Práctica PB2 MODOS DE OPERACIÓN DEL TRANSISTOR BIPOLAR

Anuncio
eLab, Laboratorio Remoto de Electrónica
ITESM, Depto. de Ingeniería Eléctrica
Práctica PB2
MODOS DE OPERACIÓN DEL TRANSISTOR BIPOLAR
OBJETIVOS
Conocer los diferentes modos de operación del transistor bipolar y las características que
presenta este dispositivo al operar en cada uno de estos modos (zonas de operación).
Analizar teóricamente y de forma experimental circuitos de polarización con transistores
bipolares e identificar la zona de operación en cada caso.
1.1 INTRODUCCIÓN
El transistor bipolar o BJT es un dispositivo de tres capas de material semiconductor. En la
Figura 1 se muestra una representación física de la estructura básica de dos tipos de transistor bipolar:
NPN y PNP, en dicha figura también se ilustran sus respectivos símbolos eléctricos. El transistor
bipolar NPN contiene una delgada región p entre dos regiones n. Mientras que el transistor bipolar PNP
contiene una delgada región n entre dos regiones p. La capa intermedia de material semiconductor se
conoce como región de la base, mientras que las capas externas conforman las regiones de colector y de
emisor. Estas están asociadas a las terminales de base, colector y emisor respectivamente.
C
B
C
B
E
E
Transistor Bipolar tipo NPN
Transistor Bipolar tipo PNP
Figura 1. Representación física de la estructura básica de dos tipos de transistores bipolares: NPN y
PNP, y sus respectivos símbolos eléctricos.
Modos de operación y aplicaciones
Dependiendo de la polarización de las dos uniones PN que conforman los transistores bipolares,
estos pueden operar normalmente en tres zonas de operación: zona de corte, zona activa y zona de
saturación. Para las aplicaciones del transistor como amplificador es necesario operar el dispositivo en
la zona activa. Para utilizar el transistor como un interruptor electrónico se requiere operarlo en las
zonas de corte (como interruptor apagado) y saturación (como interruptor encendido). A continuación
se presenta una breve descripción de cada una de estas zonas de operación.
-1-
PB2 – Modos de operación del BJT
Operación en la zona de corte. En esta zona existe una muy pequeña cantidad de corriente circulando
del emisor al colector, comportándose el transistor de manera análoga a un circuito abierto. La
característica que define la zona de corte es que ambas uniones, tanto la unión colector-base como la
unión base-emisor, se encuentran polarizadas inversamente.
Operación en la zona de saturación. En la zona de saturación circula una gran cantidad de corriente
desde el colector al emisor y se tiene solo una pequeña caída de voltaje entre estas terminales. El
comportamiento del transistor es análogo al de un interruptor cerrado. Esta zona se caracteriza porque
las uniones colector-base y base-emisor se encuentran polarizadas directamente.
Operación en la región activa. La región activa del transistor bipolar es la zona que se utiliza para usar
el dispositivo como amplificador. La característica que define a la región activa es que la unión
colector-base esta polarizada inversamente, mientras que la unión base-emisor se encuentra polarizada
en forma directa.
Características de Voltaje contra Corriente
Para describir el comportamiento de los transistores bipolares, se requiere de dos conjuntos de
características, que dependen a su vez de la configuración usada. Una de ellas describe la característica
de voltaje contra corriente de entrada, y la otra, la característica de voltaje contra corriente de salida.
Configuración de base común. En esta configuración, la terminal de la base es común a los lados de
entrada (Emisor) y salida (Colector), y usualmente se conecta a un potencial de tierra (o se encuentra
más cercana a este potencial). Esta configuración se ilustra en la Figura 2. La fuente de voltaje VBB
brinda polarización directa a la unión B-E y controla la corriente del emisor IE.
RE
E
C
RC
-
+
VBB
-
IE
B
IB
+
VBC
IC
VCC
+
Figura 2. Configuración de circuito de base común para un transistor PNP
En esta configuración, la característica de corriente-voltaje de entrada, relaciona la corriente de
entrada IE con un voltaje de entrada VEB (o VBE para un transistor NPN). Esta característica se puede
observar en la Figura 3(a). A su vez, la característica de corriente-voltaje de salida relaciona la
corriente de salida IC con un voltaje de salida VBC (o VCB para un transistor NPN) para varios niveles de
corriente de entrada IE. Esta característica se presenta en la Figura 3(b).
