SOLO PARA INFORMACION

Anuncio
AC
IO
N
UNIVERSIDAD NACIONAL DEL CALLAO
FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA
ESCUELA PROFESIONAL DE INGENIERIA ELECTRICA
RM
LABORATORIO Nº 5
FISICA III
FO
CICLO: 2009-A
DOCENTE:
TEMA:
IN
JUAN MENDOZA NOLORBE
TURNO:
RA
CARGA ALMACENADA EN UN CONDENSADOR
Y CORRIENTE ELÉCTRICA
92G
SO
LO
PA
ALUMNOS:
BULNES TIJERO, David
072578J
CASTILLO ALDANE, Percy
072617E
GAMARRA QUISPE, Saúl Abel
072567H
GUERRA POMA, Luis
072057J
NAVARRO VELASQUEZ, Daniel
072569K
LIMA - PERU
MAYO - 2009
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
AC
IO
N
ÍNDICE GENERAL
INTRODUCION....................................................................................................................... 2
1. OBJETIVOS ......................................................................................................... 2
2. EXPERIMENTO ................................................................................................... 2
2.1
FUNDAMENTO TEORICO: .................................................................. 2
2.2
TIPOS DE CONDENSADOR ................................................................ 3
2.2.1 CONDENSADOR PLANO .................................................................... 3
2.2.2 CONDESADOR CILINDRICO .............................................................. 4
2.2.3 CAPACITADORES EN SERIE............................................................... 6
2.2.4 CAPACITORES EN PARALELO............................................................. 7
RM
3. DISEÑO: ............................................................................................................. 9
4. EQUIPOS Y MATERIALES: .................................................................................. 9
5. VARIABLES INDEPENDIENTES .......................................................................... 9
FO
6. VARIABLES DEPENDIENTES: ............................................................................. 9
7. RANGO DE TRABAJO ........................................................................................10
IN
8. PROCEDIMIENTO .............................................................................................10
8.1
MEDICIONES .................................................................................11
8.1.1 Carga de un condensador ................................................................11
8.2
Grafica en papel milimetrado ...........................................................12
8.3
Descarga de un condensador ...........................................................13
8.4
Grafica en papel milimetrado ...........................................................14
RA
9. CUESTINARIO ..................................................................................................15
10. CONCLUSIONES Y RECOMENDACIONES..........................................................19
SO
LO
PA
11. BIBLIOGRAFIA .................................................................................................19
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
1
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
AC
IO
N
CARGA ALMACENADA EN UN CONDENSADOR Y CORRIENTE
ELÉCTRICA
1. OBJETIVOS
Determinar la carga almacenada en un condensador.
•
Encontrar experimentalmente la capacidad de un condensador.
•
Determinar la energía almacenada en un condensador.
RM
•
2.1
FUNDAMENTO TEORICO:
En electricidad y electrónica,
un
FO
2. EXPERIMENTO
condensador o capacitador es
un
dispositivo
que
almacena energía eléctrica, es un componente pasivo. Está formado por un par
IN
de superficies conductoras en situación de influencia total (esto es, que todas las líneas de
campo eléctrico que parten de una van a parar a la otra), generalmente en forma de tablas,
esferas o láminas, separados por un material dieléctrico (siendo este utilizado en un
RA
condensador para disminuir el campo eléctrico, ya que actúa como aislante) o por el vacío,
que, sometidos a una diferencia de potencial (d.d.p.) adquieren una determinada carga
almacenada).
PA
eléctrica, positiva en una de las placas y negativa en la otra (siendo nula la carga total
La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre
esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o
LO
capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo
1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p.
de 1 voltio, estas adquieren una carga eléctrica de 1 culombio.
SO
La capacidad de 1 Faradio es mucho más grande que la de la mayoría de los
condensadores, por lo que en la práctica se suele indicar la capacidad en micro- µF = 10-6,
nano- nF = 10-9 o pico- pF = 10-12 -faradios. Los condensadores obtenidos a partir de súper
condensadores (EDLC) son la excepción. Están hechos de carbón activado para conseguir
una gran área relativa y tienen una separación molecular entre las "placas". Así se
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
2
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
consiguen capacidades del orden de cientos o miles de faradios. Uno de estos
condensadores se incorpora en el reloj Kinetic de Seiko, con una capacidad de 1/3 de
AC
IO
N
Faradio, haciendo innecesaria la pila. También se está utilizando en los prototipos
de automóviles eléctricos.
