Una transformada nita de Hankel generalizada

Anuncio
!"# $ %%& '! (& )*+,! -.//01
2345674,839: (;<.(
!"#$%"&'!()
*+(#,!+-! .+&/#0(&"!0&!
8 =98*5"3
>5?,!+3" @5 2345674,839
A+,B5C9,@3@ @5" 3""5 D E!"!6F,3
!" #$"!%&'$(")" *!+#" ), -"!.,/ 0,!,$"/+1")"
!"#$ %!&'"(() *+,$-
%!,()& "#+.$- /01-
!"#$%&"'(' '$ )( *+(,"%(
!"#$%&"'(' '$ )( *+(,"%(
/!2!$( 3$(+.4$- 50,#!6
!"#$%&"'(' '$ )( *+(,"%(
!"#$#%& '()* +,- .//0
1"!23(%& '(4* 5- .//6
!"#$%&#
78#9 2(2!4 %!(:9 ;#38 ( <!; #<3!=4(: 34(<9>&4?- #<@&:@#<= A!99!: >B<"3#&<9 &> 38! C493 D#<%*
78! #<@!49#&< >&4?B:( #9 !93($:#98!% (<% 9&?! 24&2!43#!9 (4! =#@!<* 78#9 34(<9>&4? "(< $!
B9!% 3& 9&:@! 9&?! ?#E!% $&B<%(4) @(:B! 24&$:!?9* F! "&<9#%!4 ( @#$4(3#&<(: 24&$:!? ;!4!
;! "&?2B3! 38! 34(<9@!49! %#92:("!?!<3 &> ( :(4=! ?!?$4(<! ;8#"8 #9 %!>&4?!% 9)??!34#"(::)*
78! 34(<9@!49! %#92:("!?!<3 &> 38! ?!?$4(<! #9 =&@!4<!% $) 38! <&<8&?&=!<!&B9 =!<!4(:#G!%
;(@! !HB(3#&<* 78! 34(<9>&4? ;! >&B<% #9 ?&4! (224&24#(3! #< 9&:@#<= %#I!4!<3#(: !HB(3#&<9
;#38 $&B<%(4) "&<%#3#&<9 "8(4("3!4#G!% $) (E#(: 9)??!34)*
'()*+$,"- J<3!=4(: 34(<9>&4?- 34(<9@!49! %#92:("!?!<3 &> ( ?!?$4(<!- A!99!: >B<"3#&<9*
./0123334- K4#?(4)L MM1/N- O!"&<%(4)L MM1./- ,NP/N*
5("67(8
Q93! (43R"B:& "&<3#!<! B<( <B!@( 34(<9>&4?(%( #<3!=4(: HB! #<@&:B"4( >B<"#&<!9 %! A!99!: %!
24#?!4( !92!"#!* O! !93($:!"! :( >&4?B:( %! #<@!49#S< ) 9! 24!9!<3(< (:=B<(9 24&2#!%(%!9* Q93(
34(<>&4?(%( 2B!%! 9!4 B9(%( 2(4( 4!9&:@!4 (:=B<&9 24&$:!?(9 "&< "&<%#"#&<!9 %! $&4%!* 1HBR 9!
"&<9#%!4( B< 24&$:!?( %! @#$4("#S<- 9! 34(3( %!: "T:"B:& %!: %!92:(G(?#!<3& 34(<9@!49(: %! B<(
=4(<%! ?!?$4(<( HB! 9! %!>&4?( 9#?U34#"(?!<3!* Q: %!92:(G(?#!<3& 34(<9@!49(: %! :( ?!?$4(<(
!93T ?&%!:(%& 2&4 :( !"B("#S< %! &<%( =!<!4(:#G(%( <& 8&?&=U<!( Q93( 34(<9>&4?(%( !9 ?(9
(%!"B(%( 2(4( 4!9&:@!4 !"B("#&<!9 %#>!4!<"#(:!9 "&< "&<%#"#&<!9 %! >4&<3!4( "&< 9#?!34R( (E#(:*
9%:%!$%" ) ;$%"(" &:%<("- 74(<9>&4?(%( #<3!=4(:- %!92:(G(?#!<3& 34(<9@!49(: %! B<( ?!?V
$4(<(- >B<"#&<!9 %! A!99!:*
!"#$%&'(()*"
7! ',!.&2),#!4! 4$ 8!.9$( !:!,$;$ .!'0,!(#$.'$ $. :,)<($#!& ;). ;)),4$.!4!&
;"(1.4,";!& =0$> ;0!.4) &). ,$&0$(')& 0&!.4) (! '+;.";! 4$ &$:!,!;"?. 4$ @!,"!<($&>
".@)(0;,!. 20.;").$& 4$ A$&&$(B C&'!& ',!.&2)#!4!& &). #D& !:,):"!4!& $. (!