-2-
PB2 – Modos de operación del BJT
IC (mA)
IE (mA)
9
8
7
6
5
4
3
2
1
s
a
t
u
r
a
c
d ói
e n
R
e
g
i
ó
n
7
7 mA
6
6 mA
5
5 mA
Región Activa
4
4 mA
3
3 mA
2
2 mA
1
IE=1 mA
IE=0 mA
0.2 0.4 0.6 0.8
5
VBE (V)
VBE (V) npn, o VEB (V) pnp
10
Región de corte
15
20 VCB (V)
VCB (V) npn, o VBC (V) pnp
a) Característica VI de entrada
b) Característica VI de salida
Figura 3. Características corriente-voltaje del transistor en configuración base común.
Configuración en emisor común. La configuración de transistores que se encuentra con mayor
frecuencia se denomina configuración de emisor común, se denomina así dado que el emisor es común
tanto al lado de entrada (Base) como al de salida (Colector). En la Figura 4 se ilustra un circuito de
emisor común con un transistor NPN. En este circuito, la fuente VBB polariza directamente la unión B-E
y controla la corriente de base. El voltaje C-E puede variar cambiando VCC.
IC
C
RB
+
VBB
-
B
+V
BE
IB
-
+
VCE
-
E
IE
RC
+
VCC
-
Figura 4. Configuración en emisor común con un transistor NPN.
En esta configuración también se necesitan de dos características del transistor para describir su
comportamiento (ver Figuras 5 (a) y 5 (b)). La primera corresponde a la relación de entrada, la cual es
una gráfica de la corriente de entrada IB contra el voltaje de entrada VBE (o voltaje VEB para un transistor
PNP). La segunda, es la relación entre la corriente de salida IC contra el voltaje de salida VCE (o voltaje
VEC para un transistor PNP) para diversos valores constantes de la corriente de base IB.
-3-
PB2 – Modos de operación del BJT
IC (mA)
90 A
9
IB ( A)
80 AA
80
m
8
90
80
70
60
50
40
30
20
10
70 A
7
s
a
t
u
r
a
c
d ói
e n
R
e
g
i
ó
n
60 A
6
50 A
5
Región Activa
40 A
4
30 A
3
20 A
2
10 A
1
IB =0 A
0.2 0.4 0.6 0.8
VBE (V)
VCE (sat)
VBE (V) npn, o VEB (V) pnp
VEC (sat)
a) Característica VI de entrada
5
10
15
Región de corte
20 VCE (V)
VCE (V) npn, o VEC (V) pnp
b) Característica VI de salida
Figura 5. Características corriente-voltaje de un transistor en configuración emisor común.
Al observar las características de entrada, tanto de la configuración de emisor común como de la
de base común, se observa un comportamiento similar al del diodo, por lo que se puede hacer la
siguiente aproximación. Cuando el transistor se encuentre encendido o en conducción el voltaje de base
a emisor (o de emisor a base) es aproximadamente 0.7 volts.
VBE
0.7 V para un transistor NPN, y VEB
0.7 V para un transistor PNP
Configuración en colector común. Este tipo de configuración se utiliza fundamentalmente para
propósitos de acoplamiento de impedancias ya que tiene una alta impedancia de entrada y una baja
impedancia de salida, siendo esto lo opuesto a las configuraciones de base común y emisor común. Las
características de salida de la configuración de colector común son las mismas que las de emisor
común.
Bibliografía
Libro de Texto:
Microelectronics; Circuit Analysis and Design (Chapter 1)
Donal A. Neamen, McGraw Hill, 3rd Edition, 2007
Libros de Consulta:
Electronic Devices (Chapter 1)
Thomas L. Floyd, Prentice Hall, 6th Edition, 2002
Electronic Circuits; Analysis, Simulation, and Design (Chapter 3)
Norbert R. Malik, Prentice Hall, 1995
Electronic Devices and Circuits (Chapter 1 and 2)
Robert T. Paynter, Prentice Hall, 7th Edition, 2006
-4-
PB2 – Modos de operación del BJT
1.2 ACTIVIDAD PREVIA
Instrucciones
Siga detalladamente las instrucciones para cada uno de los puntos que se presentan en la
presente actividad. Conteste y/o resuelva lo que se le pide en los espacios correspondientes para cada
pregunta. Hágalo de manera ordenada y clara. En el reporte agregue en el espacio asignado gráficas
comparativas, análisis de circuitos, simulaciones en computadora, ecuaciones, referencias
bibliográficas, ejemplos, aplicaciones, según sea el caso. No olvide colocar una portada con sus datos
de identificación así como los datos relacionados con la práctica en cuestión, como número de práctica,
titulo, fecha, etc.
