Fecha de efectividad: __Octubre de 2003_ UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD Formato para prácticas de laboratorio PLAN DE ESTUDIO CARRERA Ingeniero en Computación 1995-2 PRÁCTICA No. LABORATORIO DE 4 NOMBRE DE LA PRÁCTICA 1 CLAVE ASIGNATURA 1617 NOMBRE DE LA ASIGNATURA Mediciones Eléctricas y Electrónicas DURACIÓN (HORA) Mediciones Eléctricas y Electrónicas Medición de valores RMS 6 INTRODUCCIÓN En esta práctica se comprobará la diferencia entre valor eficaz y valor promedio (RMS), utilizando el VOM, el DVM y el Osciloscopio 2 OBJETIVO (COMPETENCIA) a) El alumno comprobará el valor “rms” de una señal senoidal, utilizando el VOM y el DVM. b) El alumno comprobará el valor “rms” para diferentes señales. c) El alumno determinará la respuesta en frecuencia para el VOM y el DVM. 3 FUNDAMENTO Casi todas las personas saben que el voltaje disponible en los contactos de la red eléctrica doméstica es un voltaje senoidal con una frecuencia de 60 Hz y un voltaje de 115 volts. Pero ¿qué significa “ 115 volts”? Ciertamente no es un valor instantáneo de voltaje, ya que el voltaje no es constante, si dicha señal la observaremos en un osciloscopio calibrado observaríamos que el voltaje sería de 162.2 Vp. Tampoco puede aplicarse el concepto de valor promedio a los 115 volts, porque el valor promedio de la onda seno es cero. Se obtendría una aproximación mejor calculando la magnitud promedio sólo sobre medio ciclo, positivo o negativo, usando en el contacto un voltímetro de tipo rectificador, se medirían 103.5 volts. En realidad los 115 volts de los tomacorrientes es el valor eficaz de la señal senoidal. Este valor es una medida de la efectividad de una fuente de voltaje para entregar potencia a una carga resistiva. Si las señales aplicadas a un circuito son exclusivamente señales de corriente directa (cd), es relativamente fácil calcular cantidades tales como el número de Amperes que fluyen por el circuito o la energía disipada por los componentes sobre un periodo de tiempo. Sin embargo, las magnitudes de las eléctricas Formuló Ing. Enrique Gómez M.C. J. Anguiano M.C. Aglay Glez.P. Maestro Aprobó Autorizó M.C.Gloria Etelbina Chávez Valenzuela Ing. Andrés León Kwan M.C. Miguel Angel Martínez Romero Coordinador de la Carrera Gestión de la Calidad Director de la Facultad Revisó Código Página 1 de 1 _GC-N4-017__ Revisión 0________ Fecha de efectividad: __Octubre de 2003_ UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD Formato para prácticas de laboratorio normalmente varían con el tiempo en vez de permanecer constantes. Si una señal es variante con el tiempo su forma de onda no será tan simple, las señales variantes con el tiempo pueden ser periódicas o pueden tener una variación al azar. Los valores característicos más comúnmente utilizados de las señales variantes con el tiempo son: a) Su valor promedio b) Valor Eficaz (RMS) VALOR PROMEDIO El valor promedio de una señal variante en el tiempo en un periodo T, es el valor que una señal de corriente directa (CD) tendría si entregara la misma cantidad de carga en el mismo período T. Matemáticamente, el valor promedio de cualquier forma de onda se encuentra dividiendo el área bajo la curva de la onda en un período T, por la longitud del período. A av = área bajo la curva = Valor Promedio Longitud del periodo (segundos) Donde f(t) = ecuación de la forma de onda T = longitud del periodo VALOR E F I C A Z (RMS) El valor eficaz se utiliza más a menudo que el valor promedio, el valor eficaz se refiere a su capacidad de entregar potencia. Por esta razón, algunas veces se le llama valor efectivo. Este nombre se utiliza porque el valor eficaz es equivalente al valor de una forma de onda de CD la cual entregaría la misma potencia si se remplazara la forma de