&)(0;"?. 4$ $;0!;").$& 4"2$,$.;"!($& ;). ;).4";").$& 4$ 2,).'$,! $. (!& =0$ E!6
&"#$',1! !F"!(B
7! ',!.&2),#!4! G."'! 4$ 8!.9$( 20+ ".',)40;"4! ".";"!(#$.'$ :), H5.$44).>
IJKLM> =0"$. (! :,$&$.'? $. (! &"N0"$.'$ 2),#!
Z b
tf (t)Jν (tλ)dt
HIM
Hν [f (t); λ] =
a
4).4$ f (t) $& 0.! 20.;"?. 4$G."4! &)<,$ 0. ".'$,@!() G."') [a, b]> &!'"&2!;$ (!&
;).4";").$& 4$ O",";E($' 6 Jν $& (! 20.;"?. 4$ A$&&$( 4$ :,"#$, ),4$. 6 4$ ),4$.
νB
!
!"#$%&''() "! &*+,-. / 0! 1-'+,2-.
"#$%&'(#')&*%& +,-./.-0 12234 &$%56(7 5*. 8#'). )#6(9:.6. 6& ;. %'.*$<
8#').6. 6& =.*>&; ?./# 6#$ $5@5&$%#$ $#?'& ;#$ @.'A)&%'#$B C* :.6. :.$# $&
-.* #?%&*(6# ;. 8#')5;. 6& (*D&'$(7*0 (6&*%(6.6 %(@# @.'$&D.;0 %'.*$8#').6. 6&
6&'(D.6.$ E %'.*$8#').6.$ 6& @'#65:%#$ 6& &; #'6&* tλ f (t)B
F$.*6# ;. %&#'G. 6& H%5')<I(#5D(;;& +J;<=./'( E ,.;;.0 122!K ,.;;. E L(;;.;#<
?#$0 MN2K J;( E ,.;;.0 MMM40 -.* 6&9*(6# E &$%56(.6# #%'.$ 8#').$ 6& %'.*$8#'<
).6.$ 9*(%.$ 6& =.*>&; E ;.$ -.* .@;(:.6# @.'. '&$#;D&' @'#?;&).$ 6& :#*65::(7*
6&; :.;#' &* :(;G*6'#$ :(':5;.'&$ (*9*(%#$ E $&)(<(*9*(%#$ :#* 6(8&'&*%&$ %(@#$ 6&
:#*6(:(#*&$ 6& 8'#*%&'.B
O&:(&*%&)&*%& +P.'Q &% .;B0 122R4 @'&$&*%.'#* 5*. *5&D. Q&*&'.;(S.:(7* 6& ;.
%'.*$8#').6. 9*(%. 6& =.*>&;B T$%. (*D#;5:'. 85*:(#*&$ 6& U&$$&; 6& @'()&'. E
$&Q5*6. &$@&:(& E ;. 5$.'#* @.'. '&$#;D&' 5*. 8#'). Q&*&'.;(S.6. 6& ;. &:5.:(7*
6& :#*65::(7* 6&; :.;#' &* :(;(*6'#$ :(':5;.'&$ (*9*(%# E $&)(<(*9*(%#B
C* &; @'&$&*%& .'%G:5;# $& 6&9*& 5*. *5&D. %'.*$8#').6. 9*(%. 6& =.*>&; V5&
(*D#;5:'. 85*:(#*&$ 6& U&$$&; 6& @'()&'. &$@&:(& E $& 5$.'A @.'. '&$#;D&' 5*.
8#'). Q&*&'.;(S.6. 6& ;. &:5.:(7* 6& #*6.B
!" #$"%&'($)"*" +%,#" *- ."%/-0 1-%-$"0,2"*"
W5:-.$ &:5.:(#*&$ 6(8&'&*:(.;&$ V5& )#6&;.* @'#?;&).$ 6& 8G$(:. & (*Q&*(&'G. $#*
8#').$ &$@&:(.;&$ 6& ;. &:5.:(7* 6& U&$$&; Q&*&'.;(S.6. +J*6'&X$ &%B .;B0 MMM4
x2
du
d2 u
+ (1 − 2l)x
+ [λ2 c2 x2c + (l2 − c2 ν 2 )]u = 0
2
dx
dx
+14
ν ≥ 0, l, c, λ > 0, x ∈ [0, a].
