26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES SISTEMAS Un sistema es un conjunto de partes o elementos organizadas y relacionadas que interactúan entre sí para lograr un objetivo. Los sistemas reciben (entrada) datos, energía o materia del ambiente y proveen (salida) información, energía o materia. Un sistema puede ser físico o concreto (una computadora, un televisor, un humano) o puede ser abstracto o conceptual (un software) Cada sistema existe dentro de otro más grande, por lo tanto un sistema puede estar formado por subsistemas y partes, y a la vez puede ser parte de un supersistema. Los sistemas tienen límites o fronteras (Ver: frontera de un sistema), que los diferencian del ambiente. Ese límite puede ser físico (el gabinete de una computadora) o conceptual. Si hay algún intercambio entre el sistema y el ambiente a través de ese límite, el sistema es abierto, de lo contrario, el sistema es cerrado. El ambiente es el medio en externo que envuelve física o conceptualmente a un sistema. El sistema tiene interacción con el ambiente, del cual recibe entradas y al cual se le devuelven salidas. El ambiente también puede ser una amenaza para el sistema. Un grupo de elementos no constituye un sistema si no hay una relación e interacción, que de la idea de un "todo" con un propósito. En informática existen gran cantidad de sistemas: • Sistema operativo. • Sistema experto. • Sistema informático. • Aplicación o software. • Computadora. El Concepto de Datos Datos son los hechos que describen sucesos y entidades."Datos" es una palabra en plural que se refiere a más de un hecho. A un hecho simple se le denomina "data-ítem" o elemento de dato. Los datos son comunicados por varios tipos de símbolos tales como las letras del alfabeto, números, movimientos de labios, puntos y rayas, señales con la mano, dibujos, etc. Estos símbolos se pueden ordenar y reordenar de forma utilizable y se les denomina información. Los datos son símbolos que describen condiciones, hechos, situaciones o valores. Los datos se caracterizan por no contener ninguna información. Un dato puede significar un número, una letra, un signo ortográfico o cualquier símbolo que represente una cantidad, una medida, una palabra o una descripción. La importancia de los datos está en su capacidad de asociarse dentro de un contexto para convertirse en información. Por si mismos los datos no tienen capacidad de comunicar un significado y por tanto no pueden afectar el comportamiento de quien los recibe. Para ser útiles, 1 T. I. C. Prof. Pajor Gustavo Daniel 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES los datos deben convertirse en información para ofrecer un significado, conocimiento, ideas o conclusiones. El Concepto de Información La información no es un dato conjunto cualquiera de ellos. Es más bien una colección de hechos significativos y pertinentes, para el organismo u organización que los percibe. La definición de información es la siguiente: Información es un conjunto de datos significativos y pertinentes que describan sucesos o entidades. DATOS SIGNIFICATIVOS. Para ser significativos, los datos deben constar de símbolos reconocibles, estar completos y expresar una idea no ambigua. Los símbolos de los datos son reconocibles cuando pueden ser correctamente interpretados. Muchos tipos diferentes de símbolos comprensibles se usan para transmitir datos. La integridad significa que todos los datos requeridos para responder a una pregunta específica están disponibles. Por ejemplo, un marcador de béisbol debe incluir el tanteo de ambos equipos. Si se oye el tanteo "New York 6" y no oyes el del oponente, el anuncio será incompleto y sin sentido. Los datos son inequívocos cuando el contexto es claro. Por ejemplo, el grupo de signos 2-x puede parecer "la cantidad 2 menos la cantidad desconocida llamada x" para un estudiante de álgebra, pero puede significar "2 barra x" a un vaquero que marca ganado. Tenemos que conocer el contexto de estos símbolos antes de poder conocer su significado. Otro ejemplo de la necesidad del contexto es el uso de términos especiales en diferentes campos especializados, tales como la contabilidad. Los contables utilizan muchos términos de forma diferente al público en general, y una parte de un aprendizaje de contabilidad es aprender el lenguaje de contabilidad. Así los términos Debe y Haber pueden significar para un contable no más que "derecha" e "izquierda" en una contabilidad en T, pero pueden sugerir muchos tipos de ideas diferentes a los no contables. DATOS PERTINENTES. Decimos que tenemos datos pertinentes (relevantes) cuando pueden ser utilizados para responder a preguntas propuestas. Disponemos de un considerable número de hechos en nuestro entorno. Solo los hechos relacionados con las necesidades de información son pertinentes. Así la organización selecciona hechos entre sucesos y entidades particulares para satisfacer sus necesidades de información. Diferencia entre Datos e información 1. Los Datos a diferencia de la información son utilizados como diversos métodos para comprimir la información a fin de permitir una transmisión o almacenamiento más eficaces. 2. Aunque para el procesador de la computadora hace una distinción vital entre la información entre los programas y los datos, la memoria y muchas otras partes de la computadora no lo hace. Ambos son registradas temporalmente según la instrucción 2 T. I. C. Prof. Pajor Gustavo Daniel 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES que se le de. Es como un pedazo de papel no sabe ni le importa lo que se le escriba: un poema de amor, las cuentas del banco o instrucciones para un amigo. Es lo mismo que la memoria de la computadora. Sólo el procesador reconoce la diferencia entre datos e información de cualquier programa. Para la memoria de la computadora, y también para los dispositivos de entrada y salida (E/S) y almacenamiento en disco, un programa es solamente más datos, más información que debe ser almacenada, movida o manipulada. 3. La cantidad de información de un mensaje puede ser entendida como el número de símbolos posibles que representan el mensaje. "los símbolos que representan el mensaje no son más que datos significativos. 4. En su concepto más elemental, la información es un mensaje con un contenido determinado emitido por una persona hacia otra y, como tal, representa un papel primordial en el proceso de la comunicación, a la vez que posee una evidente función social. A diferencia de los datos, la información tiene significado para quien la recibe, por eso, los seres humanos siempre han tenido la necesidad de cambiar entre sí información que luego transforman en acciones. "La información es, entonces, conocimientos basados en los datos a los cuales, mediante un procesamiento, se les ha dado significado, propósito y utilidad" El Concepto de Procesamiento de Datos Hasta el momento hemos supuesto que los datos que maneja una aplicación no son tan voluminosos y por lo tanto caben en memoria. Cuando recurrimos a archivos se debe a la necesidad de conservar datos después de que termina un programa, por ejemplo para apagar el computador. Sin embargo, existen problemas en donde el volumen de datos es tan grande que es imposible mantenerlos en memoria. Entonces, los datos se almacenan en un conjunto de archivos, los que forman una base de datos. Una base de datos es por lo tanto un conjunto de archivos que almacenan, por ejemplo, datos con respecto al negocio de una empresa. Cada archivo se forma en base a un conjunto de líneas y cada línea esta formada por campos de información. Todas las líneas de un mismo archivo tienen la misma estructura, es decir los mismos campos de información. Diferentes archivos poseen estructuras distintas. Algunas definiciones Recolección de datos: Provee un vínculo para obtener la información interoperacionables racional y las parametrizaciones. Almacenamiento de datos: Las unidades de disco de la computadora y otros medios de almacenamiento externo permiten almacenar los datos a más largo plazo, manteniéndolos disponibles pero separados del circuito principal hasta que el microprocesador los necesita. Una computadora dispone también de otros tipos de almacenamiento. 