Digitalización del Sonido

Anuncio
Digitalización del Sonido
Emilia Gómez Gutiérrez
Síntesi i Processament del So I
Departament de Sonologia
Escola Superior de Musica de Catalunya
Curso 2009-2010
emilia.gomez@esmuc.cat
17 de septiembre de 2009
Índice
1. Repaso de conceptos básicos
2
2. Introducción a la digitalización de sonidos
2
3. Muestreo
3.1. Frecuencia de Nyquist . . . . . . . . . . . . . . . . . . . . . . . .
3.2. Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4
5
4. Cuantización
4.1. Ruido de cuantización . . . . . . . . . . . . . . . . . . . . . . . .
6
7
5. Codificación
7
6. Rango dinámico
8
7. Ventajas del formato digital frente al analógico
9
8. Bibliografía
10
9. Cuestiones de autoevaluación y ejercicios
11
1
1.
Repaso de conceptos básicos
El sonido es un fenómeno perceptual que se produce cuando un objeto entra
en vibración mecánica, la cual se traduce a una variación de la presión atmosférica en el aire que envuelve el objeto. La naturaleza de dicha vibración puede ser
periódica o no periódica, o incluso una combinación entre las dos. Las vibraciones periódicas generan, en general, una sensación de altura, y las no periódicas
una sensación de ruido. Los sonidos naturales son casi todos semiperiódicos, es
decir, corresponden a una combinación de vibraciones periódicas y no periódicas.
Estas variaciones se denominan comunmente formas de onda. La duración
de un motivo recurrente de la forma de onda es el período T. El número de
veces que dicho período se repite en un segundo (es decir, la tasa de repetición,
la inversa del período) nos da su frecuencia fundamental f, f = T1 . La frecuencia
fundamental de una onda determina su altura. Si el sonido sólo contiene una
frecuencia, decimos que el sonido es sinusoidal puro. Los sonidos naturales contienen diversas frecuencias, además de la fundamental, que forman un sonido
complejo y da lugar a la percepción del timbre. A las frecuencias adicionales se
les denomina armónicos o parciales, según sea su frecuencia múltiplo o no de la
frecuencia fundamental.
2.
Introducción a la digitalización de sonidos
Ahora veremos en profundidad conceptos relacionados con:
Muestreo (Sampling)
Cuantización (Quantization)
Codificación (Codification)
de señales de audio.
Las vibraciones sonoras pueden ser representadas como señales electrónicas
a través de algunos dispositivos (por ejemplo, un micrófono), que convierte estas vibraciones en una señal de voltaje o tensión dependiente del tiempo. El
resultado de la conversión se denomina señal analógica (analog signal). Las señales analógicas son continuas en el sentido en que consisten en un continuo de
valores.
Una señal analógica puede grabarse en una cinta magnética mediante tecnología electromagnética. Con el fin de reproducir este sonido grabado, la señal es
escaneada y enviada a un altavoz que reproduce las vibraciones del sonido en el
aire. Como vimos anteriormente, los sintetizadores analógicos tienen la función
básica de crear sonidos desde cero utilizando dispositivos electrónicos capaces
de producir este tipo de señales adecuadas para la vibración de los altavoces.
Por lo tanto, las señales analógicas pueden ser manipuladas, grabadas y
amplificadas mediante técnicas analógicas. En la Figura 1 se representa la cadena
de reproducción de audio analógico.
La reproducción analógica, aunque es adecuada para algunas aplicaciones,
posee un defecto claro: cuando una grabación analógica se copia, estamos añadiendo una cantidad imporante de ruido. Por otra parte, cuando amplificamos
una señal, también amplificamos el ruido presente en la misma.
2
Figura 1: Cadena de reproducción de audio analógico
Sin embargo, los ordenadores son máquinas digitales y no analógicas, es
decir, sus operaciones se basan en matemáticas discretas, término opuesto a
continuo. Las entidades son contadas en vez de ser medidas o pesadas, por lo
que los cálculos deben trabajar con números finitos y exactos.
Ejemplo: analogía con el reloj analógico y digital. En el reloj analógico, las
agujas tienen un movimiento continuo, y en el digital los dígitos cambian dando
saltos.
La mayor dificultad en utilizar el ordenador para síntesis de sonido es que
se trabaja sólo en el dominio discreto, mientras que el conocimiento científico
que se tiene sobre el sonido es esencialmente analógico. Es más, los ordenadores
trabajan con números binarios (combinaciones de 0 y 1) en contraste con el
sistema decimal (valores del 0 al 9) que es utilizado en el lenguaje científico.
La unidad mínima de información con la que el ordenador trabaja es el bit, o
binary digit.
3
Para trabajar con sonidos en el ordenador, las señales analógicas tienen
que ser convertidas a formato digital, es decir, el sonido debe ser representado
con números binarios. En el sentido contrario, las señales digitales deben ser
convertidas a formato analógico para escucharlas. Por lo tanto, el ordenador
tiene que tener dos tipos de conversores de datos: convertidor analógico a digital
(ADC) y digital a analógico (DAC).
