Unas distribuciones útiles Distribuciones discretas 1. Binomial X ∼ BI(n, θ) si P (X = x) = n x θx (1 − θ)n−x x = 0, 1, . . . , n. E[X] = nθ y V [X] = nθ(1 − θ). 2. Binomial Negativa X ∼ BN (r, θ) si P (X = x) = x+r−1 x θr (1 − θ)x x = 0, 1, 2, . . . (1−θ) E[X] = r 1−θ θ y V [X] = r θ 2 . 3. Geométrica X ∼ GE(θ) si P (X = x) = θ(1 − θ)x E[X] = 1−θ θ y V [X] = x = 0, 1, 2, . . . 1−θ θ2 . 4. Hipergeométrica X ∼ H(N, R, n) si P (X = x) = R x N −R n−x N n R R E[X] = n N y V [X] = n N 1− R N x = 0, 1, . . . , n N −n N −1 . 5. Poisson X ∼ P(θ) si P (X = x) = θx e−θ x! E[X] = θ = V [X]. 1 x = 0, 1, 2, . . . 6. Uniforme Discreta X ∼ UD[θ1 , θ2 ] si 1 θ2 − θ1 + 1 P (X = x) = E[X] = θ1 +θ2 2 y V [X] = x = θ1 , θ1 + 1, . . . , θ2 . (θ2 −θ1 )(θ2 −θ1 +2) . 12 Distribuciones continuas 1. Behrens Fisher X ∼ BF(ν1 , ν2 , θ) si X = T1 cos θ − T2 sin θ y Ti ∼ T (νi , 0, 1). E[X] = 0 y V [X] = ν1 sin2 θ ν1 −2 + ν2 cos2 θ ν2 −2 para ν1 , ν2 > 2. 2. Beta X| ∼ B(α, β) si f (x) = donde B(α, β) = E[X] = α α+β 1 xα−1 (1 − x)β−1 B(α, β) 0 < x < 1, Γ(α)Γ(β) Γ(α+β) . y V [X] = αβ (α+β)2 (α+β+1) . 3. Cauchy X ∼ C(µ, σ 2 ) si f (x) = 1 σ π σ 2 + (x − µ)2 ∀ x. No existen los momentos. 4. Chi-cuadrada X ∼ χ2ν si X ∼ G(ν/2, 1/2). 2−ν/2 ν/2−1 −x/2 x e Γ(ν/2) f (x) = x > 0. E[X] = ν y V [X] = 2ν. 5. Chi-cuadrada invertida X ∼ Iχ2ν si 1/X ∼ χ2ν . E[X] = ν > 4. 1 ν−2 si ν > 2 y V [X] = 6. Exponencial X ∼ E(θ) si f (x) = θe−θx E[X] = 1 θ y V [X] = 1 θ2 . 2 x > 0. 2 (ν−2)2 (ν−4) si 7. F de Fisher X ∼ F(α, β) si 1 f (x) = B(α/2, β/2) E[X] = α β−2 α/2 − α+β 2 α α α/2−1 x 1+ x β β si β > 2 y V [X] = 2β 2 (α+β−2) α(β−2)2 (β−4) ∀ x. si β > 4. 8. Gamma X| ∼ G(α, β) si f (x) = E[X] = α β y V [X] = β (βx)α−1 e−βx Γ(α) x > 0. α β2 . 9. Gamma Invertida X ∼ GI(α, β) si X −1 ∼ G(α, β). f (x) = E[X] = β α−1 β α −(α+1) −β/x x e Γ(α) si α > 1 y V [X] = β2 (α−1)2 (α−2) x > 0. si α > 2. 10. Normal X ∼ N (µ, σ 2 ) si f (x) = 2 1 1 √ e− 2σ2 (x−µ) σ 2π ∀x. E[X] = µ y V [X] = σ 2 . 11. Pareto X ∼ PA(α, β) si f (x) = βαβ x−β−1 E[X] = αβ β−1 si β > 1 y V [X] = 2 α β (β−1)(β−2) x > α. si β > 2. 12. T de Student X ∼ T (ν, µ, σ 2 ) si Γ((ν + 1)/2) √ f (x) = Γ(ν/2) νπσ E[X] = µ si ν > 1 y V [X] = 1 1+ ν ν 2 ν−2 σ x−µ σ 2 !−(ν+1)/2 ∀ x. si ν > 2. La distribución T (ν, 0, 1) es la distribucin t de Student estandar. 3 13. Uniforme X ∼ U(0, θ) si f (x) = E[X] = θ 2 1 θ 0 < x < θ. θ2 12 . y V [X] = Distribuciones multivariables 1. Dirichlet X = (X1 , . . . , Xp )T ∼ D(θ) si Pp p Γ ( i=1 θi ) Y θ1 −1 x f (x) = Γ(θ1 ) · · · Γ(θp ) i=1 i θ E[Xj ] = Pp j i=1 θi y V [Xj ] = (Pp i=1 para 0 < x1 < 1, θj (1−θ Pjp) θi ) 2 ( i=1 θi +1) Pp i=1 xi = 1 . 2. Normal multivariante X = (X1 , . . . , Xp )T ∼ N (µ, Σ) si f (x) = 1 (2π)p/2 |Σ|1/2 1 T −1 exp − (x − µ) Σ (x − µ) 2 E[X] = µ y V [X] = Σ. 3. Multinomial X = (X1 , . . . , Xp )T ∼ MN (n, θ) si n! p Y i=1 xi ! i=1 P (X = x) = Qp θixi donde Pp i=1 xi = n y 0 < θi < 1 ∀i 4. Wishart V ∼ W(ν, Σ) si f (V) = 2 νk/2 k(k−1)/4 π !−1 k Y ν+1−i 1 Γ |V |−ν/2 |Σ|(ν−k−1)/2 exp − tr(Σ−1 V) 2 2 i=1 donde k = dimV. E[V] = νΣ. 5. Wishart invertida V ∼ WI(ν, Σ−1 ) si V ∼ W(ν, Σ−1 ). E[V] = (ν − k − 1)−1 Σ. 4