partiendo de la Ecuación 14, hasta conseguir un rango de potencia para lograr una diferencia de temperatura aceptable. Para ello se usó el software EES. Obteniendo también los radios a los que debe colocarse la película del líquido a estudiar. A continuación se muestran los parámetros mencionados. En el Anexo A se muestran las ecuaciones utilizadas y los resultados obtenidos. 20W ≤ Pele ≤ 500 W ri = 0.0245 m ro = 0.025 m Después de realizar los cálculos, se procedió al diseño de la unidad experimental, para comenzar se seleccionó la resistencia eléctrica a usar. Genera una potencia máxima de 500 Vatios a 240 Voltios y es de tipo cartucho. Después se diseñó el circuito eléctrico para variar la potencia generada por dicha resistencia. Éste se muestra en la Figura 15. V Figura 15. Circuito Eléctrico Luego se procedió a dimensionar los cilindros concéntricos, que van a contener el líquido en estudio. En la Figura 16 se muestra el cilindro interno, que contiene la resistencia eléctrica, para ello se hizo una perforación con el diámetro de la misma. El cilindro externo se observa en la Figura 17, éste contiene al interno, entre ellos hay un espacio anular de 0.5 mm, que es donde va contenido el líquido a estudiar. En el cilindro interno será medida la temperatura T1, y en el externo se medirá T2. Las dimensiones de dichos cilindros se observan en el Anexo C. Figura 16. Cilindro interno Figura 17. Cilindro externo El sistema de refrigeración consta de una entrada y una salida de agua, de un cilindro transparente, que permite observar el paso del agua de refrigeración; éste se muestra en la Figura 18; cuatro tapas, dos inferiores y dos superiores, la primera de ellas actúa como una cámara de agua, ver Figura 19, es allí donde se deposita el agua antes de comenzar a ascender por el espacio anular entre el cilindro externo y el cilindro transparente, la segunda tapa es la que da paso al agua para comenzar a ascender, ésta se muestra en la Figura 20. El juego de tapas superior, funciona de la misma manera y sirve de salida al agua de refrigeración. Ver Figura 21 y Figura 22. Este juego de tapas se construyó en Aluminio. Las dimensiones de las cámaras de agua se muestran en el Anexo D, las dimensiones de la tapa inferior y superior se muestran en el Anexo E y las dimensiones del cilindro transparente se muestran en el anexo F. Todas las piezas fueron fabricadas en el Laboratorio de Máquinas y Herramientas de la Universidad Nacional Experimental del Táchira, y se utilizaron los procesos metalmecánicos necesarios para su construcción. Figura 18. Cilindro Transparente Figura 19. Cámara de agua inferior Figura 20.Tapa Inferior Figura 21. Tapa superior Figura 22. Cámara de agua superior Para ensamblar la unidad experimental se dispuso de un juego de cuatro pernos. El ensamble de la unidad se muestra en el Anexo G. Después de ensamblar el dispositivo se procedió a realizar las pruebas experimentales, para esto fueron usados tres líquidos, seleccionados de acuerdo a la información tabulada en la literatura, estos se muestran en la Tabla 3 para el agua, en la Tabla 4 para la glicerina y en la Tabla 5 los datos para el