3 T. I. C. Prof. Pajor Gustavo Daniel 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES La memoria de sólo lectura (ROM) es un medio permanente de almacenamiento de información básica, como las instrucciones de inicio y los procedimientos de entrada/salida. Asimismo, una computadora utiliza varios buffers (áreas reservadas de la memoria) como zonas de almacenamiento temporal de información específica, como por ejemplo los caracteres a enviar a la impresora o los caracteres leídos desde el teclado. Procesamiento de datos: a. El objetivo es graficar el Procesamiento de Datos, elaborando un Diagrama que permita identificar las Entradas, Archivos, Programas y Salidas de cada uno de los Procesos. b. Su antecedente es el Diagrama de Flujo. c. Los elementos claves son los Programas. d. Se confecciona el Diagrama de Procesamiento de Datos e. Este Diagrama no se podrá elaborar por completo desde un primer momento ya que depende del Flujo de Información. f. En este primer paso sólo se identifican las Salidas y Programas. Los elementos restantes se identifican en forma genérica. Validación de datos: Consiste en asegurar la veracidad e integridad de los datos que ingresan a un archivo. Existen numerosas técnicas de validación tales como: Digito verificador, chequeo de tipo, chequeo de rango. Concepto de Procesamiento Distribuido y Centralizado Procesamiento Centralizado: En la década de los años 50’s las computadoras eran máquinas del tamaño de todo un cuarto con las siguientes características: • Un CPU • Pequeña cantidad de RAM • Dispositivos DC almacenamiento secundario (cintas) • Dispositivos d salida (perforadoras de tarjetas) • Dispositivos de entrada (lectores de tarjeta perforada) Con el paso del tiempo, las computadoras fueron reduciendo su tamaño y creciendo en sofisticación, • Aunque la industria continuaba siendo dominada por las computadoras grandes "mainframes". A medida que la computación evolucionaba, las computadoras, fueron capaces de manejar aplicaciones múltiples simultáneamente, convirtiéndose en procesadores centrales "hosts" a los que se les Prof. Pajor Gustavo Daniel 4 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES Conectaban muchos periféricos y terminales tontas que consistían solamente de dispositivos de entrada/salida (monitor y teclado) y quizá poco espacio de almacenamiento, pero que no podían procesar por sí mismas. • El "host" usando módems y líneas telefónicas conmutadas. En este ambiente, se ofrecían velocidades de transmisión de 1200, 2400, o 9600 bps. Un ambiente como el descrito es lo que se conoce como procesamiento centralizado en su forma más pura "host/terminal". Aplicaciones características de este tipo de ambiente son: • Administración de grandes tuses de datos integradas • Algoritmos científicos de alta velocidad • Control de inventarios centralizado Al continuar la evolución de los "mainframes", estos se comenzaron a conectar a enlaces de alta velocidad donde algunas tareas relacionadas con las comunicaciones se delegaban a otros dispositivos llamados procesadores comunicaciones "Front End Procesos" (I7EP’s) y controladores de grupo "Cluster Controllers" (CC’s). Procesamiento Distribuido: El procesamiento centralizado tenía varios inconvenientes, entre los que podemos mencionar que un número limitado de personas controlaba el acceso a la información y a los reportes, se requería un grupo muy caro de desarrolladores de sistemas para crear las aplicaciones, y los costos de mantenimiento y soporte eran extremadamente altos. La evolución natural de la computación fue en el sentido del procesamiento distribuido, así las minicomputadoras (a pesar de su nombre siguen siendo máquinas potentes) y empezaron a tomar parte del procesamiento de datos . Ventajas Existen cuatro ventajas del procesamiento de bases de datos distribuidas. La primera, puede dar como resultado un mejor rendimiento que el que se obtiene por un procesamiento centralizado. Los datos pueden colocarse cerca del punto de su utilización, de forma que el tiempo de comunicación sea mas corto. Varias computadoras operando en forma simultánea pueden entregar más volumen de procesamiento que una sola computadora. Segundo, los datos duplicados aumentan su confiabilidad. Cuando falla una computadora, se pueden obtener los datos extraídos de otras computadoras. Los usuarios no dependen de la disponibilidad de una sola fuente para sus datos .Una tercera ventaja, es que los sistemas distribuidos pueden variar su tamaño de un modo más sencillo. Se pueden agregar computadoras adicionales a la red conforme aumentan el número de usuarios y su carga de procesamiento. A menudo es más fácil y más barato agregar una nueva computadora más pequeña que actualizar una computadora única y centralizada. Después, si la carga de trabajo se reduce, el tamaño de la red también puede reducirse. Por último, los sistemas distribuidos se pueden adecuar de una manera más sencilla a las estructuras de la organización de los usuarios. Prof. Pajor Gustavo Daniel 5 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES Sistema Analógico y Sistema Digital Los circuitos electrónicos se pueden dividir en dos amplias categorías: digitales y analógicos. La electrónica digital utiliza magnitudes con valores discretos, mientras que la electrónica analógica emplea magnitudes con valores continuos. Un sistema digital es cualquier dispositivo destinado a la generación, transmisión, procesamiento o almacenamiento de señales digitales. También un sistema digital es una combinación de dispositivos diseñado para manipular cantidades físicas o información que estén representadas en forma digital; es decir, que sólo puedan tomar valores discretos. La mayoría de las veces estos dispositivos son electrónicos, pero también pueden ser mecánicos, magnéticos o neumáticos. Para el análisis y la síntesis de sistemas digitales binarios se utiliza como herramienta el álgebra de Boole. Los sistemas digitales pueden ser de dos tipos: Sistemas digitales combinacionales: Son aquellos en los que la salida del sistema sólo depende de la entrada presente. Por lo tanto, no necesita módulos de memoria, ya que la salida no depende de entradas previas. Prof. Pajor Gustavo Daniel 6 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES Sistemas digitales secuenciales: La salida depende de la entrada actual y de las entradas anteriores. Esta clase de sistemas necesitan elementos de memoria que recojan la información de la 'historia pasada' del sistema. Para la implementación de los circuitos digitales, se utilizan puertas lógicas (AND, OR y NOT) y transistores. Estas puertas siguen el comportamiento de algunas funciones booleanas. Se dice que un sistema es analógico cuando las magnitudes de la señal se representan mediante variables continuas, esto es análogas a las magnitudes que dan lugar a la generación de esta señal. Un sistema analógico contiene dispositivos que manipulan cantidades físicas representadas en forma analógica. En un sistema de este tipo, las cantidades varían sobre un intervalo continuo de valores. Así, una magnitud analógica es aquella que toma valores continuos. Una magnitud digital es aquella que toma un conjunto de valores discretos. La mayoría de las cosas que se pueden medir cuantitativamente aparecen en la naturaleza en forma analógica. Un ejemplo de ello es la temperatura: a lo largo de un día la temperatura no varía entre, por ejemplo, 20 ºC o 25 ºC de forma instantánea, sino que alcanza todos los infinitos valores que entre ese intervalo. Otros ejemplos de magnitudes analógicas son el tiempo, la presión, la distancia, el sonido. Señal Analógica Una señal analógica es un voltaje o corriente que varía suave y continuamente. Una onda senoidal es una señal analógica de una sola frecuencia. Los voltajes de la voz y del video son señales analógicas que varían de acuerdo con el sonido o variaciones de la luz que corresponden a la información que se está transmitiendo. Señal Digital Las señales digitales, en contraste con las señales analógicas, no varían en forma continua, sino que cambian en pasos o en incrementos discretos. La mayoría de las señales digitales utilizan códigos binarios o de dos estados. Ventajas de los Circuitos Digitales La revolución electrónica ha estado vigente bastante tiempo; la revolución del "estado sólido" comenzó con dispositivos analógicos y aplicaciones como los transistores y los radios transistorizados. Cabe preguntarse ¿por qué ha surgido ahora una revolución digital? De hecho, existen muchas razones para dar preferencia a los circuitos digitales sobre los circuitos analógicos: Reproducibilidad de resultados. Dado el mismo conjunto de entradas (tanto en valor como en serie de tiempo), cualquier circuito digital que hubiera sido diseñado en la forma adecuada, siempre producirá exactamente los mismos resultados. Las salidas de un circuito analógico varían con la temperatura, el voltaje de la fuente de alimentación, la antigüedad de los componentes y otros factores. Facilidad de diseño. El diseño digital, a menudo denominado "diseño lógico", es lógico. No se necesitan habilidades matemáticas especiales, y el comportamiento de los pequeños circuitos Prof. Pajor Gustavo Daniel 7 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES lógicos puede visualizarse mentalmente sin tener alguna idea especial acerca del funcionamiento de capacitores, transistores u otros dispositivos que requieren del cálculo para modelarse. Flexibilidad