Desarrollo de la actividad previa
I) Lea detenidamente el capitulo 5 de su libro de texto (El Transistor de Unión Bipolar) y conteste lo
siguiente:
Para un transistor bipolar NPN y PNP, indique como deben polarizarse las uniones base-emisor
y base-colector para que éste opere en el modo activo.
_____________________________________________________________________________
____________________________________________________________
¿Que condiciones se requieren para que un transistor opere en la región de corte y saturación?
¿Que caracteriza a cada una de estas regiones?
_____________________________________________________________________________
____________________________________________________________
Explique el concepto de corrientes de fuga en un transistor bipolar.
_____________________________________________________________________________
____________________________________________________________
Explique el concepto de línea de carga de CD y su relación con los modos de operación de un
transistor bipolar en un circuito de polarización.
_____________________________________________________________________________
____________________________________________________________
De acuerdo a la característica de salida de la Figura 5b determine el valor aproximado de la
ganancia de corriente (hFE) del transistor.
_____________________________________________________________________________
II) Análisis de un circuito en configuración emisor común. Analice el circuito en configuración
emisor común que se ilustra en la Figura 4 para las siguientes tres condiciones:
Región activa. Suponga que el transistor opera en la región activa, en este punto el voltaje
VBB>VBE(on), donde VBE(on), representa el voltaje base-emisor de encendido. a) Analice la malla
Emisor-Base, y utilizando la ecuación de la Ley de voltajes de Kirchhoff determine una expresión
matemática para la corriente IB. b) Determine una expresión matemática para la corriente IC en
función de la corriente IB obtenida en el inciso (a). c) Analice la malla Colector-Emisor, y utilizando
-5-
PB2 – Modos de operación del BJT
la ecuación de la Ley de voltajes de Kirchhoff determine una expresión matemática para el voltaje
VCE. Realice las operaciones analíticas en el espacio asignado enseguida.
Análisis
Resumen de Ecuaciones
(Realice sus análisis en esta columna para cada uno de los incisos)
(Escriba las ecuaciones obtenidas)
a) Calculo de la corriente IB
IB=
b) Cálculo de la corriente IC
IC=
c) Cálculo del voltaje VCE
VCE=
Región de saturación. Suponga que el transistor opera en la región de saturación, en este punto el
voltaje VBB>VBE(on), donde VBE(on), representa el voltaje base-emisor de encendido. a) Analice la
malla Emisor-Base, y utilizando la ecuación de la Ley de voltajes de Kirchhoff determine una
expresión matemática para la corriente IB. b) Analice la malla Colector-Emisor, y utilizando la
ecuación de la Ley de voltajes de Kirchhoff determine una expresión matemática para la corriente
IC(sat) en función del voltaje VCE(sat) proporcionado por el fabricante. Realice las operaciones analíticas
en el espacio asignado enseguida.
Análisis
Resumen de Ecuaciones
(Realice sus análisis en esta columna para cada uno de los incisos)
(Escriba las ecuaciones obtenidas)
a) Calculo de la corriente IB de saturación
b) Cálculo de la corriente de saturación ICsat
Voltaje de Colector-Emisor de saturación proporcionado por el
fabricante VCEsat =
IB=
ICsat =
Región de corte. Suponga que el transistor opera en la región de corte, en este punto el voltaje
0<VBB<VBE(on), donde VBE(on), representa el voltaje base-emisor de encendido. a) Determine el valor
de la corriente IB e IC para esta condición b) Tomando en cuenta el resultado del inciso anterior,
analice la malla Colector-Emisor, y utilizando la ecuación de la Ley de voltajes de Kirchhoff
-6-
PB2 – Modos de operación del BJT
determine una expresión matemática para el voltaje VCE. Realice las operaciones analíticas en el
espacio asignado enseguida.