F*. $#;5:(7* 6& +14 &$%A &Y@'&$.6. &* %Z')(*#$ 6& ;. 85*:(7* 6& U&$$&; 6& @'()&'.
&$@&:(& 6.6. @#'
u(x) = xl Jν (λxc ).
C* Z$%& %'.?./# $& :#*$(6&'. ;. &:5.:(7* +14 /5*%# :#* ;. $(Q5(&*%& :#*6(:(7* 6&
8'#*%&'. @.'. (*%'#65:(' 5*. Q&*&'.;(S.:(7* 6& ;. %'.*$8#').6. 9*(%. 6& =.*>&;[
hu(a) + u′ (a) = 0
+34
;. &:5.:(7* +14 /5*%# :#* ;. :#*6(:(7* +34 8#').* 5* @'#?;&). 6& D.;#' &* ;.
8'#*%&'. 6& H%5') < I(#5D(;;&B
3-+%,4,5% 676 ! "#$% & '" ()!*+), -+)!.,-, '/0 '+11!/0,2*+03+ 1/03!0",' +0
+2 !03+).,2/ 456,76 +03/01+' 2, 3),0'8/)*,-, !03+9),2 -+ "#$% +'3: -+;0!-, (/)
T [u(x); ν, a; λi , l, c] = uν (λi , l, c) =
Z
0
a
x2c−l−1 u(x)Jν (λi xc )dx,
+!4
!" #$"!%&'$(")" *!+#" ), -"!.,/ 0,!,$"/+1")"
!
!" # $%& Jν (λi xc ) &!" '(")*!"#& # +#&&#$ # ,-*.#-% #&,#)*#/ 0(# )!"&1*1(2# ("
&*&1#.% !-1!3!"%$ # '(")*!"#&/ )!" '(")*4" # ,#&! x2c−l−1 &!5-# #$ *"1#-6%$!
[0, a]/ 2 λi (i = 1, 2, ...) &!" -%7)#& ,!&*1*6%& # $% #)(%)*4"
(h +
l − cν
)Jν (λac ) + λcac−1 Jν−1 (λac ) = 0.
a
"!#
8% 1-%"&'!-.% % *"6#-&% #&19 % % ,!f (x) =
∞
X
uν (λi , l, c)
i=1
!" #
!
kJν (λi )k =
(kJν (λi )k
xl Jν (λi xc )
"$#
a2c
l
ν2
[(h + )2 + (1 − 2 2c )]Jν2 (λi ac )
2c
a
λi a
"#$%&'( )*+),-.'.-(
% T [αf (x) + βg(x); ν, a; λi , l, c] = αf ν (λi , l, c) + βg ν (λi , l, c)
&% T [xcν+l ; ν, a; λi , l, c] =
'% T [f (px); ν, a; λi , l, c] =
acν
(cν
c2 λ2i
+ ha + l)Jν (λi ac )
1
T [f (x); ν, pa; pλci , l, c]
p2c−2l
(% T [Du(x); ν, a; λi , l, c] = a1−l Jν (λi ac )[hu(a) + u′ (a)] − λi 21 c 12 uν (λi , l, c)
)*+), Du ,- ,. */,01)*0
D(u) = x2−2c
du
d2 u
+ (1 − 2l)x1−2c
+ [(l2 − c2 ν 2 )]x−2c u
2
dx
dx
"2#
" #3"&#3"'# -, ),)45,+ 6157.8,+9, 4-1+)* "(# : 1/.751+)* 1),541)18,+9, 1.;4+10,.157*+,- ), 0,5400,+571 ), .1- 64+57*+,- ), <,--,.%
/*%-0' .- 12
=*+-7),0,8*- .*- )*- /078,0*- 9>087+*- )76,0,+571.,- ), "2#
d2 u
du
+ (1 − 2l)x1−2c ; ν, a; λi , l, c] =
2
dx
dx
Z a
2u
d
du
x2c−l−1 [x2−2c 2 + (1 − 2l)x1−2c ]Jν (λi xc )dx.
dx
dx
0
T [x2−2c
?,/101+)* 7+9,;01.,- -, 97,+,
Z a
Z a
du
d2 u
x−2l (xl Jν (λi xc ))dx.
x1−2l 2 (xl Jν (λi xc ))dx + (1 − 2l)
I=
dx
dx
0
0
!