y funcionalidad. Una vez que un problema se ha reducido a su forma digital, podrá resolverse utilizando un conjunto de pasos lógicos en el espacio y el tiempo. Por ejemplo, se puede diseñar un circuito digital que mezcle o codifique su voz grabada de manera que sea absolutamente indescifrable para cualquiera que no tenga su "clave" (contraseña), pero ésta podrá ser escuchada virtualmente sin distorsión por cualquier persona que posea la clave. Intente hacer lo mismo con un circuito analógico. Programabilidad. Usted probablemente ya esté familiarizado con las computadoras digitales y la facilidad con la que se puede diseñar, escribir y depurar programas para las mismas. Pues bien, ¿adivine qué? Una gran parte del diseño digital se lleva a cabo en la actualidad al escribir programas, también, en los lenguajes de descripción de lenguaje de descripción de Hardware (HDLs, por sus siglas en inglés), Estos lenguajes le permiten especificar o modelar tanto la estructura como la función de un circuito digital. Además de incluir un compilador, un HDL típico también tiene programas de simulación y síntesis. Estas herramientas de programación (software) se utilizan para verificar el comportamiento del modelo de hardware antes que sea construido, para posteriormente realizar la síntesis del modelo en un circuito, aplicando una tecnología de componente en particular. Velocidad. Los dispositivos digitales de la actualidad son muy veloces. Los transistores individuales en los circuitos integrados más rápidos pueden conmutarse en menos de 10 picosegundos, un dispositivo completo y complejo construido a partir de estos transistores puede examinar sus entradas y producir una salida en menos de 2 nanosegundos. Esto significa que un dispositivo de esta naturaleza puede producir 500 millones o más resultados por segundo. Economía. Los circuitos digitales pueden proporcionar mucha funcionalidad en un espacio pequeño. Los circuitos que se emplean de manera repetitiva pueden "integrarse" en un solo "chip" y fabricarse en masa a un costo muy bajo, haciendo posible la fabricación de productos desechables como son las calculadoras, relojes digitales y tarjetas musicales de felicitación. (Usted podría preguntarse, "¿acaso tales cosas son algo bueno?" ¡No importa!) Avance tecnológico constante. Cuando se diseña un sistema digital, casi siempre se sabe que habrá una tecnología más rápida, más económica o en todo caso, una tecnología superior para el mismo caso poco tiempo. Los diseñadores inteligentes pueden adaptar estos avances futuros durante el diseño inicial de un sistema, para anticiparse a la obsolescencia del sistema y para ofrecer un valor agregado a los consumidores. Por ejemplo, las computadoras portátiles a menudo tienen ranuras de expansión para adaptar procesadores más rápidos o memorias más grandes que las que se encuentran disponibles en el momento de su presentación en el mercado. De este modo, esto es suficiente para un matiz de mercadotecnia acerca del diseño digital. Ventajas del procesado digital de señales frente al analógico Prof. Pajor Gustavo Daniel 8 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES Existen muchas razones por las que el procesado digital de una señal analógica puede ser preferible al procesado de la señal directamente en el dominio analógico. Primero, un sistema digital programable permite flexibilidad a la hora de reconfigurar las operaciones de procesado digital de señales sin más que cambiar el programa. La reconfiguración de un sistema analógico implica habitualmente el rediseño del hardware, seguido de la comprobación y verificación para ver que opera correctamente. También desempeña un papel importante al elegir el formato del procesador de señales la consideración de la precisión. Las tolerancias en los componentes de los circuitos analógicos hacen que para el diseñador del sistema sea extremadamente difícil controlar la precisión de un sistema de procesado analógico de señales. En cambio, un sistema digital permite un mejor control de los requisitos de precisión. Tales requisitos, a su vez, resultan en la especificación de requisitos en la precisión del conversor A/D y del procesador digital de señales, en términos de longitud de palabra, aritmética de coma flotante frente a coma fija y factores similares. Las señales digitales se almacenan fácilmente en soporte magnético (cinta o disco) sin deterioro o pérdida en