Análisis
Resumen de Ecuaciones
(Realice sus análisis en esta columna para cada uno de los incisos)
(Escriba las ecuaciones obtenidas)
a) Calculo de la corriente IB e IC de corte
IBcorte =
ICcorte =
b) Cálculo del voltaje de corte VCEcorte
VCEcorte =
III) Imprima las primeras hojas de datos del fabricante para el siguiente modelo de transistor: 2N3904.
Estudie esta hoja de datos y conteste lo siguiente:
Especifique claramente el tipo de Transistor e identifique sus terminales
Tipo de Transistor:
Terminales:
1
2
3
Obtener los siguientes parámetros considerando una operación a temperatura ambiente (25°C).
Voltaje de Base a Emisor VBE en modo Activo
Voltaje de Base a Emisor VBE en Saturación
Voltaje de Colector a Emisor de Saturación VCE
Ganancia de Corriente hFE ( F) en modo Activo
Corriente continua máxima de Colector IC
Voltaje máximo de Colector a Emisor
Disipación máxima de potencia del Transistor
Finalmente, en las hojas de datos impresas, subraye en color rojo, los datos que se presentaron
en la tabla anterior. Anexe esta información como parte del reporte de esta actividad.
-7-
PB2 – Modos de operación del BJT
1.3 PROCEDIMIENTO
En esta sección se analiza un circuito con transistor bipolar en configuración Emisor Común y
se determinan, a partir de las mediciones realizadas, cada uno de los modos de operación estudiados en
la actividad previa. Este análisis se llevara a cabo realizando mediciones de voltaje y corriente en
varios puntos de interés del circuito utilizando la interfase gráfica del Laboratorio Remoto de
Electrónica (eLab). Se realiza también un análisis teórico del circuito y se comparan posteriormente
estos resultados con los que arrojan las mediciones del mismo.
Para cada una de las mediciones y/o cálculos efectuados se deben agregar enseguida las
unidades respectivas, por ejemplo: para mediciones de voltaje utilizar V, mV, V (rms), etc; para las de
corriente A, mA, A (rms), etc; para frecuencia utilizar Hz o rad/s, según el caso; etc.
Circuito con Transistor Bipolar NPN en configuración Emisor Común
A continuación se presenta el procedimiento que servirá de guía durante el análisis del circuito
en configuración Emisor Común que se ilustra en la Figura 6. Los valores exactos de los componentes,
tal como el de la fuente Vcc, se encuentran disponibles dentro de la interfase gráfica del Laboratorio
Remoto de Electrónica (eLab).
Figura 6. Circuito con transistor bipolar NPN en configuración Emisor Común.
a) Medición del voltaje de alimentación Vcc. En este punto del procedimiento mida el voltaje exacto
de la fuente de alimentación Vcc y coloque el resultado de esta medición enseguida. Este dato es
importante ya que se utilizará en cálculos posteriores.
Voltaje de alimentación.
Vcc=
-8-
PB2 – Modos de operación del BJT
I) Modo de operación 1
A continuación se llevaran a cabo mediciones de voltaje y corriente en el circuito de la práctica.
Con los resultados de estas mediciones se deberá determinar el modo de operación del transistor. Para
este inciso ajuste el voltaje de la fuente VBB a un valor de 1.5 V y realice las mediciones que se indican
enseguida.
a) Mida los voltajes entre las terminales base-emisor (VBE) y base-colector (VBC) del transistor.
Coloque los valores medidos en la casilla “Resultado de la medición”.
“Resultado analítico”
“Resultado de la medición”
Voltaje Base-Colector
VBC =
VBC =
Voltaje Base-Emisor
VBE =
VBE =
b) Observe los resultados obtenidos directamente de las mediciones anteriores y determine la
polarización de las juntas Base-Emisor y Base-Colector.
Tipo de polarización
Junta Base-Emisor
JBE:
Junta Base-Colector
JBC:
c) Basado en los resultados de las mediciones especifique el modo en el que se encuentra operando el
transistor. Proporcione una justificación para su respuesta.
