Date of the CVA Section A. PERSONAL DATA Name and Surname Rafael Molina Monterrubio DNI 50204761Q Researcher's Researcher ID identification number Código Orcid 08/10/2015 Age 38 A1. Current professional situation Institution Consejo Superior de Investigaciones Científicas Dpt. / Centre Crystallography / Instituto de Química Física Rocasolano Address C/ Euskalduna, 1, Portal G, 1ºC, 28021, Madrid Phone (+34) Email xrafael@iqfr.csic.es 606192304 Professional category Investigador Senior Post-Doctoral Start date UNESCO spec. code 240300 - Biochemistry Keywords Structural biology A.2 Academic education (Degrees, institutions, dates) Bachelor/Master/PhD University Programa Oficial de Doctorado en Universidad Complutense de Bioquímica y Biología Molecular Madrid Master en Bioquimica y Biologia Molecular Universidad Complutense de Madrid Licenciado en Bioquimica Universidad Complutense de Madrid 2015 Year 2009 2005 2002 Section B. SUMMARY OF THE CURRICULUM Protein Engineering and Structural Biology of Bacterial Pathogenesis During the PhD stay my research work was dealing with protein characterization and engineering of biotechnologically relevant enzymes as well as with the structural characterization of pneumococcal surface proteins, key players both in virulence processes and in the development of novel combat strategies against antibiotic resistance. Concerning the first topic, my implication on the structural characterization of biotechnologically relevant proteins such as reductases, lipases and esterases, was object of five high quality publications. Concerning the second topic, we characterized a new modular protein, CbpF, (Molina et al., EMBO Reports, 2009) involved in the regulation of the virulence mechanism named fratricide in Streptococcus pneumoniae. In addition, from the methodological point of view, we used a novel series of Gd complexes to develop a new phasing protocol based on the SAD technique (Molina et al., Acta Cryst. Sect. D., 2009 and Stelter et al., Acta Cryst. Sect. D., 2014). Molecular Scissors for in situ cellular repair During my long-term postdoctoral stay at Spanish National Cancer Research Centre I have been involved in the study and development of two types of molecular scissors for genome modification: Homing Endonucleases (HEs) and Transcription Activator-Like Effector Nucleases (TALENs) (project awarded with Juan de la Cierva programme funding). The engineering of protein–DNA interactions in these protein scaffolds has shown the potential of these approaches to create new specific tools for the inactivation or repair of certain target genes. In that sense we analysed the mechanism of target discrimination by the HEs I-CreI along the central substrate region (Molina et al., Nucleic Acids Research, 2012) as well as we visualised, for the first time, all the reaction steps occurring during the DNA cleavage as snapshots revealing the catalytic mechanism of the HEs I-DmoI (Molina et al., Nature Structural & Molecular Biology, 2015). These studies allowed us to redesign new enzymes for therapeutic and biotechnological applications (Molina et al., JBC., 2015). In addition, we also characterised novel HE scaffolds for genome engineering as shown with the HE I-CvuI (Molina et al., JBC, 1 2015). Concerning the novel TALEN systems, we unravelled some key questions in the TALEDNA recognition (Stella et al., Acta Cryst. Sect. D., 2013), recently characterizing a novel DNAbinding domain TALE-related for genome modification: BuD (Molina et al., Acta Cryst. Sect. D., 2014). Microfilaments as a target for developing novel antitumor therapeutic approaches At the Spanish Council Research I am currently working in the structural biology of microfilaments as a target to develop antitumor drugs. Cytoskeletal-directed agents have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of neoplastic cells. However, despite the diversity of cytoskeletal-directed agents available to oncologists, all