COLEGIO EUSTORGIO COLMENARES BAPTISTA “COMPROMETIDOS CON EL PROCESO DE CALIDAD” ASIGNATURA BIOLOGIA GRADO UNDECIMO DOCENTE SANDRA ROCIO PUERTO B ESTUDIANTE ___________________________ DOCUMENTO LECTURA COMPLEMENTARIA PERIODO 1 FECHA 03-04-2012 TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR Transporte a través de la membrana celular El proceso de transporte es importante para la célula porque le permite expulsar de su interior los desechos del metabolismo y adquirir nutrientes, gracias a la capacidad de la membrana celular de permitir el paso o salida de manera selectiva de algunas sustancias. Las vías de transporte a través de la membrana celular y los mecanismos básicos para las moléculas de pequeño tamaño son: TRANSPORTE PASIVO Transporte simple de moléculas a través de la membrana plasmática, durante en la cual la célula no requiere de energía, debido a que va a favor del gradiente de concentración o del gradiente de carga eléctrica. Hay tres tipos de transporte pasivo: 1. Osmósis: transporte de moléculas de agua a través de la membrana plasmática a favor de su gradiente de concentración. 2. Difusión facilitada: transporte celular donde es necesaria la presencia de un carrier o transportador para que las sustancias atraviesen la membrana. 3. Difusión simple: paso de sustancias a través de la membrana plasmática como los gases respiratorios y el alcohol. Se pueden encontrar dos tipos principales de difusión simple: Mediante la bicapa. Mediante los canales iónicos. ÓSMOSIS Comportamiento de célula animal ante distintas presiones osmóticas 1 COLEGIO EUSTORGIO COLMENARES BAPTISTA “COMPROMETIDOS CON EL PROCESO DE CALIDAD” ASIGNATURA BIOLOGIA GRADO UNDECIMO DOCENTE SANDRA ROCIO PUERTO B ESTUDIANTE ___________________________ DOCUMENTO LECTURA COMPLEMENTARIA PERIODO 1 FECHA 03-04-2012 TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR Comportamiento de célula vegetal ante distintas presiones osmóticas La ósmosis es un tipo especial de transporte pasivo en el cual sólo las moléculas de agua son transportadas a través de la membrana. El movimiento de agua se realiza desde un punto en que hay menor concentración de solutos a uno de mayor concentración de solutos para igualar concentraciones en ambos extremos de la membrana bicapa fosfolipidica. De acuerdo al medio en que se encuentre una célula, la ósmosis varía. La función de la osmosis es mantener hidratada a la membrana celular. Dicho proceso no requiere gasto de energía. En otras palabras la ósmosis u osmosis es un fenómeno consistente en el paso del solvente de una disolución desde una zona de baja concentración de soluto a una de alta concentración del soluto, separadas por una membrana semipermeable. Ósmosis en una célula animal En un medio isotónico, hay un equilibrio dinámico, es decir, el paso constante de agua. En un medio hipotónico, la célula absorbe agua hinchándose y hasta el punto en que puede estallar dando origen a la citólisis. En un medio hipertónico, la célula arruga llegando a deshidratarse y se muere, esto se llama crenación. Ósmosis en una célula vegetal En un medio isotónico, existe un equilibrio dinámico. En un medio hipotónico, la célula toma agua y sus vacuolas se llenan aumentando la presión de turgencia. En un medio hipertónico, la célula elimina agua y el volumen de la vacuola disminuye, produciendo que la membrana plasmática se despegue de la pared celular, ocurriendo la plasmólisis DIFUSIÓN FACILITADA Algunas moléculas son demasiado grandes como para difundir a través de los canales de la membrana y demasiado hidrofílicos para poder difundir a través de la capa de fosfolípidos y colesterol. Tal es el caso de la glucosa y algunos otros monosacáridos. Estas sustancias, pueden sin embargo cruzar la membrana plasmática mediante el proceso de difusión facilitada, con la ayuda de una proteína transportadora. En el primer paso, la glucosa se une a la proteína transportadora, y esta cambia de forma, permitiendo el paso del azúcar. Tan pronto como la glucosa llega al citoplasma, una quinasa (enzima que añade un grupo fosfato a un azúcar) transforma la glucosa en glucosa-6-fosfato. De