___________________________________________________________________________________
__________________________________________________________________
d) Realice las mediciones adecuadas en el circuito y a partir de ellas determine el valor de la corriente
de base IB, el de la corriente de colector IC y el de la corriente de emisor IE. Coloque los valores de estas
corrientes en la casilla “Resultado de la medición”. Posteriormente y con los valores medidos para VBE,
Vcc y F (este ultimo se medirá en el siguiente inciso del procedimiento) determine analíticamente el
valor de estas mismas corrientes, coloque estos resultados en la casilla “Resultado analítico”
“Resultado analítico”
“Resultado de la medición”
Corriente de Base
IB=
IB=
Corriente de Colector
IC=
IC=
Corriente de Emisor
IE=
IE=
Realice el análisis del circuito en el siguiente espacio:
-9-
PB2 – Modos de operación del BJT
e) Tomando en cuenta el valor de las corrientes medidas en el inciso anterior determine el factor de
amplificación del transistor F (también llamada ganancia de corriente hFE en la hoja de datos
proporcionada por el fabricante). Coloque sus operaciones y el resultado en la casilla “Resultado de la
medición”. En la casilla restante coloque el valor de hFE proporcionado por el fabricante en la hoja de
especificaciones para este modelo del transistor.
“Resultado de la medición”
Hoja de datos
Factor de amplificación
F
= hFE =
F
F
= hFE =
f) Tomando los resultados del inciso anterior calcule la ganancia de corriente de base común
“Resultado de la medición”
Hoja de datos
Ganancia de corriente de base común
F=
F.
F=
g) Mida el voltaje entre las terminales colector-emisor (VCE) del transistor. Coloque los valores
medidos en la casilla “Resultado de la medición”. Enseguida y utilizando los resultados de las
mediciones de corriente determine analíticamente el valor de este voltaje.
“Resultado analítico”
Voltaje Colector-Emisor
VCE=
“Resultado de la medición”
VCE=
h) Agregue una imagen o print screen del osciloscopio con el despliegue, en los 4 canales, del voltaje
VBB, VCC, VBE y VBC. En la misma imagen habilite los dos cursores para medir los voltajes VBB y VCC.
II) Modo de operación 2
Para este modo de operación, ajuste el voltaje de la fuente VBB a un valor de 3.5 V y realice las
mediciones que se indican a continuación.
a) Mida los voltajes entre las terminales base-emisor (VBE) y base-colector (VBC) del transistor.
Coloque los valores medidos en la casilla “Resultado de la medición”.
“Resultado analítico”
“Resultado de la medición”
Voltaje Base-Colector
VBC =
VBC =
Voltaje Base-Emisor
VBE =
VBE =
b) Observe los resultados obtenidos directamente de las mediciones anteriores y determine la
polarización de las juntas Base-Emisor y Base-Colector.
Tipo de polarización
Junta Base-Emisor
JBE:
Junta Base-Colector
JBC:
- 10 -
PB2 – Modos de operación del BJT
c) Basado en los resultados de las mediciones especifique el modo en el que se encuentra operando el
transistor. Proporcione una justificación para su respuesta.
___________________________________________________________________________________
__________________________________________________________________
d) Realice las mediciones adecuadas en el circuito y a partir de ellas determine el valor de la corriente
de base IB, el de la corriente de colector IC y el de la corriente de emisor IE. Coloque los valores de estas
corrientes en la casilla “Resultado de la medición”. Posteriormente y con los valores medidos para VBE,
Vcc y F (este ultimo se medirá en el siguiente inciso del procedimiento) determine analíticamente el
valor de estas mismas corrientes. Coloque los resultados del calculo analítico en la casilla “Resultado
analítico”.
“Resultado analítico”
“Resultado de la medición”
Corriente de Base
IB=
IB=
Corriente de Colector
IC=
IC=
Corriente de Emisor
IE=
IE=
Realice el análisis del circuito en el siguiente espacio:
e) Tomando en cuenta el valor de las corrientes medidas en el inciso anterior determine el factor de
amplificación del transistor F (también llamada ganancia de corriente hFE en la hoja de datos
proporcionada por el fabricante). Coloque sus operaciones y el resultado en la casilla “Resultado de la
medición”. En la casilla restante coloque el valor de hFE proporcionado por el fabricante en la hoja de
especificaciones para este modelo del transistor.