El valor de la capacidad de un condensador viene definido por la siguiente fórmula:
RM
en donde:
C: Capacidad
Q1: Carga eléctrica almacenada en la placa 1.
FO
V1 − V2: Diferencia de potencial entre la placa 1 y la 2.
Nótese que en la definición de capacidad es indiferente que se considere la carga de la
IN
placa positiva o la de la negativa, ya que
RA
Aunque por convenio se suele considerar la carga de la placa positiva.
En cuanto al aspecto constructivo, tanto la forma de las placas armaduras como la
naturaleza del material dieléctrico son sumamente variables. Existen condensadores
por
placas,
usualmente
PA
formados
de
aluminio,
separadas
por aire materiales
cerámicos, mica, poliéster, papel o por una capa de óxido de aluminio obtenido por medio de
TIPOS DE CONDENSADOR
SO
2.2
LO
la electrolisis.
2.2.1
CONDENSADOR PLANO
Consideremos el condensador plano, el mismo que esta constituido de dos superficies
conductoras planas y paralelas, tal como se muestra en la figura 1. La diferencia de
potencial entre las armaduras es V = V2-V1. La carga Q que contiene el condensador es
proporcional a V existente entre las dos placas.
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
3
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
RM
AC
IO
N
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Fig. Nº1: Condensador Plano
Por lo tanto se tiene: Q = CV ……. (1)
Q
…. (2), siendo C una constante, llamada capacidad electrostática o
V
FO
De donde C =
capacitancia.
σ
IN
Considerando la distribución de cargas superficial σ para este condensador, el campo
2
Q
−12 C
eléctrico se tiene: E =
=
, de donde e0 = 8.85*10
……..(3)
e0 e0 A
Nm 2
RA
Además: V = Ed , combinando las ecuaciones (2), (3) y (4) se obtiene: C =
e0 A
…....(4)
d
2.2.2
PA
De donde e0 es la permitividad del medio dieléctrico para el vació.
CONDESADOR CILINDRICO
LO
Para un condensador cilíndrico constituido de dos conductores cilíndricos coaxiales, de
radios a y b, (b>a) y longitud L.
SO
Su capacitancia es:
C=
2π ∈ L
,
ln(b / a )
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
4
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
AC
IO
N
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Fig. Nº2: Condensador Cilíndrico
y la capacitancia de un condensador esférico que consta de dos capas esféricas
4π ∈ ab
b−a
RM
concéntricas conductoras, de radios a y b, (b>a) es: C =
La capacidad o capacitancia de un sistema de conductores depende de la disposición
encuentra entre dichos conductores.
FO
geométrica de los conductores y de las propiedades del medio dieléctrico en que se
La utilidad de los condensadores en un circuito es debido a que almacenan energía dada
IN
por una fuente de energía que se les conecta, realizando trabajo sobre el sistema e
incrementando la energía potencial de las cargas E p .
dE p
y considerando dE p = U , la energía almacenada en un
RA
Por definición V =
dq
condensador; se obtiene:
U
Q
0
0
PA
dE p = Vdq ⇒ ∫ dE = ∫
q
n 2 QV CV 2
dq ⇒ U =
=
=
C
2C
2
2
Para cargar y descargar un condensador se puede utilizar el circuito mostrado en la figura ,
el cual consta de dos partes. Cuando el conmutador “s” se conecta al punto 1(circuito de
LO
carga), el condensador alcanza la carga Q y la diferencia de potencial V y la corriente I se
hace cero. Si luego el conmutador se cambia al punto 2(circuito de descarga); el
condensador se descarga a través de la resistencia R que se le mantiene constante,
SO
obteniendo se una corriente I que varía con el tiempo, dad por la ecuación:
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
5
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
AC
IO
N
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
RM
Fig. Nº3: Circuito de carga y descarga
−t
V RC
I = e
R
.
FO
Si durante la descarga la resistencia R la hacemos, variar adecuadamente de manera que la
intensidad de corriente I permanezca constante en el circuito, entonces se cumple que:
− dq
= ∫ dq = −1∫ dq ⇒ Q = I .t
I=
dt
0
Q
Q
, expresión que relaciona la intensidad de corriente con el tiempo que
t
RA
O de otra forma: I =
IN
0
2.2.3
PA
demora un condensador con carga Q en descargarse.