la fidelidad de la señal, aparte de la introducida en la conversión A/D. Como consecuencia, las señales se hacen transportables y pueden procesarse en tiempo no real en un laboratorio remoto. El método de procesado digital de señales también posibilita la implementación de algoritmos de procesado de señal más sofisticados. Generalmente es muy difícil realizar operaciones matemáticas precisas sobre señales en formato analógico, pero esas mismas operaciones pueden efectuarse de modo rutinario sobre un ordenador digital utilizando software. En algunos casos, la implementación digital del sistema de procesado de señales es más barato que su equivalente analógica. El menor coste se debe a que el hardware digital es más barato o, quizás, es resultado de la flexibilidad ante modificaciones que permite la implementación digital. Como consecuencia de estas ventajas, el procesado digital de señales se ha aplicado a sistemas prácticos que cubren un amplio rango de disciplinas. Citamos, por ejemplo, la aplicación de técnicas de procesado digital de señales al procesado de voz y transmisión de señales en canales telefónicos, en procesado y transmisión de imágenes, en sismología y geofísica, en prospección petrolífera, en la detección de explosiones nucleares, en el procesado de señales recibidas del espacio exterior, y en una enorme variedad de aplicaciones. Sin embargo, como ya se ha indicado, la implementación digital tiene sus limitaciones. Una limitación práctica es la velocidad de operación de los conversores A/D y de los procesadores digitales de señales. Veremos que las señales con anchos de banda extremadamente grandes precisan conversores A/D con una velocidad de muestreo alta y procesadores digitales de señales rápidos. Así, existen señales analógicas con grandes anchos de banda para las que la solución mediante procesado digital de señales se encuentra más allá del" estado del arte" del hardware digital. Prof. Pajor Gustavo Daniel 9 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES Ejemplos de aquellos sistemas analógicos que ahora se han vuelto digitales. Fotografías. La mayoría de las cámaras todavía hacen uso de películas que tienen un recubrimiento de haluros de plata para grabar imágenes. Sin embargo, el incremento en la densidad de los microcircuitos o "chips" de memoria digital ha permitido el desarrollo de cámaras digitales que graban una imagen como una matriz de 640 x 480, o incluso arreglos más extensos de pixeles donde cada pixel almacena las intensidades de sus componentes de color rojo, verde y azul de 8 bits cada uno. Esta gran cantidad de datos, alrededor de siete millones de bits en este ejemplo puede ser procesada y comprimida en un formato denominado JPEG y reducirse a un tamaño tan pequeño como el equivalente al 5% del tamaño original de almacenamiento dependiendo de la cantidad de detalle de la imagen. De este modo las cámaras digitales dependen tanto del almacenamiento como del procesamiento digital. Grabaciones de video. Un disco versátil digital de múltiples usos (DVD por las siglas de digital versatile disc) almacena video en un formato digital altamente comprimido denominado MPEG2. Este estándar codifica una pequeña fracción de los cuadros individuales de video en un formato comprimido semejante al JPEG y codifica cada uno de los otros cuadros como la diferencia entre éste y el anterior. La capacidad de un DVD de una sola capa y un solo lado es de aproximadamente 35 mil millones de bits suficiente para grabar casi 2 horas de video de alta calidad y un disco de doble capa y doble lado tiene cuatro veces esta capacidad. Grabaciones de audio. Alguna vez se fabricaron exclusivamente mediante la impresión de formas de onda analógicas sobre cinta magnética o un acetato (LP), las grabaciones de audio utilizan en la actualidad de manera ordinaria discos compactos digitales (CD. Compact Discs). Un CD almacena la música como una serie de números de 16 bits que corresponden a muestras de la forma de onda analógica original se realiza una muestra por canal estereofónico cada 22.7 microsegundos. Una grabación en CD a toda su capacidad (73 minutos) contiene hasta seis mil millones de bits de información. Carburadores de automóviles. Alguna vez controlados estrictamente por conexiones mecánicas (incluyendo dispositivos mecánicos "analógicos" inteligentes que monitorean la temperatura, presión. etc.), en la actualidad los motores de