currently approved cytoskeletal directed agents used in the clinical setting are all microtubule-based drugs, and there has yet to be any microfilament or intermediate filament-directed agents approved for clinical use. My idea is to characterise novel compounds that altering the dynamics of microfilaments induce cytotoxic processes of tumor cells. Section C. MOST RELEVANT MERITS (ordered by typology) C.1. Publications 1 Scientific paper. Rafael Molina; et al. 2015. Crystal structure of the homing endonuclease I-CvuI provides a new template for genome modification. Journal of Biological Chemistry. 2 Scientific paper. Rafael Molina; et al. 2015. Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold. Journal of Biological Chemistry. 290-30, pp.18534-18544. 3 Scientific paper. Afredo De Biasio; et al. 2015. Structure of p15PAF–PCNA complex and implications for clamp sliding during DNA replication and repair. Nature Communications. Nature. 6-6439, pp.1-12. 4 Scientific paper. Rafael Molina; et al. 2015. Visualizing phosphodiester-bond hydrolysis by an endonuclease. Nature Structural & Molecular Biology. Nature. 22-1, pp.65-72. 5 Scientific paper. Rafael Molina; et al. 2014. BuD, a helix–loop–helix DNA-binding domain for genome modification. Acta Crystallographica D. Acta Crystallographica. 70, pp.2042-2052. 6 Scientific paper. Meike Stelter; et al. 2014. A complement to the modern crystallographer’s toolbox: caged gadolinium complexes with versatile binding modes. Acta Crystallographica D. Acta Crystallographica. 70, pp.1506-1516. 7 Scientific paper. Pilar Redondo; et al. 2014. Crystallization and preliminary X-ray diffraction analysis of the homing endonuclease I-CvuI from Chlorella vulgaris in complex with its target DNA. Acta Crystallographica F. Acta Crystallographica. 70, pp.256-259. 8 Scientific paper. Stefano Stella; et al. 2013. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the novel modular DNA-binding protein BurrH in its apo form and in complex with its target DNA. Acta Crystallographica F. Acta Crystallographica. 70, pp.87-91. 9 Scientific paper. Stefano Stella; et al. 2013. The crystal structure of AvrBs3-DNA complex provides new insight into the initial thymine recognition mechanism. Acta Crystallographica D. Acta Crystallographica. 69, pp.1707-1716. 10 Scientific paper. Nada Lallous; et al. 2012. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the dihydroorotase domain of human CAD. Acta Crystallographica F. Acta Crystallographica. 68, pp.1341-1345. 11 Scientific paper. Julien Valton; et al. 2012. 5’-Cytosine-Phosphoguanine (CpG) Methylation Impacts the Activity of Natural and Engineered Meganucleases. Journal of Biological Chemistry. The American Society for Biochemistry and Molecular Biology. 287-36, pp.30139-30150. 12 Scientific paper. Jesus Prieto; Rafael Molina; Guillermo Montoya. 2012. Molecular scissors for in situ cellular repair. Critical Reviews in Biochemistry and Molecular Biology. Informa Healthcare. 47-3, pp.207-221. 2 13 Scientific paper. Rafael Molina; et al. 2012. Non-specific protein-DNA interactions control I-CreI target binding and cleavage. Nucleic Acids Research. Informa Healthcare. 40-14, pp.6936-6945. 14 Scientific paper. Rafael Molina; Guillermo Montoya; Jesus Prieto. 2011. Meganucleases and Their Biomedical Applications. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd. 15 Scientific paper. Noella Silva-Martin; et al. 2010. Crystallization and preliminary crystallographic analysis of the catalytic module of endolysin Cp-7, a phage infecting Streptococcus pneumoniae. Acta Crystallographica F. Acta Crystallographica. 66, pp.670-673. 16 Scientific paper. Rafael Molina; et al. 2009. Characterization of gadolinium complexes for SAD phasing in Macromolecular Crystallography: application to CbpF. Acta Crystallographica D. Acta Crystallographica. 65, pp.823-831. 