Leyes de Mendel, Aplicación de las leyes de Mendel, ejemplos de cruces Leyes de Mendel Después de una serie de experimentos con arvejas verdes y amarillas, observando como se transmitían las características de los padres en varias generaciones, el botánico Gregor Mendel planteó las leyes básicas de la transmisión de la herencia. Durante sus observaciones Mendel encontró que las características o rasgos almacenados de manera codificada en los genes podían corresponder a características puras homocigotas o características híbridas heterocigotas, en este último caso se trata de un par de características alternativas de las cuales una es dominante (o sea que es la que se manifiesta externamente en el organismo), y la otra es recesiva, o sea que no se manifiesta externamente, pero permanece en la dotación genética y puede hacerse visible en las siguientes generaciones. Con base en lo anterior Mendel formuló las siguientes leyes: Ver video sobre las leyes de mendel aquí clic Primera ley de Mendel - Ley de la Uniformidad Si se cruzan dos líneas puras (homocigotas) para un determinado carácter, los descendientes de la primera generación son todos iguales entre sí (igual fenotipo e igual genotipo) e iguales (en fenotipo) a uno de los progenitores. Como cada uno de los progenitores es homocigoto, solo le puede pasar a la descendencia el único alelo o variante del gen que porta. Segunda ley - Ley de la Segregación Los caracteres recesivos, al cruzar dos razas puras, quedan ocultos en la primera generación (F1), reaparecen en la segunda (F2) en proporción de 1:3 uno a tres respecto a los caracteres dominantes. Los individuos de la segunda generación que resultan de los híbridos de la primera generación son diferentes fenotipicamente unos de otros; esta variación se explica por la segregación de los alelos responsables de estos caracteres, que en un primer momento se encuentran juntos en el híbrido y que luego se separan entre los distintos gametos Ley de la Dominancia. Cuando se cruzan individuos que difieren sólo en un carácter por ejemplo color de la semilla (dominante y recesivo para este determinado carácter), la primera generación F1 será semejante al progenitor que tiene el carácter dominante. En este caso se habla de cruces monohíbridos Ley de la transmisión independiente o de la independencia de caracteres Establece que los caracteres son independientes y se combinan al azar. En la transmisión de dos o más caracteres, cada par de alelos que controla un carácter se transmite de manera independiente de cualquier otro par de alelos que controlen otro carácter en la segunda generación, combinándose de todos los modos posibles. Cuando se cruzan progenitores con dos caracteres diferentes (ejemplo plantas puras es decir homocigotas con color de las semillas amarillo dominante AA y verde recesivo aa y forma de la semilla lisa dominante LL y rugosa recesiva ll), estos caracteres se trasmiten a la descendencia en forma independiente. En este caso se habla de cruces dihíbridos. Esto se observa mejor mediante un cuadro de Punnet que permite visualizar las posibles combinaciones para los cruces de caracteres. Ejemplo: En los experimentos de Mendel se encontraron: plantas puras de arveja con semillas de color amarillo dominante, o sea que sus alelos eran idénticos y se pueden denominar convencionalmente AA plantas puras de arveja con semillas de color verde recesivas, las cuales denominaremos aa plantas híbridas o heterocigotas con semillas de color amarillo, Aa plantas puras de arveja con semillas lisas como característica dominante, LL plantas puras de arveja con semillas rugosas como característica recesiva, ll plantas híbridas o heterocigotas de arveja con semillas lisas, Ll