los automóviles están controlados por microprocesadores integrados. Diversos sensores electrónicos y electromecánicos convierten las condiciones de la máquina en números que el microprocesador puede examinar para determinar cómo controlar el flujo de gasolina y oxígeno hacia el motor. La salida del microprocesador es una serie de números variante en el tiempo que activa a transductores electromecánicos que a su vez controlan la máquina. El sistema telefónico. Comenzó hace un siglo con micrófonos y receptores analógicos que se conectaban en los extremos de un par de alambres de cobre (o, ¿era una cuerda?). Incluso en la actualidad en la mayor parte de los hogares todavía se emplean teléfonos analógicos los cuales transmiten señales analógicas hacia la oficina central (CO) de la compañía telefónica. No obstante en la mayoría de las oficinas centrales estas señales analógicas se convierten a un formato digital antes que sean enviadas a sus destinos, ya sea que se encuentren en la misma oficina central o en cualquier punto del planeta. Prof. Pajor Gustavo Daniel 10 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES Durante muchos años los sistemas telefónicos de conmutación privados (PBX. private branch exchanges) que se utilizan en los negocios han transportado el formato digital todo el camino hacia los escritorios. En la actualidad muchos negocios, oficinas centrales y los proveedores tradicionales de servicios telefónicos están cambiando a sistemas integrados que combinan la voz digital con el tráfico digital de datos sobre una sola red de Protocolo de Internet IP (por las siglas en inglés de Protocolo de Internet). Semáforos. Para controlar los semáforos se utilizaban temporizadores electromecánicos que habilitaban la luz verde para cada una de las direcciones de circulación durante un intervalo predeterminado de tiempo. Posteriormente se utilizaron relevadores en módulos controladores que podían activar los semáforos de acuerdo con el patrón del tráfico detectado mediante sensores que se incrustan en el pavimento. Los controladores de hoy en día hacen uso de microprocesadores y pueden controlar los semáforos de modo que maximicen el flujo vehicular, o como sucede en algunas ciudades de California, sean un motivo de frustración para los automovilistas en un sinnúmero de creativas maneras. Efectos cinematográficos. Los efectos especiales creados exclusivamente para ser utilizados con modelos miniaturizados de arcilla, escenas de acción, trucos de fotografía y numerosos traslapes de película cuadro por cuadro. En la actualidad naves espaciales, insectos, otras escenas mundanas e incluso bebés (en la producción animada de Pixar, Tin Toy) se sintetizan por completo haciendo uso de computadoras digitales. ¿Podrán algún día ya no ser necesarios ni los dobles cinematográficos femeninos o masculinos? Ejemplo de un sistema electrónico analógico Un ejemplo de sistema electrónico analógico es el altavoz, que se emplea para amplificar el sonido de forma que éste sea oído por una gran audiencia. Las ondas de sonido que son analógicas en su origen, son capturadas por un micrófono y convertidas en una pequeña variación analógica de tensión denominada señal de audio. Esta tensión varía de manera continua a medida que cambia el volumen y la frecuencia del sonido y se aplica a la entrada de un amplificador lineal. La salida del amplificador, que es la tensión de entrada amplificada, se introduce en el altavoz. Éste convierte, de nuevo, la señal de audio amplificada en ondas sonoras con un volumen mucho mayor que el sonido original captado por el micrófono. Prof. Pajor Gustavo Daniel 11 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES Sistemas que utilizan métodos digitales y analógicos Existen sistemas que utilizan métodos digitales y analógicos, uno de ellos es el reproductor de disco compacto (CD). La música en forma digital se almacena en el CD. Un sistema óptico de diodos láser lee los datos digitales del disco cuando éste gira y los transfiere al convertidor digital-analógico (DAC, digital-to-analog converter). El DAC transforma los datos digitales en una señal analógica que es la reproducción eléctrica de la música original. Esta señal se amplifica y se envía al altavoz. Cuando la música se grabó en el CD se utilizó un proceso que, esencialmente, era el inverso al descrito, y que utiliza un convertidor analógico digital (ADC, analog-to-digital