esta forma, las concentraciones de glucosa en el interior de la célula son siempre muy bajas, y el gradiente de concentración exterior → interior favorece la difusión de la glucosa. La difusión facilitada es mucho más rápida que la difusión simple y depende: a. Del gradiente de concentración de la sustancia a ambos lados de la membrana b. Del número de proteínas transportadoras existentes en la membrana c. De la rapidez con que estas proteínas hacen su trabajo 2 COLEGIO EUSTORGIO COLMENARES BAPTISTA “COMPROMETIDOS CON EL PROCESO DE CALIDAD” ASIGNATURA BIOLOGIA GRADO UNDECIMO DOCENTE SANDRA ROCIO PUERTO B ESTUDIANTE ___________________________ DOCUMENTO LECTURA COMPLEMENTARIA PERIODO 1 FECHA 03-04-2012 TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR TRANSPORTE ACTIVO Es un mecanismo que permite a la célula transportar sustancias disueltas a través de su membrana desde regiones de menor concentración a otras de mayor concentración. Es un proceso que requiere energía, llamado también producto activo debido al movimiento absorbente de partículas que es un proceso de energía para requerir que mueva el material a través de una membrana de la célula y sube el gradiente de la concentración. La célula utiliza transporte activo en tres situaciones: Cuando una partícula va de punto bajo a la alta concentración. Cuando las partículas necesitan la ayuda que entra en la membrana porque son selectivamente impermeables. Cuando las partículas muy grandes incorporan y salen de la célula. En la mayor parte de los casos este transporte activo se realiza a expensas de un gradiente de H+ (potencial electroquímico de protones) previamente creado a ambos lados de la membrana, por procesos de respiración y fotosíntesis; por hidrólisis de ATP mediante ATP hidrolasas de membrana. El transporte activo varía la concentración intracelular y ello da lugar un nuevo movimiento osmótico de rebalanceo por hidratación. Los sistemas de transporte activo son los más abundantes entre las bacterias, y se han seleccionado evolutivamente debido a que en sus medios naturales la mayoría de los procariotas se encuentran de forma permanente o transitoria con una baja concentración de nutrientes. Los sistemas de transporte activo están basados en permeasas específicas e inducibles. El modo en que se acopla la energía metabólica con el transporte del soluto aún no está dilucidado, pero en general se maneja la hipótesis de que las permeasas, una vez captado el sustrato con gran afinidad, experimentan un cambio conformacional dependiente de energía que les hace perder dicha afinidad, lo que supone la liberación de la sustancia al interior celular. El transporte activo de moléculas a través de la membrana celular se realiza en dirección ascendente o en contra de un gradiente de concentración (Gradiente químico) o en contra un gradiente eléctrico de presión (gradiente electroquímico), es decir, es el paso de sustancias desde un medio poco concentrado a un medio muy concentrado. Para desplazar estas sustancias contra corriente es necesario el aporte de energía procedente del ATP. Las proteínas portadoras del transporte activo poseen actividad ATPasa, que significa que pueden escindir el ATP (Adenosin Tri Fosfato) para formar ADP (dos Fosfatos) o AMP (un Fosfato) con liberación de energía de los enlaces fosfato de alta energía. Comúnmente se observan tres tipos de transportadores: Uniportadores: son proteínas que transportan una molécula en un solo sentido a través de la membrana. Antiportadores: incluyen proteínas que transportan una sustancia en un sentido mientras que simultáneamente transportan otra en sentido opuesto. 