1 Soluciones a las actividades de cada epígrafe PÁGINA 17 PARA EMPEZAR… ▼ Números perfectos ■ Comprueba que 28 también es perfecto. Los divisores propios de 28 son: 1 - 2 - 4 - 7 - 14 Veamos cuánto suman: 1 + 2 + 4 + 7 + 14 = 28 Por tanto, el 28 es un número perfecto. ▼ Una propiedad enunciada por Euclides ■ Aplica la propiedad anterior para obtener otro número perfecto. 1 + 2 + 4 + 8 + 16 = 31 Como 31 es un número primo, la propiedad nos dice que 31 · 16 = 496 debe ser perfecto. Comprobémoslo: • Los divisores propios de 496 son: 1 - 2 - 4 - 8 - 16 - 31 - 62 - 124 - 248 • Sumémoslos: 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496 Por tanto, 496 es un número perfecto. ▼ Números amigos ■ Haz lo mismo con 284. ¿Qué observas? Los divisores propios de 284 son: 1 - 2 - 4 - 71 - 142 Al sumarlos: 1 + 2 + 4 + 71 + 142 = 220 ■ ¿Qué dirían los pitagóricos de los números 220 y 284? Los pitagóricos dirían que 220 y 284 son números amigos. Unidad 1. Divisibilidad y números enteros Pág. 1