EJERCICIOS DE COMPOSICIÓN DE FUNCIONES 1º) Dadas las funciones: f(x)=2x+1; g(x) =x2-3 y h(x)=(x-5)/2, calcula a) g∘f x =g f(x) =g 2x+1 = 2x+1 2 -3=4x2 +4x-2 b) f∘g c) h∘g d) h∘f x =f g(x) =f x2 -3 =2 x2 -3 +1=2x2 -5 x =h g(x) =h x2 -3 = 2 2x+1 -5 x =h f(x) =h 2x+1 = x-5 2 (x -3)-5 2 x-5 = g∘h x =g h(x) =g -3= f) h∘g∘f x =h g f(x) =h 4x2 +4x-2 = g) f∘g∘h x =f g h(x) =f g(h(x) =f 2 g∘f x =g √cos x -2 b) f∘g (x)= f g(x) =f Ln x2 -4 2 2x-4 2 4 4x2 +4x-2 -5 2 =2 -3= = x2 -10x+13 4 4x2 +4x-7 2 x2 -10x+13 x2 -10x+15 +1= 4 2 − 4 , calcula g∘f x y f∘g (x) √cos x -2 -4 2 =Ln =x-2 x2 -10x+25 x2 -10x+13 4 2º) Dadas f(x)= √cos x -2 y g(x)= Ln( a) x2 -8 = 2 e) 2 = =Ln cosx-2√cos x = cos[Ln(x2 -4)] -2 3º) Completa la siguiente tabla f(x) g(x) 2x+3 5x+4 4-3x 1-x x2 -x+3 x2+1 x2-2 (x+1)/2 (x-1)/4 f(g(-2) g(f(-3/4)) 2 f(g(x)) g(f(x)) 2x2+12x+13 2x - 5 3x-2 30x-17 4º) Dadas las funciones f(x)=sen x, g(x)= x2+1 y h(x)= x-1 , calcula: a) g∘f x =g sen x =sen2 x+1 b) f∘h x =f c) h∘g x =h x2 +1 = (x2 +1) -1= x2 +1 -1= x2 =x x-1 =sen x-1 2 x-1 = x-1 +1=x-1+1=x d) g∘h x =g e) h∘f∘g x =h f g(x) =h f(x2 +1 =h sen(x2 +1) = sen x2 +1 -1