!"#$%&''() "! &*+,-. / 0! 1-'+,2-.
"# $%&'()*) +,) +*)&'- '% '# +)$.') &/).$%, 0' 12 -' '#$.$%* '# -'(3%0, 4 -' &$'%'
Z a
d
I = x1−l Jν (λi xc )u′ (x) −
u′ (x)x1−2l (xl Jν (λi xc ))dx.
dx
0
53'6*.'%&' $%&'()*%0, +,) +*)&'- -' 0')$6* #* -$(3$'%&' '7+)'-$8%
d
I = [x1−l Jν (λi xc )u′ (x) − x1−2l u(x) (xl Jν (λi xc ))]a0 +
dx
Z a
d
d2 u
u(x)x−1−2l [x2 2 (xl Jν (λi xc )) + (1 − 2l)x (xl Jν (λi xc ))]dx.
dx
dx
0
9,., xl Jν (λi xc ) '- -,#3:$8% 0' ;<= :,% #* :,%0$:$8% ;>= -' ,?&$'%'
Z a
l2 − c2 ν 2
I=M−
x2c−l−1 u(x)[λ2 c2 +
]Jν (λi xc )dx,
x2c
0
0' 0,%0'
T [x2−2c
0,%0'
!"
I = M − λ2 c2 u − T [
(l2 − c2 ν 2 )
u(x)],
x2c
4 @%*#.'%&'
du
d2 u
+ (1 − 2l)x1−2c
+ (l2 − c2 ν 2 )x−2c u(x); ν, a; λi , l, c] = M − λ2 c2 u
2
dx
dx
M = a1−l Jν (λi ac )[hu(a) + u′ (a)].
#$%&'('&)*+,
" :,%&$%3*:$8% -' +)'-'%&*% *#(3%*- *+#$:*:$,%'- )'#*&$6*- * #* ('%')*#$A*:$8% 0'
#* ':3*:$8% 0' ,%0*2 #*- :3*#'- '-&B% *-,:$*0*- * #*- 6$?)*:$,%'- &)*%-6')-*#'- 0'
3%* .'.?)*%*C 9*0* -,#3:$8% *D3E +)'-'%&*0* 0'+'%0' 0' 3% &$+, '-+':E@:, 0'
:,%0$:$8% '% #* F),%&')*G '% *.?,- :*-,- -' 0* -,#3:$8% * #* ':3*:$8% 0$F')'%:$*#
H*:$'%0, 3-, 0' #* &)*%-F,).*0* $%&'()*# +)'-'%&*0* '% '-&' &)*?*I,C
J# +),?#'.* -' +#*%&'* 0' #* -$(3$'%&' F,).*K
-&./('&)*+, 0/(*,1+/,(%+, 2+ 3*( 4+4./(*(
L* +)$.')* $#3-&)*:$8% 0'# 3-, 0' #* &)*%-F,).*0* 0' M*%N'# ('%')*#$A*0* '%
#* -,#3:$8% 0' +),?#'.*- 0' 6$?)*:$8% +),6$'%' 0'# :B#:3#, 0'# 0'-+#*A*.$'%&,
&)*%-6')-*# u(r, t) 0' 3%* .'.?)*%* D3' '- 0'F,).*0* -$./&)$:*.'%&'C J# 0'-+#*O
A*.$'%&, u(r, t) '-&B .,0'#*0, +,) #* ':3*:$8% 0' ,%0* %, H,.,(/%'*
1 ∂2u
r2c−2 ∂ 2 u
(l2 − c2 ν 2 )
∂ 2 u (1 − 2l) ∂u
+
+ 2 2 =
−[
]u,
2
2
2
∂r
r
∂r
r ∂θ
α ∂t
r2
ν ≥ 0, l, c > 0. ;P=
Q3+,%(*.,- D3' #* .'.?)*%* &$'%' )*0$, *2 '-&B )E($0*.'%&' @I* *#)'0'0,) 0' -3
:$):3%F')'%:$* 4 D3' $%$:$*#.'%&' ,:3+* 3%* +,-$:$8% 0'-+#*A*0* $%0'+'%0$'%&' 0'
#* 6*)$*?#' *%(3#*) θ2 * +*)&$) 0' #* :3*# -' #' $.+)$.' 3%* 6'#,:$0*0 $%$:$*# '% &RSC
!" #$"!%&'$(")" *!+#" ), -"!.,/ 0,!,$"/+1")"
!