Aplicación de las leyes de Mendel en la resolución de problemas sobre cruces monohibridos Para aplicar el cuadro de punnet analicemos primero el caso del cruce de plantas homocigotas o puras de arveja con semillas amarillas dominantes AA y plantas puras con semillas verdes recesivas aa (caso de cruce monohíbrido, o sea aplicado a un solo carácter en este caso color de la semilla) Se elabora una tabla o cuadro con tres columnas y tres filas (cuadro de Punnet): En las celdas horizontales de color negro, van los alelos o genes aportados por el padre (en este ejemplo el padre tiene un par de genes AA para el color de la semilla) pero cada gameto solo recibe un gen para ese carácter por parte del padre. Entonces se coloca un gen A por cada celda, o sea, un gen para la formación de cada gameto en el cruce. Esto se explica de acuerdo con la ley de la segregación Un par de genes es segregado (separado) en la formación de los gametos. En las celdas verticales negras se colocan los alelos o genes que aportará la madre a los gametos. De igual manera se cumple la ley de la segregación. Entonces en cada celda se coloca un solo gen: Las celdas de color blanco corresponden a los gametos de los hijos que se formarán en el cruce donde se restablecerá el número par de genes para cada gameto Ejemplo: Si se cruzan semillas homocigotas amarillas dominantes AA con semillas verdes homocigotas recesivas aa, o sea que tenemos el caso AA x aa En las celdas blancas se formarán los gametos resultantes del cruce o sea la combinación o entrecruzamiento de los genes aportados por el padre y la madre para ese carácter (se combina el gen de la primera celda horizontal con el gen de la primera celda vertical). En este momento se restablece el número par de genes en lo gametos formados (uno de cada progenitor) El resultado del cruce será: Genotipo: 100 % Heterocigoto Aa Fenotipo: 100% Semilla de color amarillo. (Ser puede explicar por la ley de la dominancia: un gen del par determina la expresión fenotípica y enmascara al otro; El polen de la planta progenitora aporta a la descendencia un alelo o gen para el color de la semilla, y el óvulo de la otra planta progenitora aporta el otro alelo para el color de la semilla; de los dos alelos, solamente se manifiesta aquél que es dominante (A), mientras que el recesivo (a) permanece oculto. Otro ejemplo. Si se toman semillas heterocigotas lisas Ll y se cruzan con semillas homocigotas rugosas ll. Ll x ll siguiendo el anterior procedimiento: El resultado del cruce será Genotipo: 50 % Heterocigoto Ll Fenotipo: 50% semilla de forma lisa y 50% de semillas rugosas. Interpretación de las leyes de Mendel - Ejemplos de Cruces Primera ley de Mendel o Ley de la uniformidad de la primera generación filial (F1) o Ley de la Dominancia Cuando se aparean o cruzan organismos (fecundación) de raza pura (homocigotos) para un determinado carácter , todos los individuos de la primera generación son iguales. Ejemplo: Si se cruzan arvejas amarillas AA con arvejas verdes aa toda la F1 resultante del cruce será Aa de color amarillo. Aparece aquí el concepto de Dominancia y Recesividad. Las arvejas amarillas AA son dominantes sobre las arvejas verdes aa recesivas. La primera generación o F1 es fenotípicamente amarilla y genotipícamente heterocigota Aa imagen tomada de http://www.biotech.bioetica.org/ap1.htm Codominancia: La primera ley de Mendel se cumple también para el caso en que un determinado gen de lugar a una herencia intermedia y no dominante, como es el caso del color de las flores del "dondiego de noche" (Mirabilis jalapa). Al cruzar las plantas de la variedad de flor blanca con plantas de la variedad de flor roja, se obtienen plantas de flores rosas. La interpretación es la misma que en el caso anterior, solamente varía la manera de expresarse los distintos alelos imagen tomada de http://www.biotech.bioetica.org/ap1.htm La segunda ley de Mendel también llamada de la separación o segregación o disyunción de los alelos El experimento de Mendel: Mendel tomó plantas procedentes de las semillas de la primera generación del experimento anterior Aa y las polinizó entre sí. Del cruce Aa x Aa obtuvo semillas amarillas y verdes en la proporción 3:1. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunada generación. Interpretación del experimento. Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos. imagen tomada de http://www.biotech.bioetica.org/ap1.htm Cuando el individuo de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos Retrocruzamiento En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo. La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigota recesiva (aa). Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel. Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50% imagen tomada de http://www.biotech.bioetica.org/ap1.htm Tercera ley de Mendel o de la herencia independiente de caracteres: Hace referencia al caso de que se contemplen dos caracteres distintos. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter. El experimento de Mendel: Mendel cruzó plantas de guisantes de semilla amarilla AA y lisa BB con plantas de semilla verde aa y rugosa bb(Homocigóticas ambas para los dos caracteres Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados , y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa. Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb). imagen tomada de http://www.biotech.bioetica.org/ap1.htm Segunda generación filial F2 Se cruzan entre sí plantas de la F1, teniendo en cuenta los gametos que formarán cada una de las plantas Los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1). imagen tomada de http://www.biotech.bioetica.org/ap1.htm imagen tomada de http://www.biotech.bioetica.org/ap1.htm Interpretación del experimento: Los resultados de los experimentos de la tercera ley refuerzan el concepto de que los genes son independientes entre sí, que no se mezclan ni desaparecen generación trás generación. Para esta interpretación fue providencial la elección de los caracteres, pues estos resultados no se cumplen siempre, sino solamente en el caso de que los dos caracteres a estudiar estén regulados por genes que se encuentran en distintos cromosomas. No se cumple cuando los dos genes considerados se encuentran en un mismo cromosoma, es el caso de los genes ligados. 6.- GENÉTICA MENDELIANA: Los genes no son todos iguales respecto a su comportamiento en la transmisión de una generación a la siguiente; existen distintos tipos de genes de los que los mejor conocidos son aquellos cuyo comportamiento fue estudiado por Mendel, por lo que reciben el nombre de genes mendelianos y la parte de la genética que se encarga de estudiarlos es la genética mendeliana. Mendel realizó una serie de experimentos sencillos que consistieron en cruzar entre sí diferentes variedades de plantas y estudiar la descendencia que obtenía; de sus experimentos, los más conocidos son los realizados con plantas de guisante, de los que existe una variedad de semilla verde y otra de semilla amarilla; para empezar Mendel obtuvo lo que el llamó "razas puras" amarillas y verdes, que eran aquellas que al cruzarlas entre sí sólo daban plantas iguales que los padres. El segundo paso consistía en cruzar una raza pura de semillas verdes con otra de semillas amarillas, obteniendo en la 1ª generación filial (F1) el 100% de plantas de semillas verdes. GENERACIÓN PARENTAL (P) verde x amarillo 1ª GENERACIÓN FILIAL (F1) 100% verde