CAPACITADORES EN SERIE
SO
LO
Cálculo de la capacitancia equivalente de un grupo de capacitores conectados en serie.
Fig. Nº4: Capacitores en serie
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
6
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
Los tres capacitores pueden reemplazarse por una capacitancia equivalente C.
para esta conexión en serie.
AC
IO
N
A continuación se deduce una expresión que sirve para calcular la capacitancia equivalente
Puesto que la diferencia de potencial entre A y B es independiente de la trayectoria, el
voltaje de la batería debe ser igual a la suma de las caídas de potencial a través de cada
capacitor.
V = V1 + V2 + V3
RM
Si se recuerda que la capacitancia C se define por la razón Q/V, la ecuación se convierte:
FO
Q Q1 Q2 Q3
=
+
+
C C1 C2 C3
IN
Para una conexión en serie, Q = Q1 = Q2 = Q3 así, que si se divide entre la carga, se
obtiene:
La capacitancia EQUIVALENTE total para dos capacitores en serie es:
C1C 2
C1 + C 2
2.2.4
PA
RA
Ce =
CAPACITORES EN PARALELO
SO
LO
Vemos en la sgte figura que están conectados en paralelo los capacitores:
Fig. Nº5: Capacitares en paralelo
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
7
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Capacitancia
equivalente
de
un
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
grupo
de
capacitores
conectados
en
paralelo
Q1 = C1V1
Q2 = C2V2
AC
IO
N
De la definición de capacitancia, la carga en un capacitor conectado en paralelo es:
Q3 = C3V3
La carga total Q es igual a la suma de las cargas individuales
Q = Q1 + Q2 + Q3
La capacitancia equivalente a todo el circuito es Q=CV, así que la ecuación se transforma en
RM
CV = C1V1 + C2V2 + C3V3
Para una conexión en paralelo,
FO
V = V1 = V2 = V3
Ya que todos los capacitores están conectados a la misma diferencia de potencial. Por
IN
tanto, al dividir ambos miembros de la ecuación
CV = C1V1 + C2V2 + C3V3
Entre el voltaje se obtiene
Conexión en paralelo
SO
LO
PA
RA
C = C1 + C2 + C3 ⇒
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
8
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
RM
AC
IO
N
3. DISEÑO:
FO
Fig. Nº6: Circuito de carga y descarga
RA
Un potenciómetro de 50Ω.
Un reóstato 25k Ω.
Un cronometro.
Un condensador electrolítico de 500 microfaradios.
Un voltímetro.
8 cables de conexión
Una fuente de alimentación de hasta 20 Vcc
PA
•
•
•
•
•
•
•
IN
4. EQUIPOS Y MATERIALES:
5. VARIABLES INDEPENDIENTES
LO
El reóstato que actuó como resistencia fija.
6. VARIABLES DEPENDIENTES:
SO
Serian el voltaje (V) y la corriente (I), medidas con el voltímetro y amperímetro
respectivamente.
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
9
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
7. RANGO DE TRABAJO
AC
IO
N
El rango de trabajo, viene a ser definido por las escalas que se utilizan con respecto a lo que
se va a medir, y los valores que tienen dichos componentes los cuales son las siguientes
Condensador: 2200 μF ……. Max: 25V
•
Medición de resistencias la máxima resistencia medida es de 300KΩ
•
Medición de voltaje 20 Vcc
RM
•
8. PROCEDIMIENTO
Armar el circuito de la figura mostrada anteriormente (figura 6).
•
Manteniendo constante la resistencia, con la ayuda del primer reóstato variar la corriente
FO
•
y la diferencia de potencial.
Luego con la ayuda del voltímetro calcularemos una carga constante la cual utilizaremos
IN
•
en el proceso para cargar un condensador.
•
Después de haber escogido nuestro voltaje constante, el siguiente paso será conectar
RA
cuidadosamente la fuente con los terminales de nuestro circuito, la cual el condensador
deberá también conectado a un voltímetro para así anotar la cantidad de voltaje que
•
PA
brinda la fuente al condensador por medio del circuito armado.
Antes de conectar completamente la fuente, primero señalaremos a que intervalo de
tiempo mediremos nuestro voltaje (para este caso escogimos mediremos los voltajes
•
LO
cada 30 segundos).
Los diversos valores que nos da la lectura del amperímetro y voltímetro se anotan en la
SO
tabla Nº 1.