17 Scientific paper. Rafael Molina; et al. 2009. Crystal Structure of CbpF, a Bifunctional Choline-Binding Protein and Autolysis Regulator from Streptococcus pneumoniae. EMBO Reports. Nature Publishing Group. 10-3, pp.246-251. 18 Scientific paper. Aurelio Hidalgo; et al. 2008. A one-pot, simple methodology for cassette randomisation and recombination for focused directed evolution. Protein Engineering, Design & Selection (PEDS). Oxford Journals. 21-9, pp.567-576. 19 Scientific paper. Susana Frago; et al. 2007. Tuning of the FMN binding and oxido-reduction properties by neighboring side chains in Anabaena flavodoxin. Archives of Biochemistry and Biophysics. Oxford Journals. 467-2, pp.206-217. 20 Scientific paper. Mirella Di Lorenzo; et al. 2007. Enhancement of the Stability of a Prolipase from Rhizopus oryzae toward Aldehydes by Saturation Mutagenesis. Applied and Environmental Microbiology. American Society for Microbiology. 73-22, pp.7291-7299. 21 Scientific paper. Rafael Molina; et al. 2007. Crystallization and preliminary X-ray diffraction studies of choline-binding protein F from Streptococcus pneumoniae. Acta Crystallographica F. Acta Crystallographica. 63, pp.742-745. 22 Scientific paper. Richard Kahn; et al. 2005. Comparative Study of the Binding of Different Gd Complexes in Protein Crystals. Acta Crystallographica A. Acta Crystallographica. 61-C154. 23 Scientific paper. Craig. B Faulds; et al. 2005. Probing the determinants of substrate specificity of feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS Journal. 272, pp.4362-4371. 24 Scientific paper. Juan Antonio Hermoso; et al. 2004. The crystal structure of feruloyl esterase A from Aspergillus Niger suggests evolutive functional convergence in feruloyl esterase family. Journal of Molecular Biology. Elsevier. 338, pp.495-506. C.2. Participation in R&D and Innovation projects 1 INTERACTOMICS. Comunidad de Madrid. Guillermo Montoya Blanco. (FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III). 01/01/201530/09/2015. 2 Desarrollo de bisturíes moleculares para la reparación de genes implicados en enfermedades monogénicas. Fundación Ramón Areces. (FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III). 01/01/201231/12/2014. 3 Structures of Molecular Machines involved in Chromosomic Dynamic during Cell Cycle. Ministerio de Ciencia e Innovación. Investigación. (FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III). 01/01/201131/12/2014. 4 INTELLICUTTER. Collaborative Project Seven Framework Programme- UE. (FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III). 02/01/200931/12/2012. 5 Combating Antibiotics Resistant Pneumococci by Novel Strategies Based on in vivo and in vitro Host Pathogen Interactions (CAREPNEUMO). (Instituto de Química Física Rocasolano). 01/01/2008-31/12/2010. 3 6 New targets for combating pathogen bacterias. Comunidad de Madrid. (Instituto de Química Física Rocasolano). 01/01/2007-31/12/2010. 7 Crystallization Factory. Ministerio de Ciencia e Innovación. Investigación. (Laboratorio de Estudios Cristalográficos). 01/01/2006-31/12/2010. 8 Innovative Tools for Membrane and Structural Proteomics (IMPS). Education STREP project, Sixth Framework Programme UE (513770). (European Union). 01/01/200531/12/2008. 9 X-ray Structural Characterization of modular proteins involved in pneumococcal pathogenic diseases (II). Ministerio de Ciencia e Innovación. Investigación. (Consejo Superior de Investigaciones Científicas). 01/01/2005-31/12/2008. 10 Methodological Development using lanthanides complexes for solving biological macromolecule structures. Ministerio de Ciencia e Innovación. Investigación. (Consejo Superior de Investigaciones Científicas). 01/01/2005-31/12/2006. 11 X-ray Structural Characterization of modular proteins involved in pneumococcal pathogenic diseases (I). Ministerio de Ciencia e Innovación. Investigación. (Consejo Superior de Investigaciones Científicas). 01/01/2003-31/12/2005. C.3. Participation in R&D and Innovation contracts Meganucleases Design. Cellectis. 01/03/2009-01/03/2012. 4