“Resultado de la medición”
Hoja de datos
Factor de amplificación
F
F
= hFE =
F
= hFE =
f) Tomando los resultados del inciso anterior calcule la ganancia de corriente de base común
Hoja de datos
Ganancia de corriente de base común
F=
- 11 -
F.
“Resultado de la medición”
F=
PB2 – Modos de operación del BJT
g) Mida el voltaje entre las terminales colector-emisor (VCE) del transistor. Coloque los valores
medidos en la casilla “Resultado de la medición”. Enseguida y utilizando los resultados de las
mediciones de corriente determine analíticamente el valor de este voltaje.
“Resultado analítico”
Voltaje Colector-Emisor
VCE=
“Resultado de la medición”
VCE=
III) Modo de operación 3
Para este otro modo de operación, ahora ajuste el voltaje de la fuente VBB a un valor de -2.0V
(voltaje negativo) y realice las mediciones que se indican a continuación.
a) Mida los voltajes entre las terminales base-emisor (VBE) y base-colector (VBC) del transistor.
Coloque los valores medidos en la casilla “Resultado de la medición”.
“Resultado analítico”
“Resultado de la medición”
Voltaje Base-Colector
VBC =
VBC =
Voltaje Base-Emisor
VBE =
VBE =
b) Observe los resultados obtenidos directamente de las mediciones anteriores y determine la
polarización de las juntas Base-Emisor y Base-Colector.
Tipo de polarización
Junta Base-Emisor
JBE:
Junta Base-Colector
JBC:
c) Basado en los resultados de las mediciones especifique el modo en el que se encuentra operando el
transistor. Proporcione una justificación para su respuesta.
___________________________________________________________________________________
__________________________________________________________________
d) Realice las mediciones adecuadas en el circuito y a partir de ellas determine el valor de la corriente
de base IB, el de la corriente de colector IC y el de la corriente de emisor IE. Coloque los valores de estas
corrientes en la casilla “Resultado de la medición”. Posteriormente y con los valores medidos para VBE,
Vcc y F (este ultimo se medirá en el siguiente inciso del procedimiento) determine analíticamente el
valor de estas mismas corrientes. Coloque los resultados del calculo analítico en la casilla “Resultado
analítico”.
“Resultado analítico”
“Resultado de la medición”
Corriente de Base
IB=
IB=
Corriente de Colector
IC=
IC=
Corriente de Emisor
IE=
IE=
- 12 -
PB2 – Modos de operación del BJT
Realice el análisis del circuito en el siguiente espacio:
g) Mida el voltaje entre las terminales colector-emisor (VCE) del transistor. Coloque los valores
medidos en la casilla “Resultado de la medición”. Enseguida y utilizando los resultados de las
mediciones de corriente determine analíticamente el valor de este voltaje.
“Resultado analítico”
Voltaje Colector-Emisor
VCE=
“Resultado de la medición”
VCE=
Compare el resultado obtenido directamente de la medición para el voltaje VCE con el voltaje de
alimentación Vcc. Escriba sus observaciones en las siguientes líneas.
________________________________________________________________________________
_______________________________________________________________
IV) Transición entre modos de operación
En esta parte del procedimiento se investigarán los límites (superior e inferior) en el valor del
voltaje de entrada VBB que mantienen operando al transistor en la zona activa. Se observará la
transición entre esta zona y las zonas de saturación y corte. A continuación se describe dicho
procedimiento.
a) Región activa. Varíe el voltaje de entrada VBB y realice las mediciones necesarias, de tal forma que
pueda determinar el intervalo de voltaje (V(min) < VBB < V(max)) que mantiene al transistor operando en
la región activa. Una vez efectuado lo anterior proceda a llenar la siguiente tabla.
V(min) < VBB < V(max)
Intervalo de voltaje VBB que mantiene
operando al transistor en la Región Activa
_________< VBB <__________
b) Enseguida ajuste el voltaje de la fuente de entrada VBB a los valores V(min) y V(max) encontrados en el
inciso anterior y proceda a medir la corriente de colector en cada caso. De esta forma se habrá
encontrado el intervalo de la corriente de colector para la Región Activa. Escriba este intervalo en el
siguiente recuadro.
Ic(max) < IC < Ic(min)
Intervalo de la corriente de colector Ic para
la Región Activa.
