Three Geometric Approaches for representing Decision Rules in a

Anuncio
#!
!
$(
-
$
% !" & '
+,
)*
! "
'
"
" "
!.
!
!
.
!
" - /0 1
!
!!
- .
)!
" !
!
'
- 0 " !
/ 21
!"
- - .
.
! !
"3 -! .
.
! .!
!
.
- " !
4'
- .
!! !
4-!! .
"
!
54 - 4
(
- - 6!!
!
6
54 (" ! - .
!
. "
'
4 7 89:; 4
!
.
.
!
/6 (
1" 0
!- - .
!
!-!
" !4 6
4 . !
. - (
- !
(9 !
" .
!
!' " - .-'
4 -' ' !
/ 21
!
"
- ! !
.
- 7(
!
4 -!
!' !
<
7
!- !
8=;"
2 .
"
! 2
(
<
.!
!
!
!
.
- '
! .
"
2
4
! )
$
$
""""""""""""""""""""""""""""""""""""""""""""
$ >
?
- 6
!.
- . . 4
&@
"
A
D
@ N@$
@="B
H& $
="=
JJ"I
B"K
$ E
I":
KL"=
9:"L
C (D
H& $
KM"M
$
$ E
J"=J
KJ"K
.
$
!
.
! !
'
! 4 6
!
E
$ FGD$ $@"
H& $
$ E
:"I
9J"=
! "
K"K
B":L
!
FGD$ $
H& $
="K
#
K"I
D @
$ E
B"I
KI"L
B"M
"
7 @="B8K;
'
-
6.
"
%
89;
8K;
8:;
8=;
"
"
"
'
" !
N
!
" " @="B)
!"
"
" '
.
!
F
!-! @
'
"/
'
" "
!
"
!-
2
2
.
F
!-! 2
'
! 9=9B"
::I(:=I"
(O
Q
D ." 9PP:"
!
! RB" 0 (.
-1
:L(=: 9PPL"
LJ" " KKP(K=I"
9PPL"
.
Descargar