Mendel pensaba que al cruzarse los padres había algo que pasaba a los descendientes para que tuvieran las semillas de cierto color y a eso lo llamaba "factores hereditarios" y suponía que los factores hereditarios debían ser dos, ya que uno venía de la planta padre y otro de la planta madre. GENERACIÓN PARENTAL (P) verde x amarillo AA aa 1ª GENERACIÓN FILIAL (F1) 100% verde Aa Mendel obtuvo siempre estos resultados, por lo que elaboró una conclusión general que constituye la 1ª Ley de Mendel o "Ley de la uniformidad de la 1ª generación filial": 1ª Ley de Mendel Al cruzar entre sí dos razas puras se obtiene una generación filial que es idéntica entre sí e idéntica a uno de los padres. A continuación, Mendel cruzó entre si plantas de la F1: 1ª GENERACIÓN FILIAL (F1) verde x verde Aa Aa 2ª GENERACIÓN FILIAL (F2) 75% verde 25% amarillo AA (25%), Aa (50%) aa (25%) De aquí se deducía también que las plantas de semilla verde eran de dos tipos: unas eran razas puras (el 25%) y otras eran híbridos (el 50%) De todo esto Mendel concluyó lo que llamó la "Ley de independencia (segregación) de los factores hereditarios", o 2ª Ley de Mendel: 2ª Ley de Mendel Al cruzar entre sí dos híbridos, los factores hereditarios de cada individuo se separan, ya que son independientes, y se combinan entre sí de todas las formas posibles. Dos caracteres Mendel obtuvo siempre estos resultados al repetir estos cruces con especies diferentes; el siguiente paso consistió en ver lo que sucedía cuando estudiaba al mismo tiempo más de un carácter distinto, como por ejemplo el color de la semilla (verde y amarillo) y la forma de su piel (lisa y rugosa); repitiendo ahora los mismos cruces obtenía resultados parecidos: GENERACIÓN PARENTAL (P) verde - liso x amarillo - rugoso (F1) 100% verde - liso 1ª GENERACIÓN FILIAL (F1) verde - liso x verde - liso (F2) verde - liso 9/16 verde - rugoso 3/16 amarillo-liso 3/16 amarillo - rugoso 1/16 Aquí sucedían dos cosas nuevas, que no se daban cuando se estudiaba un sólo carácter y era, por un lado, la aparición de plantas nuevas que antes no existían, como las de semilla verde-rugosa y amarilla-lisa, y por otro lado las proporciones tan peculiares que obtenía; Mendel concluyó que la única explicación para ésto era que al igual que los factores hereditarios son independientes, los caracteres también lo son, por lo que se pueden combinar de todas las formas posibles, apareciendo combinaciones que antes no existían. GENERACIÓN PARENTAL verde-liso AABB x amarillo-rugoso aabb (F1) 100% verde-liso AaBb (F1 ) verde-liso AaBb (F2 9/16 verde-liso ) AABB AABb AaBB AaBb x 3/16 verde-rugoso AAbb, Aabb verde-liso AaBb 3/16 amarillo-liso aaBB, aaBb 1/16 amarillorugoso aabb Esto lo expuso en su "Ley de la independencia (segregación) de los caracteres hereditarios" o 3ª Ley de Mendel: 3ª Ley de Mendel Al cruzar entre sí dos dihíbridos los caracteres hereditarios se separan, ya que son independientes, y se combinan entre sí de todas las formas posibles. Como decíamos al principio, no todos los caracteres son mendelianos, ya que no todos cumplen las tres leyes de Mendel en su transmisión. 4. Explicación de la genética mendeliana Mendel no sabía cómo funcionaba la reproducción sexual, ni lo que era un gameto, ni cómo funcionaba la meiosis; desde nuestros conocimientos actuales podemos entender un poco mejor cuáles son los mecanismos que explican las leyes mendelianas, y por tanto su herencia. 