En la figura 2 se representan los pasos principales de una conversión analógico/digital, proceso que explicaremos a continuación.
Señal digital
Señal analógica
Muestreo
Codificación
Cuantización
10010100111
Figura 2: Pasos para la digitalización de una señal analógica CAD
3.
Muestreo
El bloque de muestreo funciona midiendo la amplitud de la señal continua
a intervalos de igual duración. Cada valor que se mide se denomina muestra (o
sample) de la señal. Esto matemáticamente se puede expresar de la siguiente
manera: muestrear una señal es tomar valores de una señal continua x(t) a
determinados instantes de tiempo tn :
x(t = tn ) = x(n), tn = n · Tm
La distancia temporal o el intervalo de tiempo que hay entre dos muestras
consecutivas se denomina período de muestreo, y se mide en segundos. Su inversa
fm = T1m se denomina frecuencia de muestreo o sampling rate, y se mide en ciclos
por segundo o Hz.
Por lo tanto, en el proceso de muestreo pasamos de una señal continua a un
conjunto de muestras (es decir, puntos discretos en el tiempo).
Es importante muestrear la señal lo suficientemente rápido como para capturar toda la información. El teorema de muestreo, o teorema de Nyquist, demuestra que para representar adecuadamente una sinusoide es necesario tener al
menos dos muestras por cada ciclo de la sinusoide. Por tanto, para representar
adecuadamente un sonido, la frecuencia de muestreo fm tiene que ser mayor,
como mínimo, del doble de la frecuencia más alta contenida en la señal:
fm ≥ 2 · fmaxima
3.1.
Frecuencia de Nyquist
Se denomina frecuencia de Nyquist a la frecuencia más alta que se puede
capturar con una determinada frecuencia de muestreo fm :
fN yquist =
4
fm
2
1
0.8
0.6
0.4
0.2
0
−0.2
−0.4
−0.6
−0.8
−1
0
50
100
150
200
250
300
350
400
450
Figura 3: Señal continua
Los sonidos musicales no contienen información significante por arriba de
10KHz, por lo que 20KHz es una frecuencia de muestreo adecuada. Los reproductores de CD a su vez utilizan una frecuencia de muestreo de 44,1KHz. El
límite superior de audición de una persona joven y sana es de 20KHz, por lo
que podemos decir que los reproductores de CD “exageran” al muestrear.
3.2.
Aliasing
Una onda compleja puede componerse de sinusoides a frecuencias muy altas,
las cuales oscilan tan rápidamente que no son representadas correctamente por
las muestras de la señal, al estar éstas demasiado espaciadas entre sí. A este
fenómenos se le denomina aliasing, y ocurre cuando la señal que se muestrea
tiene componentes de frecuencia que son mayores que la mitad de la frecuencia
de muestreo o frecuencia de Nyquist. Para estas frecuencias no se cumple el
teorema de muestreo y se produce, por lo tanto, este fenómeno.
fm
2
Estas componentes de frecuencia corrompen la señal original introduciendo
componentes que se denominan alias. Este efecto está ilustrado en la Figura 5.
Las frecuencias que aparecen pueden calcularse como
f ≥ fN yquist ; f ≥
fr = fm − fx
siendo fm la frecuencia de muestre y fx la frecuencia de la señal. En el dominio visual se produce el mismo fenómeno bajo el efecto de una luz estroboscópica
o en el cine (e.g. impresión de rotación en el sentido inverso de las ruedas de los
coches).
5
1
0.8
0.6
0.4
0.2
0
−0.2
−0.4
−0.6
−0.8
−1
0
5
10
15
20
25
30
Figura 4: Señal muestreada
Las soluciones posibles para este problema son las siguientes:
Aumentar la frecuencia de muestreo para que esta sea mayor o igual al
doble de la frecuencia máxima de la señal.
Realizar un filtrado de las frecuencias por encima de la frecuencia de Nyquist: estos filtros se denominan filtros antialiasing y son filtros de tipo
paso bajo (Low-Pass Filter)1 .
4.
Cuantización
Una vez la señal muestreada nos encontramos con un conjunto de muestras
o de valores continuos de la amplitud de la señal. La cuantización se realiza
al limitar los posibles valores de amplitud de una señal, definiendo una serie
discreta (no continua) de valores posibles.
El número de posibles valores de amplitud viene determinado por la resolución del convertidor (CAD o CDA). La resolución de los convertidores depende
del tamaño de la palabra que se utiliza para representar cada una de las muestras de la señal. La resolución de un convertidor se mide en número de bits de
la palabra que utiliza, y un convertidor de n bits de resolución cuantizará a
2n valores de la señal. Ejemplo: un sistema con una resolución de 4 bits tendría sólo 16 valores diferentes de señal (24 ), y un sistema de 16 bits tendría
216 = 65536 valores diferentes. Cuanto mayor sea la resolución del convertidor,
mayor precisión tendremos en la representación de la señal.