3 COLEGIO EUSTORGIO COLMENARES BAPTISTA “COMPROMETIDOS CON EL PROCESO DE CALIDAD” ASIGNATURA BIOLOGIA GRADO UNDECIMO DOCENTE SANDRA ROCIO PUERTO B ESTUDIANTE ___________________________ DOCUMENTO LECTURA COMPLEMENTARIA PERIODO 1 FECHA 03-04-2012 TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR Simportadores: son proteínas que transportan una sustancia junto con otra, frecuentemente un protón (H+). TRANSPORTE ACTIVO PRIMARIO: BOMBA DE SODIO Y POTASIO Se encuentra en todas las células del organismo, en cada ciclo consume una molécula de ATP y es la encargada de transportar 2 iones de potasio que logran ingresar a la célula, al mismo tiempo bombea 3 iones sodio desde el interior hacia el exterior de la célula (exoplasma), ya que químicamente tanto el sodio como el potasio poseen cargas positivas el resultado es ingreso de 2 iones potasio (Ingreso de 2 cargas positivas) y egreso de 3 iones sodio (Egreso de 3 cargas positivas) esto da como resultado una pérdida de la electro positividad interna de la célula lo que convierte a su medio interno en un medio "electronegativo con respecto al medio extracelular". En caso particular de las neuronas en estado de reposo esta diferencia de cargas a ambos lados de la membrana se llama potencial de membrana o de reposo-descanso. Participa activamente en el impulso nervioso, ya que a través de ella se vuelve al estado de reposo. TRANSPORTE ACTIVO SECUNDARIO O COTRANSPORTE Es el transporte de sustancias que normalmente no atraviesan la membrana celular tales como los aminoácidos y la glucosa, cuya energía requerida para el transporte deriva del gradiente de concentración de los iones sodio de la membrana celular (como el gradiente producido por el sistema glucosa/sodio del intestino delgado). Intercambiador calcio-sodio: Es una proteína de la membrana celular de todas las células eucariotas. Su función consiste en transportar calcio iónico (Ca2+) hacia el exterior de la célula empleando para ello el gradiente de sodio; su finalidad es mantener la baja concentración de Ca2+ en el citoplasma que es unas diez mil veces menor que en el medio externo. Por cada catión Ca2+expulsado por el intercambiador al medio extracelular penetran tres cationes Na+ al interior celular.1 Se sabe que las variaciones en la concentración intracelular del Ca2+ (segundo mensajero) se producen como respuesta a diversos estímulos y están involucradas en procesos como la contracción muscular, la expresión genética, la diferenciación celular, la secreción, y varias funciones de las neuronas. Dada la variedad de procesos metabólicos regulados por el Ca2+, un aumento de la concentración de Ca2+ en el citoplasma puede provocar un funcionamiento anormal de los mismos. Si el aumento de la concentración de Ca2+ en la fase acuosa del citoplasma se aproxima a un décimo de la del medio externo, el trastorno metabólico producido conduce a la muerte celular. El calcio es el mineral más abundante del organismo, además de cumplir múltiples funciones. 4 COLEGIO EUSTORGIO COLMENARES BAPTISTA “COMPROMETIDOS CON EL PROCESO DE CALIDAD” ASIGNATURA BIOLOGIA GRADO UNDECIMO DOCENTE SANDRA ROCIO PUERTO B ESTUDIANTE ___________________________ DOCUMENTO LECTURA COMPLEMENTARIA PERIODO 1 FECHA 03-04-2012 TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR Transporte en masa 5 Las macromoléculas o partículas grandes se introducen o expulsan de la célula por dos mecanismos: Endocitosis La endocitosis es el proceso celular, por el que la célula mueve hacia su interior moléculas grandes o partículas, este proceso se puede dar por evaginación, invaginación o por mediación de receptores a través de su membrana citoplasmática, formando una vesícula que luego se desprende de la pared celular y se incorpora al citoplasma. Esta vesícula, llamada endosoma, luego se fusiona con un lisosoma que realizará la digestión del contenido vesicular. Existen tres procesos: COLEGIO EUSTORGIO COLMENARES BAPTISTA “COMPROMETIDOS CON EL PROCESO DE CALIDAD” ASIGNATURA BIOLOGIA GRADO UNDECIMO DOCENTE SANDRA ROCIO PUERTO B ESTUDIANTE ___________________________ DOCUMENTO LECTURA COMPLEMENTARIA PERIODO 1 FECHA 03-04-2012 TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR Pinocitosis: consiste en la ingestión de líquidos y solutos mediante pequeñas vesículas. Fagocitosis: consiste en la ingestión de grandes partículas que se engloban en grandes vesículas (fagosomas) que se desprenden de la membrana celular. Endocitosis mediada por receptor o ligando: es de tipo específica, captura macromoléculas específicas del ambiente, fijándose a través de proteínas ubicadas en la membrana