1ª LEY DE MENDEL Lo que él llamaba factores hereditarios nosotros lo llamamos alelos de un gen, y por lo tanto están situados en los cromosomas homólogos; a las razas puras nosotros las llamamos homocigotos, y a los híbridos, heterocigotos. Cuando cruzamos un homocigoto dominante con otro recesivo se obtiene siempre un heterozigoto de fenotipo dominante, exactamente lo que nos dice la 1ª Ley de Mendel, y al cruzarlos lo que realmente sucede es que se unen gametos (fecundación), de la siguiente forma: GENERACIÓN PARENTAL (P) verde amarillo x AA aa A a GAMETOS 1ª GENERACIÓN FILIAL (F1) ZIGOTOS 100% verde Aa Los homocigotos dominantes tienen dos alelos, uno paterno y otro materno, aunque en este caso son iguales por lo que por meiosis sólo podrán formar un tipo de gametos, aquellos que tengan el alelo A; la planta funciona como si sólo tuviera dos cromosomas, ya que los demás no intervienen en el proceso. Con los homocigotos recesivos sucede lo mismo y sólo forman un único tipo de gametos, los que tienen el alelo a, por lo tanto sólo se podrá obtener un único tipo de zigoto, que tendrá la combinación de alelos Aa. 2ª LEY DE MENDEL Cada alelo está en un cromosoma distinto del par, por lo que tras la meiosis irán en gametos separados, lo cual explica la segunda ley de Mendel: INDIVIDUO DE LA F1 ALELOS verde Aa I I 1ª DIVISIÓN MEIÓTICA (separación de cromosomas) A I I 2ª DIVISIÓN MEIÓTICA (separación de cromátidas) A TIPOS DE GAMETOS DISTINTOS A A a (cromosomas) I I a a (cromátidas) a Como el otro individuo que cruzamos es igual, produce los mismos tipos de gametos, lo cual quiere decir que tras la fecundación podemos obtener los siguientes tipos de zigotos: INDIVIDUOS DE LA F1 verde x verde I I Aa Aa GAMETOS FECUNDACIÓN GAMETOS A A a a AA Aa cigotos de la Aa aa F2 En esta tabla vemos que al combinar los posibles gametos entre sí se obtienen 4 tipos de zigotos diferentes, aunque dos de ellos tienen la misma combinación de alelos; las proporciones serán por tanto: F2 1/4 AA (verdes) 2/4 Aa (verdes) PROPORCIONES DE FENOTIPOS 3ª LEY DE MENDEL 1/4 aa (amarillos) 3/4 verdes 1/4 amarillos Cuando estudiamos dos caracteres en vez de uno la cosa se complica, ya que en vez de un par de cromosomas, van a intervenir dos pares de cromosomas, un par con los alelos del color de la semilla, y otro par con los alelos de la forma. GENERACIÓN PARENTAL (P) GAMETOS verdex liso AABB I AB I 1ª GENERACIÓN FILIAL (F1) ZIGOTOS amarillorugoso aabb I ab 100% verde-liso AaBb Los individuos de la F1 son heterocigotos para los dos caracteres, por lo que producirán los siguientes tipos de gametos verdeliso AaBb I I I INDIVIDUO DE LA F1 ALELOS 1ª DIVISIÓN MEIÓTICA (separación de cromosomas) 1ª POSIBILIDAD AB 2ª POSIBILIDAD (Ab) I I I AB AB ab (Ab) (Ab) (aB) 2ª DIVISIÓN MEIÓTICA (separación de cromátidas) 1ª POSIBILIDAD 2ª POSIBILIDAD TIPOS DE GAMETOS DISTINTOS AB ab (cromosomas) (aB) I I I ab (cromátidas) (aB) ab Ab aB El otro individuo de la F1 es igual, por lo que formará los mismos gametos. Todos estos gametos tienen la misma probabilidad de formarse, por lo que para obtener los tipos de zigotos posibles deben cruzarse todos entre sí de la siguiente forma: GAMETOS AB Ab aB ab AB AABB AABb1 AaBB1 AaBb1 Ab AABb2 AAbb AaBb2 Aabb1 Cigotos de la F2 aB AaBB2 AaBb3 aaBB aaBb1 ab AaBb4 Aabb2 aaBb2 aabb Existen 16 posibles zigotos diferentes, aunque sólo dan lugar a 9 genotipos diferentes, y estos 9 genotipos sólo dan lugar a 4 fenotipos diferentes: ZIGOTO (16) GENOTIPO (9) FENOTIPO (4) PROPORCIÓN TOTAL AABB AABb1 AABb2 AaBB1 AaBB2 AABB verde-liso 1/16 AABb verde-liso 2/16 AaBB verde-liso 2/16 AaBb verde-liso 4/16 AAbb verde-rugoso 1/16 Aabb verde-rugoso 2/16 aaBB amarillo-liso 1/16 aaBb amarillo-liso 2/16 aabb amarillo-liso 1/16 9/16 AaBb1 AaBb2 AaBb3 AaBb4 AAbb Aabb1 Aabb2 aaBB aaBb1 aaBb2 aabb 3/16 3/16 1/16 Es decir, como los alelos van en cromosomas diferentes, se separan en la meiosis y se combinan de todas las formas posibles, por lo cual aparecen fenotipos nuevos, que antes no existían.