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
10
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
8.1.1
MEDICIONES
Carga de un condensador
Tabla Nº 1
T(s)
0.88
1.63
2.31
2.97
3.58
4.13
4.66
5.14
5.59
6.00
6.38
6.73
7.06
7.38
7.67
7.94
8.20
8.45
8.67
8.89
9.10
9.27
9.45
9.62
9.77
9.92
10.06
10.20
10.33
10.45
10.56
10.69
10.78
10.87
10.97
11.07
11.15
11.24
11.32
30.00
60.00
90.00
120.00
150.00
180.00
210.00
240.00
270.00
300.00
330.00
360.00
390.00
420.00
450.00
480.00
510.00
540.00
570.00
600.00
630.00
660.00
690.00
720.00
750.00
780.00
810.00
840.00
870.00
900.00
930.00
960.00
990.00
1020.00
1050.00
1080.00
1110.00
1140.00
1170.00
SO
LO
PA
RA
IN
FO
RM
V
AC
IO
N
8.1
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
11
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Grafica en papel milimetrado
AC
IO
N
8.2
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
GRAFICA EN ESCALA MILIMETRADA
Carga Vs Tiempo
Vcc
14
RM
12
y = 0.1302x0.6518
R2 = 0.972
FO
10
8
IN
6
RA
4
0
200
400
600
800
1000
1200
T(s)
Fig. Nº7: Grafica Carga vs Tiempo
SO
LO
0
PA
2
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
12
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Descarga de un condensador
Tabla Nº 2
T(s)
16.40
15.30
14.40
13.60
12.80
12.10
11.50
11.00
10.40
9.80
9.30
8.80
8.40
8.00
7.60
7.20
6.80
6.50
6.20
5.90
5.60
5.30
5.10
4.80
4.60
4.40
4.20
4.00
3.80
3.60
3.50
3.30
3.10
3.00
2.90
2.70
2.00
0.00
30.00
60.00
90.00
120.00
150.00
180.00
210.00
240.00
270.00
300.00
330.00
360.00
390.00
420.00
450.00
480.00
510.00
540.00
570.00
600.00
630.00
660.00
690.00
720.00
750.00
780.00
810.00
840.00
870.00
900.00
930.00
960.00
990.00
1020.00
1050.00
1080.00
SO
LO
PA
RA
IN
FO
RM
V
AC
IO
N
8.3
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
13
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Grafica en papel milimetrado
AC
IO
N
8.4
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
GRAFICA EN ESCALA MILIMETRADA
Descarga Vs Tiempo
Vcc
18
RM
16
y = 15.745e-0.0017x
R2 = 0.9988
14
FO
12
IN
10
8
RA
6
PA
4
2
0
LO
200
400
600
800
1000
1200 T(s)
Fig. Nº8: Grafica Descarga vs Tiempo
SO
0
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
14
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
9. CUESTINARIO
¿Calcular el valor promedio y el error cometido en la capacidad del condensador
electrolítico usando, con el nombre de resultado hallado de la carga promedio Q.
Compare este valor con el indicado en el condensador?
¾ I = 0.75mA
Tprom = 51.1873 s
¾ Q = (0.75mA)(51.1873)
C = 38.39mC/9v
C exp = 4265 µF
Q = 38.39mC
RM
C nominal = 4700 µF
AC
IO
N
9.1
% error = ((4700 µF - 4265 µF ) / 4700) x100
% error = 9.255 %
¾ Q prom = 38.39mC
¾ Carom = 4265 µF
¾ V = 9v
U = QV/2
luego:
RA
Sabemos que:
FO
Halle la energía almacenada en el condensador de esta experiencia, utilizando los
valores de promedios de Q y C.
IN
9.2
U condensador = (38.39mC x 9v)/2 = 0.1728 J
¿Qué sucede con el campo eléctrico entre dos placas paralelas conductoras,
cargadas y aisladas entre si, si se conectan por medio de un alambre de cobre
delgado?
PA
9.3
LO
Entre las placas paralelas no conectadas existe una diferencia de potencial que es lo que
genera el campo eléctrico. Si se conecta las placas paralelas por medio de un alambre de
cobre, a través de esta pasara corriente y la carga de las dos placas se igualaran haciendo
que la diferencia de potencial sea igual a cero por ende el ampo eléctrico generado será
SO
igual a cero.
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
15
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
¿Cree Ud. Que el campo eléctrico en los bordes de un condensador de placas
paralelas es uniforme? Explicar.