onda variante con el tiempo. Donde el símbolo < > significa que se toma el promedio de la cantidad dentro del paréntesis al cuadrado. Matemáticamente el valor eficaz se describe como: Página 2 de 2 Fecha de efectividad: __Octubre de 2003_ UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD Formato para prácticas de laboratorio Donde: f( t )= Ecuación de la señal variante en el tiempo T = Periodo de la señal. De la ecuación anterior si la aplicamos a una señal senoidal obtenemos que el valor eficaz es (Vp) / √2 ó 0.707 Vp; mas sin embargo existen diversos tipos de señales variantes en el tiempo, tales como, senoidales, cuadradas, triangulares, diente de sierra, etc., las cuales tienen diversas aplicaciones dentro del campo de la electrónica, en las cuales su valor eficaz es diferente del valor eficaz de una señal electrónica, en las cuales su valor eficaz es diferente del valor eficaz de una señal senoidal, en la siguiente figura se muestra el valor eficaz y valor promedio de diversas señales periódicas, observe el valor eficaz y promedio de cada una de ellas. Página 3 de 3 Fecha de efectividad: __Octubre de 2003_ UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD Formato para prácticas de laboratorio 4 A PROCEDIMIENTO (DESCRIPCIÓN) EQUIPO NECESARIO MATERIAL DE APOYO Página 4 de 4 Fecha de efectividad: __Octubre de 2003_ UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD Formato para prácticas de laboratorio 1 osciloscopio 1 generador de funciones 1 punta de prueba 10x (punta de osciloscopio 1 DVM con puntas de prueba 1 VOM con puntas de prueba 1 conector T 2 cables coaxiales 1 cable coaxial con microprueba 8 caimanes B Práctica impresa Pizarrón Plumones DESARROLLO DE LA PRÁCTICA Paso No. 1.- Utilizando el osciloscopio, ajuste la salida del generador para una señal senoidal y un voltaje de 6 volts rms, a una frecuencia de F = 10 Khz. Paso No. 2.- Compare la señal del paso 1 con el VOM y el DVM. OBSERVACIONES_________________________________________ Paso No. 3.- Para la forma de onda del paso No. 1, lleve a cabo las mediciones indicadas en la tabla No. 1. Página 5 de 5 Paso No.5.- Utilizando el osciloscopio como referencia, lleve a cabo las mediciones indicadas en la tabla No.3. Fecha de efectividad: __Octubre de 2003_ Señal triangular F=10 KHz UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD Formato para prácticas de laboratorio Frec. Osciloscopio DVM 10 Hz 100 Hz 1 KHz 100 KHz 1 MHz 2 MHz 10 MHz Tabla No. 1 VOM Paso No.4.- Utilizando el osciloscopio como referencia, lleve a cabo las mediciones indicadas en la tabla No.2. Señal senoidal F=10 KHz Página 6 de 6 Fecha de efectividad: __Octubre de 2003_ UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD Formato para prácticas de laboratorio Vp 2 Vp 4 Vp 6 Vp 8 Vp Vrms Tabla No. 4 Paso No.7.- Repita los pasos 4, 5 y 6 con una frecuencia F= 100 Khz. Paso No.8.- Repita los pasos 4, 5 y 6 con una frecuencia F= 1 Mhz. Paso No.9.- Calcule el factor de corrección para medir valores rms, de las señales senoidales, triangulares y cuadradas, al utilizar el VOM y el DVM. Paso No. 10.- Elabore un reporte de la práctica y responda a las preguntas del anexo. C CÁLCULOS Y REPORTE Descrito en la práctica 1 5 RESULTADOS Y CONCLUSIONES El alumno anotará los resultados en las tablas descritas en la práctica, la conclusión la definirá también el alumno. 6 ANEXOS P R E G U N T A S 1.- ¿ Qué es valor rms, Vp y Vpp? 2.- ¿ Para encontrar el valor rms de una señal senoidal, triangular, y cuadrada, ¿se utiliza el mismo factor de Vrms = 0 .707 Vp.? 3.- ¿ Afecta al equipo de medición la frecuencia para medir valores rms? 4.-¿ Qué cuidados se deben tener al medir voltaje con el VOM y el DVM? 5.-¿ El VOM esta calibrado para medir valores rms de señales? Página 7 de 7