aceite de motor. Tabla 3. Datos Teóricos para el Agua (H2O) Tliq(K) 315 310 305 300 295 290 kliq (W/m.K) 0,634 0,628 0,62 0,613 0,606 0,598 Fuente: Incropera & De Witt (1996). Tabla 4. Datos Teóricos para la Glicerina [C3H5(OH)3] Tliq(K) kliq (W/m.K) 273 0,282 280 0,284 290 0,286 300 0,286 310 0,286 320 0,287 Fuente: Incropera & De Witt (1996). Tabla 5. Datos Teóricos para el Aceite de Motor (sin usar) Tliq(K) kliq (W/m.K) 290 0,145 300 0,145 310 0,145 320 0,143 330 0,141 340 0,139 Fuente: Incropera & De Witt (1996). Datos Experimentales Los datos experimentales obtenidos para el agua, la glicerina y el aceite de motor, se muestran en las Tabla 6, 7 y 8 respectivamente. Tabla 6. Datos Experimentales Obtenidos para el Agua V(V) I(A) T1(°C) T2(°C) 215,00 212,00 194,00 160,00 131,00 110,00 87,00 39,00 1,88 1,83 1,706 1,442 1,208 1,044 0,85 0,4 51,41 50,19 45,88 38,22 32,59 29,18 25,94 21,26 25,01 24,81 24,1 22,86 21,96 21,42 20,92 20,19 Tabla 7. Datos Experimentales Obtenidos para la Glicerina V(V) I(A) 112,09 96,45 88,70 86,75 86,21 72,66 41,30 T1(°C) 1,63 1,52 1,442 1,208 1,044 0,92 0,4 62,4 54,5 50,8 44,3 40,3 30,9 20,1 T2(°C) 34,4 31,7 30,9 28 26,3 20,5 17,3 Tabla 8. Datos Experimentales Obtenidos para el Aceite de Motor (sin usar) V(V) 80,00 69,76 70,46 52,79 20,71 10,28 I(A) 1,53 1,442 1,208 1,044 0,92 0,4 T1(°C) 76,3 67,3 60,7 43,5 28 21,6 T2(°C) 38,7 37,5 35,5 27,3 22,4 20,4 Cálculos para determinar la conductividad térmica de los líquidos a partir de los datos obtenidos Para determinar la conductividad con los datos obtenidos se parte de la Ecuación 11, siguiendo el procedimiento que se muestra a continuación: = = − − , + + , donde = ∙ = 215 ∙ 1,88 = 404,2 , = , = ln(" ⁄" ) 2 ∙ % ∙ & ∙ ' ln(0,0245(⁄0, 0205() 2 ∙ % ∙ 237 ⁄(. , ∙ 0,08( , = 1,535- − 3 ,⁄ , = , = ln(". ⁄"/ ) 2 ∙ % ∙ & ∙ ' ln(0,029(⁄0,025() 2 ∙ % ∙ 237 ⁄(. , ∙ 0,08( , = 1,245- − 3 ,⁄ entonces se tiene que: 404,2 = (51,41 − 25,01)°2 1,535- − 3 ,⁄ + 34 + 1,245- − 3 ,⁄ al despejar 34 se obtiene: 34 = 6,532- − 2 ,⁄ y 34 = ln("/ ⁄" ) 2 ∙ % ∙ &34 ∙ ' 6,532- − 2 ,⁄ = ln(0,025(⁄0,0245() 2 ∙ % ∙ &34 ∙ 0,08( quedando como única incógnita la conductividad térmica del líquido en estudio, al resolver se obtiene: &34 = 0,6153 7 8 (. , A efectos de evaluar la variación de la conductividad térmica con respecto a la temperatura, se establece que cada valor de k calculado corresponde al promedio entre T1 y T2. Por lo tanto: :; < := = 9 > + 273,15 (30) Resultados El anterior procedimiento se repitió para todos los datos obtenidos, los resultados se muestran en la Tabla 9 para el agua, en la Tabla 10 para la glicerina y en la Tabla 11 se observan los resultados obtenidos para el aceite de motor. Tabla 9. Resultados experimentales obtenidos para el Agua Q (W) Tliq (K) kliq (W/m.K) 404,2 311,36 0,615 387,96 310,65 0,614 330,96 308,14 0,611 230,72 303,69 0,604 158,25 300,43 0,599 114,84 298,45 0,595 73,95 296,58 0,592 15,6 293,88 0,587 Tabla 10. Resultados experimentales obtenidos para la Glicerina Q (W) Tliq (K) kliq (W/m.K) 182,7 317,60 0,267 146,6 314,40 0,263 127,9 310,75 0,263 104,8 307,30 0,263 90 301,75 0,263 66,85 293,45 0,263 16,52 281,80 0,241 