1 Los
filtros se verán en un tema posterior
6
Figura 5: Ejemplo de aliasing. (a,d,g): señales sinusoidales de entrada de un
ADC. (b,e,h): trenes de impulsos a la frecuencia de nuestreo. (c,f,i): señal reconstruida a la salida del DAC.
4.1.
Ruido de cuantización
El ruido de cuantización aparece en el proceso de cuantización, en el cual
sustituimos la amplitud de la muestra por la amplitud más cercana del conjunto
de valores admitidos. Se define como la diferencia entre la señal muestreada antes
de cuantizar y la señal muestreada cuantizada:
r(n) = x(n) − xc (n)
x(n) sería el valor de la muestra sin cuantizar, xc (n) sería el valor de la muestra cuantizada, y r(n) sería el valor del ruido de cuantización para la muestra
número n. El ruido de cuantización representa la pérdida de calidad de sonido
al cuantizar.
5.
Codificación
El proceso de codificación consiste en asignar un código binario o conjunto
de bits a cada uno de los valores posibles de las muestras de la señal. Hay
muchas posibilidades de realizar este proceso de codificación. Se denomina códec
(abreviatura para codificador/decodificador) es el código específico que se utiliza
para codificar y decodificar datos. El códec incluye parámetros referentes a todo
el proceso de digitalización, indicando cómo se tiene que realizar el proceso de
conversion:
Número de canales: monoaural, binaural o multicanal.
Frecuencia de muestreo.
Resolución: número de bits. Como hemos visto en el punto anterior, cuanto
mayor sea el número de bits que utilicemos, mayor resolución tendremos
y menor ruido de cuantización. Por otra parte, tendremos palabras de un
tamaño mayor, por lo que se tendrá que llegar a un compromiso entre
espacio de almacenamiento y resolución.
Bit rate: velocidad o tasa de transferencia (en bits por segundo).
7
1
0.8
0.6
0.4
0.2
0
−0.2
−0.4
−0.6
−0.8
−1
0
5
10
15
20
25
30
Figura 6: Señal cuantizada
Pérdida: algunos códecs realizan una compresión del sonido, y por tanto
eliminan cierta cantidad de información, y el sonido resultante puede tener
algunas pérdidas.
6.
Rango dinámico
Al establecer del conjunto de valores de una señal que se permiten definimos
también lo que se denomina rango dinámico del proceso de CAD. El rango
dinámico en decibelios se define de la siguiente forma:
RDdB = 10 · log10 (
amplitud2max
)
amplitud2min
Si en un sistema digital consideramos la amplitud máxima como 2n y la
mínima como 1, tendremos que un sistema de conversión de n bits posee un
rango dinámico de:
22 · n
)
1
y esto puede aproximarse con la siguiente fórmula:
RDdB = 10 · log10 (
RDdB = 6 · n
8bits nos daría 48dB y 16bits 96dB.
8
7.
Ventajas del formato digital frente al analógico
La principal ventaja del formato digital frente al analógico es la posibilidad de repetición. Una vez digitalizado, el sonido puede reproducirse y copiarse
exactamente sin pérdida de calidad alguna. Esto no ocurre en el formato analógico, en el que existen pérdidas debido al ruido de reproducción que se van
acumulando con las copias. Esta robustez frente al ruido está ilustrada en la
Figura 7.
Figura 7: (a) Señal analógica representando una serie de bits (0100111101011..).
(b) Señal con ruido de fondo (canal, ondas interferentes, ruido del soporte, etc).
(c) Regeneración de la señal digital. (d) Señal reconstruida.
Por otro lado, existe la ventaja de realizar un procesado digital. El mismo
proceso realizado al mismo sonido digital dará siempre el mismo resultado, ya
que se realizan relaciones matemáticas con los números. En el caso analógico, es
imposible obtener 2 veces el mismo resultado ya que algunos componentes electrónicos son susceptibles de variar dependiendo, por ejemplo, de las condiciones
ambientales.
8.
Bibliografía
Roads, C. 1996. The Computer Music Tutorial, MIT Press, Chapter 1.
Story, M. 1997. A suggested explanation for (some of ) the audible differences between high sample rate and conventional sample rate audio material.
9.
Cuestiones de autoevaluación y ejercicios
1. Enumera los pasos más importantes del proceso de conversión analógico/digital.
9
Figura 8: Proceso de conversión AD y DA.
2. Enumera algunes de les advantatges del format digital respecte analògic.
3. ¿Qué es la frecuencia de muestreo de un sistema de audio digital? ¿Cómo
se elige esta frecuencia? ¿Qué pasa cuando la frecuencia de muestreo viene
dada por las características del sistema y por lo tanto no se puede elegir
libremente (e.g. en un CD)?
4. ¿Qué vol dir aliasing? Explica perquè es produeix i com es pot evitar.
5. Si muestreamos una señal de 26000 Hz con una tasa de 40000 Hz, ¿tendremos aliasing? En caso afirmativo, ¿qué frecuencias aparecerán?.
6. ¿Qué es la resolución de un sistema de audio digital?
7. Investiga qué es el dither.
10
8.
11
Descargar