converter). Dispositivos analógicos y digitales de transmisión, codificación y recepción de datos. Las señales analógicas como digitales se pueden transmitir a través de medios de transmisión que sean adecuados. La transmisión analógica es una forma de transmitir las señales analógicas independientemente de su contenido; las señales pueden representar datos analógicos (por ejemplo, voz) o datos digitales (por ejemplo los datos binarios que pasan a través de un modem). En todos los casos la señal se irá debilitando con la distancia y será necesario el uso de amplificadores para conseguir distancias mayores. En la transmisión analógica, al utilizarse amplificadores en cascada, la señal se distorsiona cada vez más. Para datos analógicos se pueden permitir ciertas distorsiones pequeñas, ya que datos siguen siendo inteligibles. Ocurre lo contrario para la transmisión digital, pues los amplificadores introducirían ruido y estos se transformarían en errores.. En la transmisión digital, por el contrario es dependiente del contenido de la señal. Una señal digital solo se puede transmitir a una distancia limitada, ya que la atenuación y otros aspectos negativos pueden introducir errores en los datos transmitidos. En este caso se utilizan repetidores, los cuales regenera el patrón de ceros y unos y lo vuelve a retransmitir. La elección actual se orienta a la tecnología digital como el medio más confiable de transmisión, contrario a las varias inversiones hechas a la comunicación analógica. Gradualmente la primera se está imponiendo en los usuarios y las compañías. Demos unas razones del porqué de esta tendencia a la tecnología digital. * Tecnología digital: las mejoras en las tecnologías de integración a gran escala (LSI) y muy gran escala (VLSI)ha sido una disminución tanto en tamaño como en costo dentro de la técnicas digitales de los procesadores. Al contrario la tecnología analógica no ha experimentado un cambio similar. Prof. Pajor Gustavo Daniel 12 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES * Integridad de datos: al usarse repetidores en vez de amplificadores, el ruido y otros efectos negativos no son acumulativos. Lo que implica que usando tecnología digital es posible transmitir datos conservando su integridad a distancias mayores utilizando inclusive líneas de calidad inferiores. * Utilización de la capacidad: el tendido de líneas de transmisión de banda ancha ha llegado a ser factible para medios, como ser vía satélite y fibra óptica. Para la utilización eficaz de todo ese ancho de banda se necesita un alto grado de multiplexación. Esta se realiza más facilmente y con menor costo con técnicas digitales (división en el tiempo) que contécnicas analógicas (división en frecuencia). * Seguridad y privacidad: se pueden aplicar las técnicas de encriptado a los datos digitales o analógicos que previamente se hayan digitalizado. * Integración: Con el tratamiento de los datos analógicos y digitales, todas las señales se pueden tratar de una manera similar. Permitiendo de esta manera, la integración de voz, video y datos utilizando una misma infraestructura.. Prof. Pajor Gustavo Daniel 13 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES Bibliografía: Diseño Digital Principios y Prácticas John F. Wakerly Prentice Hall Fundamentos de los Sistemas Modernos de Comunicación Hildeberto Jordán Aguilar. Alfaomega, IPN Sistemas Digitales Principios Y Aplicaciones Ronald J. Tocci Prentice Hall Sistemas electrónicos de Comunicaciones Frenzel Alfaomega Tratamiento digital de señales Principios, algoritmos y aplicaciones John G. Proakis Dimitris G. Monolakis http://es.wikipedia.org/wiki/Sistema_digital http://www.unicrom.com/Tut_analogico_digital.asp http://html.rincondelvago.com/sistemas-digitales.html Prof. Pajor Gustavo Daniel 14 26 de julio de 2012 TRABAJO DE RECUPERACION DEL SEGUNDO TRIMESTRE SISTEMAS , ANALOGICOS, DIGITALES TRABAJO PRACTICO 1.-Explique brevemente el concepto de datos.2.-Explique brevemente el concepto de Información.3.-Explique brevemente el concepto de Procesamiento de datos 4.-¿Qué es un Sistema? 5.-Mencione los elementos de la Comunicación 6.-¿Que es un sistema digital? 7.- Mencione las Ventajas de los Circuitos Digitales 8.- ¿Cuándo decimos que tenemos un dato pertinente? 9.-Explique como comenzó el sistema telefónico.10.- De un ejemplo de un sistema electrónico analógico, grafique y explique.- Prof. Pajor Gustavo Daniel 15