AC
IO
N
9.4
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
Decimos una de las características de un condensador plano son :
El voltaje (V) de la batería logra transferir electrones libres de una lámina a otra produciendo
en estas las cargas de +Q y –Q
Si la distancia “d” entre las placas del capacitor es pequeña, en su interior se establece un
RM
campo eléctrico uniforme
Si aumenta considerablemente la distancia entre las placas del capacitor entre las placas del
capacitor, entre los extremos del capacitor se manifiesta el efecto de borde. Las líneas de
¿Puede haber una diferencia de potencial entre dos conductores adyacentes que
tienen la misma carga positiva? Explicar.
No,
IN
9.5
FO
campo se comban hacia fuera
ambos producen campos eléctricos de igual magnitud pero sentidos contrarios por lo
RA
cual estos se eliminan produciendo un campo eléctrico total igual a cero, al no haber campo
9.6
PA
eléctrico no existe potencial eléctrico dentro de éstos dos conductores
Se conecta un condensador en los terminales de una batería. ¿Por qué cada placa
adquiere una carga de la misma magnitud exactamente? ¿Ocurre lo mismo aún
cuando las placas sean de diferentes tamaños?
LO
Los condensadores están hechos para almacenar y ceder energía eléctrica de acuerdo a las
necesidades de cada circuito estos condensadores al ser cargados a diferentes polos. El
polo positivo de la batería tira el flujo de electrones de una placa y los impulsa hacia la otra
SO
placa la transferencia de electrones se detiene cuado la diferencia de potencial entre las
placas del capacitor se igual a la del voltaje (v) de la batería es decir cada placa se carga
con el mismo valor o magnitud pero de signo opuesto. Lo mismo ocurrirá con las
transferencia de electrones con placas de distinto tamaño las placas adquieren el mismo
valor de carga pero de signo opuesto.
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
16
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
9.7
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
¿De que factores importantes dependen la capacitancia de un sistema?
AC
IO
N
Los factores importantes que afectan la capacidad Eléctrica son:
a)La Superficie de la placas:
Es un factor importantísimo para determinar la cantidad de capacitancia, puesto que la
capacidad varía en proporción directa con la superficie de las placas. De este modo el
aumento de la superficie de la placa incrementa la capacitancia, mientras que su
disminución la hace mermar. La mayor superficie de placa aumenta la capacidad.
b) La distancia entre las placas : el efecto que tiene dos cuerpos cargados entre ellos depende de
la distancia que los separa .Como la acción de capacitancia depende de 2 placas de cargas
RM
diferentes, la capacidad varia cuando se modifica la distancia entre las placas.
La capacidad de 2 placas aumenta a medida que las placas se acercan y disminuye cuando
Se
alejan.
C) Cambiando el material dieléctrico: la capacidad se modificara si se utilizan como dieléctricos
¿Indique si la capacitancia de un condensador depende de la diferencia de potencial.
Describa lo que pudiera suceder cuando la diferencia de potencial de un condensador
crece inconmensurablemente.
IN
9.8
FO
materiales distintos. El efecto de los distintos materiales, es comparable al del aire, o sea
que si un condensador tiene una capacitancia dada cuando se utiliza aire como dieléctrico,
otros materiales, en vez de aire, multiplicaran la capacidad en cierta medida. A esta medida
se le denomina: constante dieléctrica.
C = q / V … (α)
;
PA
§s E .ds = q / ‫ع‬0
E.s = q / ‫ع‬0
RA
Por ley de Gauss
y se sabe:
V = Ed … (γ)
LO
Q = ‫ع‬0SE … (β),
Reemplazando (β) y (γ) en (α): C = ‫ع‬0S / d
SO
Entonces la capacitancia no depende de la diferencia de potencial, sino del área de las
placas y la distancia que están separadas y para condensadores Cilíndricos depende de sus
radios y la longitud de este y para condensadores Circulares depende de sus radios.
Si la diferencia de potencial crece inconmensurablemente la capacitancia no Varia ya que no
depende de la diferencia de potencial.
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
17
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Para una diferencia de potencia dada ¿ Como es la carga que almacena un
condensador con dieléctrico con respecto a la que almacena sin dieléctrico(en el
vacío), ¿mayor o menor?.Dar una explicación describiendo las condiciones
microscópicas del caso.
AC
IO
N
9.9
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
Cuando ambos condensadores se cargan hasta obtenerse la misma diferencia de potencial
obtenemos que la carga en la que contiene el dieléctrico es mayor que la carga en el otro.