Tabla 11. Resultados experimentales obtenidos para el Aceite de Motor Q (W) Tm (K) kliq(W/m.K) 122,4 330,65 0,132 100,6 325,55 0,137 85,11 321,25 0,137 55,11 308,55 0,138 19,05 298,35 0,138 4,111 294,15 0,139 Después de realizar las pruebas experimentales se procedió a comparar los resultados experimentales con los datos teóricos, esto se muestra en la Tabla 12 para el agua, en la Tabla 13 para la glicerina y en la Tabla 14 los obtenidos para el aceite de motor, para así obtener un porcentaje de error y poder validar el funcionamiento de la unidad experimental. Tabla 12. Porcentaje de error obtenido para el Agua Tm(K) kliqExp(W/m.K) kliqTeo(W/m.K) %Error 311,36 0,615 0,629 2,18 310,65 0,614 0,629 2,34 308,14 0,611 0,625 2,29 303,69 0,604 0,622 2,93 300,43 0,599 0,613 2,35 298,45 0,595 0,609 2,25 296,58 0,592 0,606 2,29 293,88 0,587 0,599 1,94 Tabla 13. Porcentaje de error obtenido para la Glicerina Tliq (K) kliqExp(W/m.K) kliqTeo(W/m.K) %Error 317,60 0,267 0,287 6,81 314,40 0,263 0,286 8,04 310,75 0,263 0,286 8,04 307,30 0,263 0,286 8,04 301,75 0,263 0,286 8,04 293,45 0,263 0,286 8,04 281,80 0,241 0,284 15,14 Tabla 14. Porcentaje de error obtenido para el Aceite de Motor Tliq (K) kliqExp(W/m.K) kliqTeo(W/m.K) %Error 330,65 0,132 0,140 5,71 325,55 0,137 0,142 3,52 321,25 0,137 0,143 4,20 308,55 0,138 0,145 4,83 298,35 0,138 0,145 4,83 294,15 0,139 0,145 4,14 Ahora se comparan gráficamente los resultados obtenidos con los datos teóricos, esto se observa en la Figura 23 para el agua, en la Figura 24 para la glicerina y en la Figura 25 para el aceite. Kagua(W/m.K) Agua 1,000 0,900 0,800 0,700 0,600 0,500 0,400 0,300 0,200 0,100 0,000 Datos Experimentales Datos Teóricos 300,000305,000310,000315,000 290,000295,000300,000 Tagua (K) Figura 23. Gráfico comparativo de los datos experimentales con los teóricos teóric para el agua Glicerina 0,300 Kglic(W/m.K) 0,250 0,200 0,150 Datos Experimentales 0,100 Datos Teóricos 0,050 0,000 280,000 290,000 300,000 310,000 320,000 Tglic (K) Figura 24. Gráfico comparativo de los datos experimentales con los teóricos para la glicerina Aceite de Motor 0,300 Kaceite(W/m.K) 0,250 0,200 0,150 Datos Experimentales 0,100 Datos Teóricos 0,050 0,000 290,000300,000310,000320,000330,000340,000 Taceite (K) Figura 25. Gráfico comparativo de los datos experimentales con los teóricos para el aceite de motor En las figuras 23 a la 25 puede observarse que los resultados experimentales obtenidos durante el desarrollo de la investigación se comportan de igual manera que los datos teóricos encontrados en la bibliografía, también se ven reflejados los errores porcentuales obtenidos para cada uno de los líquidos. Los resultados obtenidos demuestran que la conductividad térmica varía con la temperatura; se observa que la conductividad térmica del agua aumenta con la temperatura, que para la glicerina esta propiedad permanece casi constante con la variación de la temperatura, y para el aceite disminuye a medida que aumenta la temperatura. Dichos comportamientos son los esperados de acuerdo a lo mostrado en la Figura 6 para los tres líquidos estudiados durante el desarrollo de la investigación.