"#$%#$&' #$ ()#$*+ ,+ -%.#*/0+ (%/(),+/ &# ,+- ('$&%(%'$#- %$%(%+,#- 1 &# 2/'$*#/+3
-# &#&)(# 4)# ) #- %$&#5#$&%#$*# &# θ6 7$ #-*# (+-' ,+ #()+(%8$ &%2#/#$(%+, 9:; -#
*/+$-2'/.+ #$
r2c−2 ∂ 2 u
(l2 − c2 ν 2 )
∂ 2 u (1 − 2l) ∂u
+
=
−
[
]u
∂r2
r
∂r
α2 ∂t2
r2
9<;
T
D
&'$&# T #- ,+ *#$-%8$ &# ,+ .#.=/+$+ 1 D #- ,+ .+-+ 5'/ )$%&+& &# >/#+ &# ,+
.#.=/+$+6
?+/+ *#$#/ )$+ -',)(%8$ .>- @#$#/+, &#, 5/'=,#.+ ('$-%&#/#.'- ,+- -%@)%#$*#('$&%(%'$#- &# 2/'$*#/+ # %$%(%+,#-A
α2 =
u(a, t) = h(t), t ≥ 0
u(r, 0) = f (r),
ut (r, 0) = g(r), 0 ≤ r ≤ a.
B#'/@+$%C+$&' 9<; -# *%#$#
2
1 ∂2u
∂u
2−2c ∂ u
=
r
+ (1 − 2l)r1−2c
+ (l2 − c2 ν 2 )r−2c u.
2
2
2
α ∂t
∂r
∂r
9 D;
E5,%(+$&' #, '5#/+&'/ */+$-2'/.+&+ F$%*+ &# G+$H#, @#$#/+,%C+&+ #$ 9 D; -# '=I
*%#$#
∂2u
= α2 a1−l Jν (λi ac )u(a, t) − a2 λ2i c2 u(λi , t).
∂t2
J-+$&' ,+ ('$&%(%8$ &# 2/'$*#/+3 -# &#&)(# ,+ -%@)%#$*# #()+(%8$ &%2#/#$(%+,
'/&%$+/%+ $' K'.'@#$#+
d2 u
+ a2 λ2i c2 u = a2 a1−l Jν (λi ac )h(t)
dt2
9
;
&'$&# λi (i = 1, 2, 3, ...) -'$ /+0(#- 5'-%*%L+- &# ,+ #()+(%8$ Jν (λi ac ) = 06
E, +5,%(+/ */+$-2'/.+&+ + ,+- ('$&%(%'$#- %$%(%+,#- -# *%#$#
u(λ, 0) = f (λ)
ut (λ, 0) = g(λ)
B#-',L%#$&' ,+ #()+(%8$ &%2#/#$(%+, K'.'@#$#+ +-'(%+&+ + 9
(%'$#- %$%(%+,#- -# '=*%#$#
; 1 )-+$&' ,+- ('$&%I
uc (λi , t) = f (λ) cos(caλi t) + (caλi )−1 g(λ) sen(caλi t).
9 M;
?+/+ (+,(),+/ ,+ -',)(%8$ ('.5,#.#$*+/%+ up -# K+(# )-'
N/'$-H%+$' N &#
R &#,
i
)dt
6 E 5+/*%/ &# +4)%
)9*; 1 &# ,+ /#,+(%8$ up (t) = y1 u1 + y2 u2 3 &'$&# yi = ( W
W
-# '=*%#$#
Z
αa1−l Jν (λi ac ) t
h(t) sen(caλi )(t − τ )dt.
9 O;
up (λi , t) =
cλ
0
!
!"#$%&''() "! &*+,-. / 0! 1-'+,2-.
"#$%#&'( )* (%)+&,-# .'#'/*) 0' 1 2 $'#,'#0% '# &+'#$* )* (+3'/3%(,&,-# 0' 1 42
5 1 62 '(
αa1−l Jν (λi ac )
u(λi , t) = f (λ) cos(caλi t) + (caλi )−1 g(λ) sen(caλi t) +
cλ
Z t
h(τ ) sen(caλi )(t − τ )dt.