Se deduce de la relación: C=Q/V que la capacidad de un condensador aumenta si se coloca
un dieléctrico entre las placas .Si se llena totalmente el espacio entre las placas la
RM
capacidad aumenta en la relación C=KC donde K es la constante dieléctrica del material.
FO
9.10 Dos capacitares idénticos se cargan por separado al mismo potencial y luego, se
desconectan de la fuente de voltaje y se vuelven a conectar juntos, de modo que se
descarguen.¿Que le sucede a la energía almacenada en los capacitares?. Explique su
respuesta.
IN
Si se conecta un condensador directamente a una fuente de tensión, este quedara cargado
instantáneamente, presentando en sus extremos una diferencia de potencial idéntica a la de
la fuente. Por lo que respecta
a la tensión, mientras que al principio era nula, crece
RA
rápidamente a consecuencia de la carga acumulada .Cuando la carga total acumulada
impide la circulación de corriente se dice que el condensador esta cargado
PA
Entonces la energía se ha recuperado cuando se ha descargado el condensador.
LO
9.11 Un condensador de carga usando una batería que después se desconecta.
Luego de
introduce entre las placas una capa de dieléctrica. Describir
analíticamente lo que ocurre a la carga, a la capacitancia, a la diferencia de
potencial , a la intensidad de campo eléctrico y a la energía almacenada
Un dieléctrico o aislante es un material que evita el paso de la corriente, y su función es
SO
aumentar la capacitancia del capacitor
Si la carga se desconecta a continuación y de inserta un dieléctrico en el interior del
condensador , entonces disminuye el potencial cuando se intercala un
dieléctrico
,implica una disminución de campo eléctrico ,la carga de mantiene constante ya que
la caga todavía esta sobre las placas
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
18
Universidad Nacional del Callao
Facultad de Ingeniería Eléctrica y Electrónica
Escuela Profesional de Ingeniería Eléctrica
Ciclo 2009-A
10. CONCLUSIONES Y RECOMENDACIONES
Realizar la conexión de los instrumentos para protección de ellos mismos
•
A través del siguiente trabajo nos pudimos dar cuenta sobre ciertas cosas, por ejemplo que
AC
IO
N
•
la relación que hay entre el tiempo con la carga del condensador, es un tipo de relación
directa lo cual mientras mayor es el tiempo mayor es la carga que va a tener el
condensador, por otro lado la relación que tiene la descarga del condensador con respecto
al tiempo es una relación indirecta, a medida que transcurre mas tiempo, la carga del
condensador es menor.
•
Los valores de la constante de tiempo t, el valor que esta tendría que tomar en forma
RM
teórica con los valores del condensador y de la resistencia difiere del valor que se tomo en
la forma practica, esto se debe a que se pudieron presentarse algún tipo de falla durante la
medición del tiempo o del voltaje, por fallas o valores con cierto margen de error de la
FO
fuente de poder, el condensador, la resistencia, o el voltímetro, o por razones que
simplemente no pudieron se identificadas.
•
Con respecto a los gráficos en el de descarga se puede ver que en el inicio de las
mediciones las diferencias de voltaje de descarga eran mayores con respecto a los
IN
intervalos de descarga finales, la diferencia de voltaje mientras avanza el tiempo,
disminuyen los intervalos de descarga. Lo que nos lleva a tener una curva logarítmica.
•
Con respecto a la carga del condensador en el inicio, la diferencia de carga de un intervalo
RA
de voltaje es mayor mientras avanza el tiempo a que cuando nos acercamos al limite de la
carga máxima del condensador, lo que nos lleva a tener una curva con forma exponencial,
PA
o logarítmica, pero con el signo contrario.
11. BIBLIOGRAFIA
•
Resnick – Halliday. Física Parte II. Editorial Continental. Edición Actualizada. 1971.
•
LO
España. Pág. 971 - 973
Humberto Leyva Naveros, Electrostática y Magnetismo, Ed. Publicaciones Moshera, 1999,
Lima, Pag: 120-134.
Física Tomo II Raymond A. Serway
•
http://es.wikipedia.org/wiki/Ley_de_Ohm
•
www.wikipedia.com
•
www.tecnoedu.com
SO
•
Laboratorio de Física III
Experiencia Nº 5 – Carga Almacenada en un condensador y corriente eléctrica
19
Descargar