plasmática (especificas). Una vez que se unen a dicho receptor, forman las vesículas y las transportan al interior de la célula. La endocitosis mediada por receptor resulta ser un proceso rápido y eficiente. Exocitosis Es la expulsión de sustancias como la insulina a través de la fusión de vesículas con la membrana celular. La exocitosis es el proceso celular por el cual las vesículas situadas en el citoplasma se fusionan con la membrana citoplasmática, liberando su contenido. La exocitosis se observa en muy diversas células secretoras, tanto en la función de excreción como en la función endocrina. También interviene la exocitosis en la secreción de un neurotransmisor a la brecha sináptica, para posibilitar la propagación del impulso nervioso entre neuronas. La secreción química desencadena una despolarización del potencial de membrana, desde el axón de la célula emisora hacia la dendrita (u otra parte) de la célula receptora. Este neurotransmisor será luego recuperado por endocitosis para ser reutilizado. Sin este proceso, se produciría un fracaso en la transmisión del impulso nervioso entre neuronas. Plasmólisis: Se produce ya que las condiciones del medio extracelular son hipertónicas; debido a esto, el agua que hay dentro de la vacuola sale al medio hipertónico (ósmosis) y la célula se deshidrata ya que pierde el agua que la llenaba. Finalmente se puede observar cómo la membrana celular se separa de la pared (la célula se plasmoliza). Si es que este fenómeno ocurre, la planta corre el riesgo de una muerte segura. Al menos hasta que consiga agua que llene la vacuola, volviéndose la célula turgente nuevamente y que se recupere. Es lo opuesto de turgencia Crenación: La crenación es el fenómeno de destrucción de la célula animal cuando es sometida a una solución hipertónica. Al estar en una solución con gran cantidad de soluto, tiende a liberar agua, por lo que se contrae y pierde agua liberándola hacia la solución. La destrucción de la célula es por deshidratación Turgencia: determina el estado de rigidez de una célula, es el fenómeno por el cual las células al absorber agua, se hinchan, ejerciendo presión contra las membranas celulares, las cuales se ponen tensas. 6 COLEGIO EUSTORGIO COLMENARES BAPTISTA “COMPROMETIDOS CON EL PROCESO DE CALIDAD” ASIGNATURA BIOLOGIA GRADO UNDECIMO DOCENTE SANDRA ROCIO PUERTO B ESTUDIANTE ___________________________ DOCUMENTO LECTURA COMPLEMENTARIA PERIODO 1 FECHA 03-04-2012 TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR Hemolisis: es el fenómeno de la desintegración de los eritrocitos (glóbulos rojos o hematíes). El eritrocito carece de núcleo y orgánulos, por lo que no puede repararse y muere cuando se «desgasta». Este proceso está muy influido por la tonicidad del medio en el que se encuentran los eritrocitos. Por ejemplo, en una solución hipotónica con respecto al eritrocito, éste pasa por un estado de turgencia (se hincha por el exceso de líquido) y luego esta célula estalla debido a la presión Hipertónico: una solución hipertónica es aquella que tiene mayor concentración de soluto en el medio externo, por lo que una célula en dicha solución pierde agua (H2O) debido a la diferencia de presión, es decir, a la presión osmótica, llegando incluso a morir por deshidratación. Hipotónico: una solución hipotónica es aquella que tiene menor concentración de soluto en el medio externo en relación al medio citoplasmático de la célula. Una célula sumergida en una solución con una concentración más baja de materiales disueltos, está en un ambiente hipotónico; la concentración de agua es más alta (a causa de tener tan pocos materiales disueltos) fuera de la célula que dentro. Bajo estas condiciones, el agua se difunde a la célula, es decir, se produce ósmosis de líquido hacia el interior de la célula. Una célula en ambiente hipotónico se hincha con el agua y puede explotar; cuando se da este caso en los glóbulos rojos de la sangre, se denomina hemólisis Isotónico: El medio o solución y la vuelta a la célula hace que se convierta en isotónica es aquél en el cual la concentración de soluto es la misma fuera y dentro de una célula. 7