0
7,#*)8'#$'9 *3),&*#0% 1:2 (' $,'#'
∞
X
uν (λi , l, c)
xl Jν (λi xc ).
kJν (λi )k
i=1
;3),&*#0% )* &%#0,&,-# 0' </%#$'/* 5 3/%3,'0*0'( 0' )* <+#&,-# ='((') (' $,'#'
u(r, t) =
kJν (λi )k =
a2c 2
J (λi ac )
2c ν+1
>*(%( 3*/$,&+)*/'(? @*/* A($' 3/,8'/ /'(+)$*0% (' 8+'($/*# )%( (,.+,'#$'( &*(%(
3*/$,&+)*/'(?
B >%#(,0'/*#0% )*( &%#0,&,%#'( 0' </%#$'/* ' ,#,&,*)'(?
u(a, t) = 0, t ≥ 0,
u(r, t) = 2
u(r, 0) = f (r),
∞
X
i=1
R1
0
ut (r, 0) = 0,
0≤r≤a
rf (r)j0 (λi r)dr
cos(cαλi t)J0 (λi r).
J12 (λi ac )
!"#$%&' $"( %$) *+" ,-!."+/) *+ ") /+/.-)') +"( 0%$) $%-$#")- ,-+ +'0)*!
+' 12!3$+ 3 4%5-%/)6 78986 , :97;:9<=> 5)-) +" %?#%+'0+ $) ! + %'0-!*#$+'
@)"!-+ ,)-0%$#")-+ ) "! ,)-(/+0-! A#+ ?+'+-)"%B)' ") +$#)$%&' *+ !'*)>
C> D!' %*+-)'*!
0!/)'*!
ν E7>F6 "E7>F6 )E76 $E7>CF6+'>>>
f (r) = 26 g(r) = 16 h(t) = 2>
+ !.0%+'+
λi E<><G86
)*+/(
H' ,+-I" *+" /!@%/%+'0! *+ ") /+/.-)') + $!/! + /#+ 0-) +' ") I?#-) 7
J+ $!' %*+-) '#+@)/+'0+ ") +$#)$%&' 17K=
2
1 ∂2u
∂u
2−2c ∂ u
=
r
+ (1 − 2l)r1−2c
+ (l2 − c2 ν 2 )r−2c u.
2
2
2
α ∂t
∂r
∂r
5+-! + 0) @+B $!' ")
%?#%+'0+ $!'*%$%!'+ %'%$%)"+ 3 *+ L-!'0+-)M
hu(a, t) + u′ (a, t) = K(t), t ≥ 0, u(r, 0) = f (r), ut (r, 0) = g(r), 0 ≤ r ≤ a
4+ ,#+ *+ ),"%$)- ") 0-)' L!-/)*) ?+'+-)"%B)*) *+ N)'O+" 3 0+'+- +' $#+'0) ")
$!'*%$%&' *+ L-!'0+-) + 0%+'+
d2 u
+ a2 λ2i c2 u = a2 a1−l Jν (λi ac )K(t)
dt2
!
!"#$%&''() "! &*+,-. / 0! 1-'+,2-.
"#$"% λi (i = 1, 2, 3, ...) &#$ '()*%& +#&,-,.(& "% /( %*0(*,1$
(h +
l − cν
)Jν (λi ac ) + λcac−1 Jν−1 (λac ) = 0.
a
2&($"# 0$ +'#*%",3,%$-# &,3,/(' (/ ($-%',#' &% #4-,%$%
αa1−l Jν (λi ac )
u(λi , t) = f (λ) cos(caλi t) + (caλi )−1 g(λ) sen(caλi t) +
×
cλ
Z t
K(τ ) sen(caλi )(t − τ )dt.