- 13 -
__________< Ic <___________
PB2 – Modos de operación del BJT
c) Región de saturación. Incremente el voltaje de entrada VBB y realice las mediciones necesarias, de
tal forma que pueda determinar el voltaje de VBB que hace que el transistor cambie su operación de la
región activa a la región de saturación. Una vez efectuado lo anterior proceda a llenar la siguiente tabla.
VBB >VBBsat
(donde VBBsat es el voltaje que al ser superado por VBB lleva
a saturación al transistor)
Intervalo de voltaje VBB que mantiene operando
al transistor en la Región de Saturación
VBB >__________
d) Enseguida ajuste el voltaje de la fuente de entrada VBB al valor VBBsat encontrado en el inciso
anterior y proceda a medir la corriente de colector. De esta forma se habrá encontrado el valor de la
corriente de saturación del circuito. Escriba este valor en el siguiente recuadro.
IC = Icsat
Corriente de colector Ic para la Región de
Saturación.
Ic= Icsat =___________
Incremente el voltaje de la fuente de entrada VBB por arriba de VBB(sat) y mida la corriente de
colector para varios valores de este voltaje. Describa el comportamiento de esta corriente en las
siguientes líneas.
________________________________________________________________________________
______________________________________________________________
e) Región de corte. Modifique el voltaje de entrada VBB y realice las mediciones necesarias, de tal
forma que pueda determinar el voltaje de VBB que hace que el transistor cambie su operación de la
región activa a la región de corte. Una vez efectuado lo anterior proceda a llenar la siguiente tabla.
VBB <VBBcorte
(donde VBB(corte) es el voltaje de VBB limite que lleva a al
transistor al estado de corte)
Intervalo de voltaje VBB que mantiene operando
al transistor en la Región de Corte
VBB < __________
f) Enseguida ajuste el voltaje de la fuente de entrada VBB al valor VBB(corte) encontrado en el inciso
anterior y proceda a medir la corriente de colector. Escriba este valor en el siguiente recuadro.
Corriente de colector Ic para la Región de Corte.
IC = Iccorte
Ic= Iccorte =___________
Reduzca el voltaje de la fuente de entrada VBB por debajo de VBB(corte) y mida la corriente de
colector para varios valores de este voltaje. Describa el comportamiento de esta corriente en las
siguientes líneas.
________________________________________________________________________________
______________________________________________________________
- 14 -
PB2 – Modos de operación del BJT
1.4 ACTIVIDADES Y CONCLUSIONES FINALES
1) Con los resultados obtenidos en el procedimiento proceda a llenar la siguiente tabla comparativa,
ZONA DE CORTE
ZONA ACTIVA
ZONA DE SATURACIÓN
VBE(corte) < ______
_______ < VBE < _______
VBE(sat) ≥ ______
IB(corte) = ______
_______ < IB < _______
IB(sat) = ______
IC(corte) = ______
_______ < IC < _______
IC(sat) = ______
IE(corte) = ______
_______ < IE < _______
IE(sat) = ______
VCE(corte) = ______
_______ < VCE < _______
VCE(sat) = ______
Observe los límites para la zona activa y compárelos con los valores obtenidos para la región de
saturación y corte. Escriba sus conclusiones en las siguientes líneas.
________________________________________________________________________________
________________________________________________________________
2) Utilizando los resultados obtenidos en los puntos I, II y III del procedimiento. Compare la
polarización de las juntas Base-Emisor y Base-Colector para los tres modos de operación, para ello
complete la siguiente tabla.
Región de operación
Junta Base-Emisor
Junta Base-Colector
(Tipo de polarización)
(Tipo de polarización)
ACTIVA
JBE:
JBC:
SATURACIÓN
JBE:
JBC:
CORTE
JBE:
JBC:
3) Con los resultados obtenidos directamente de las mediciones dibuje la Línea de Carga de Corriente
Directa en el siguiente espacio (Ver Figura 5b) e indique en ella los puntos de operación para la zona
activa, de corte y de saturación. Indique los valores de voltaje (VCE ) y corriente (IC) en cada punto de
operación. Indique también el valor de la corriente de base para cada punto.
5) Anote enseguida sus conclusiones generales de la presente práctica:
- 15 -
Descargar