0
5+/,*($"# /( -'($&6#'3("( ,$.%'&( &% #4-,%$% 0$( &#/0*,1$ 4(&-($-% 7%$%'(/ "%/
+'#4/%3( "% /( 3%34'($(8 "("( +#'
u(r, t) =
∞
X
uν (λi , l, c)
i=1
(kJν (λi )k
xl Jν (λi xc )
9%$,%$"# %$ *0%$-( /( *#$",*,1$ "% 6'#$-%'( : +'#+,%"("%& "% /( 60$*,1$ 4%&&%/ &%
-,%$%
l
ν2
a2c
[(h + )2 + (1 − 2 2c )]Jν2 (λi ac )
kJν (λi )k =
2c
a
λi a
;(&# +('-,*0/('< ;0($"# ν = 1,258 l = 0,88 a = 28 c = 1,258 &% #4-,%$%
λi = 3,857 : ("%3=& &% *#$&,"%'($ f (r) = 08 g(r) = 18 K(t) = 0>?$ /( @70'( &%
30%&-'( 0$ +%'@/ "% .,4'(*,1$ "% /( 3%34'($(>
!"!#!$%&'(
ABC 5/DE(F', ($" G(//(8 H> I>< J$ ($ ,$-%7'(/ -'($&6#'3 ,$.#/.,$7 K%&&%/ 60$*-,#$&8
K0//> H#*> L(-M> L(*%"#$,%8 N O !!PQ8 RSBN>
A C T> 5/, ($" G(//(8 H> I>< 5 7%$%'(/,U%" E($V%/ -'($&6#'3 ($" ,-& 0&% 6#' &#/.,$7
*%'-(,$ +('-,(/ ",W%'%$-,(/ %X0(-,#$&8 Y 50&-> L(-M> H#*> PBK OBZZZQ8 B!RSBB[>
A\C 5$"'%]&8 ^> ?>8 5&V%:8 _> ($" _#:8 _>< H+%*,(/ `0$*-,#$&8 BZZZ8 ;(34',"7%
2$,.%'&,-: a'%&&8 b%] c#'V>
APC K#:*%8 d> ?> ($" e,a',3(8 _> ;>< ?*0(*,#$%& e,6%'%$*,(/%& : +'#4/%3(& *#$
.(/#'%& %$ /( 6'#$-%'(8 BZ[Z8 -%'*> %">8 ?",-> I,30&(8 L%f,*#8 BZ[Z> 8 !![>
ARC e%4$(-M8 I> ($" KM(--(8 e>< T$-%7'(/ -'($&6#'3& ($" -M%,' (++/,*(-,#$&8 !![
K0//> H#*> L(-M> L(*%"#$,%8 &%*#$" %">8 ;M(+3($ ($" E(//g;_; a'%&&8
K#*( _(-#$8 `I> BZ! O !![Q [!RD[BB
AhC L> ^('78 5> _(# ($" G(//(8 H> I>< J$ ( 7%$%'(/,U%" @$,-% E($V%/ -'($&6#'38
5++/> L(-M> ($" ;#3+> BZ! O !![Q8 [!RS[BB>
!" #$"!%&'$(")" *!+#" ), -"!.,/ 0,!,$"/+1")"
!
"#$ %&''&( )* +* &,- ./''&'0102( 3*4 5, & ,67 /,869:&' 8:&,2;0:< =( >,&,&1?& @A!B
C!@DBE( !F@G!HF*
"D$ %&''&( )* +* &,- ./''&'0102( 3*4 5, & ,67 /,869:&' 8:&,2;0:< ==( I6J* K6L*
=,9*( M,/J* NO'/& H C!@D E( FBGFF*
"@$ %?&P&?( Q* R*4 3 <0-/S6- S,/86 Q&,T6' 8:&,2;0:<( =,869:* K:&,2;* )U6L*
VO,L8* !F C BBWE( FBWGF! *
"!B$ ),6--0,( =* X*4 K?6 O26 0; /,869:&' 8:&,2;0:<2 !@# ( YL R:&7AQ/'' Z00T
[0<U&,\( X67 ]0:T
!"#$$!%& '# ()* +,-)"#*
2"+(, 3"%#+//' 45$,1 6 7$89' 7+(": !+;,$%+)") ), /" 78"<+$": =+'>"?>"@3'/'(A+"
,@("+/B !"!#$%&'!())*+#
3"$/'% 2+(5!,1 =8C1 6 7$89' 7+(": !+;,$%+)") ), /" 78"<+$": =+'>"?>"@3'/'(A+"
,@("+/B "!,-)# ../&01!2-*")1
="&",/ D,/5!),1 E8$("F 6 7$89' 7+(": !+;,$%+)") ), /" 78"<+$": =+'>"?>"@3'/'(A+"
,@("+/B 1+-+34+56/&()71!2-*")1
Descargar