Estimados alumnos: Los esquemas en las páginas 14 a 17 son sólo ilustrativos y no necesitan ser memorizados PARA MIS ALUMNOS DE Primero Medio 1 2 La fotosíntesis es el proceso que mantiene la vida en nuestro planeta Los organismos autótrofos, como las plantas terrestres, las algas de agua dulce o las que habitan en los océanos realizan este proceso de transformación de la materia inorgánica en materia orgánica y al mismo tiempo convierten la energía luminosa solar en energía química. 3 Para realizar la fotosíntesis las plantas disponen de un pigmento de color verde llamado clorofila que es el encargado de absorber la luz adecuada para realizar este proceso. Además de las plantas, la fotosíntesis también la realizan las algas verdes y ciertos tipos de bacterias. Estos seres capaces de producir su propio alimento se conocen como autótrofos. Todos los organismos heterótrofos dependen de estas conversiones energéticas y de materia para vivir. Además, los organismos fotosintéticos eliminan oxígeno al ambiente, del cual también depende la mayoría de los seres vivos de este planeta 4 5 A diferencia de los animales, que necesitan digerir alimentos ya elaborados, las plantas y algas verdes, son capaces de producir sus propios alimentos a través de un proceso químico llamado fotosíntesis. 6 7 La fotosíntesis es un proceso que transforma la energía de la luz del sol en energía química. Consiste en la elaboración de azúcar (Glucosa) y oxígeno a partir del C02 ( dióxido de carbono) y agua con la ayuda de la luz solar. Dióxido de Carbono Agua Glucosa Oxígeno Es un proceso complejo, mediante el cual los seres vivos poseedores de clorofila y otros pigmentos, captan energía luminosa procedente del sol y la transforman en energía química (ATP) y en compuestos reductores (NADPH), y con ellos transforman el agua y el CO2 en compuestos orgánicos reducidos (glucosa y otros), liberando oxígeno. 8 9 Glucosa Agua Si, claro, en las hojas, pero ¿en que parte de las hojas? 10 Los cloroplastos Dentro de las células de las hojas están unos organelos llamados Cloroplastos Allí ocurren las 2 Fases de la Fotosíntesis Están formados por un sistema de membranas interno en donde se encuentran ubicados los sitios en que se realiza cada una de las partes del proceso fotosintético. En los Tilacoides la Fase Luminosa y en el Estroma la Fase Oscura Un Cloroplasto Células Vista microscópica de una hoja 11 Revisa la estructura interna de un Cloroplasto y observa sus relaciones: Membranas Estroma Grana Tilacoides Lamelas 12 En los Tilacoides ocurre la Fase luminosa de la Fotosíntesis en tanto que en el Estroma ocurre la Fase Oscura 13 Fase luminosa de la fotosíntesis La fase luminosa o fotoquímica puede presentarse en dos modalidades: con Transporte Acíclico de electrones o con Transporte Cíclico de electrones. En la acíclica se necesitan los dos fotosistemas: PS I y PS II . En la cíclica sólo el fotosistema I. PSI La fase luminosa acíclica (no cíclica) se inicia con la llegada de fotones al fotosistema II. (PS II). Excita a su pigmento diana P680 que pierde tantos electrones como fotones absorbe. Tras esta excitación existe un paso continuo entre moléculas capaces de ganar y perder esos electrones. Pero para reponer los electrones que perdió el pigmento P680 se produce la hidrólisis del agua (fotolisis del agua), desprendiendo oxígeno. Este proceso se realiza en la cara interna de la membrana de los tilacoides. En resumen en la fase luminosa: 1. Se rompe la molécula de agua con lo que 2. Se produce el poder reductor del NADPH a partir de los protones (H+) obtenidos del agua 3. Se produce una cadena de transporte de electrones (e-) fotones 4. Se produce ATP que da energía a la célula No necesitas memorizar el esquema, sólo debe darte una idea del proceso ocurrido 14 Los electrones son introducidos en el interior del tilacoide por el citocromo b-f y crean una diferencia de potencial electroquímico a ambos lados de la membrana. Esto hace salir protones a través de las ATP sinteteasas con la consiguiente síntesis de ATP que se acumula en el estroma (fosforilación del ADP). Los fotones también inciden en el PS I; la clorofila P700 pierde dos electrones que son captados por aceptores sucesivos. Los electrones que la clorofila pierde son repuestos por la Plastocianina que lo recibe del citocromo b-f Al final los electrones pasan a la enzima NADP reductasa y se forma NADPH (fotorreducción del NADP). Fase luminosa Cíclica No necesitas memorizar los esquemas, sólo deben darte una idea de los procesos ocurridos En la fase luminosa cíclica sólo interviene el PS I, creándose un flujo o ciclo de electrones que, en cada vuelta, da lugar a síntesis de ATP. No hay fotolisis del agua y tampoco se genera NADPH, ni se desprende oxígeno. Su finalidad es generar más ATP imprescindible para realizar la fase oscura posterior. 15 Fase oscura de la fotosíntesis. En la fase biosintética se usa la energía (ATP y NADPH), obtenidos en la fase luminosa para sintetizar materia orgánica a partir de inorgánica. La fuente de carbono es el CO2, la fuente de nitrógeno son los nitratos y nitritos y la de azufre los sulfatos. En esta fase, el hidrógeno formado en la fase anterior se suma al dióxido de carbono gaseoso (CO2) presente en el aire, dando como resultado la producción de compuestos orgánicos, principalmente carbohidratos; es decir, compuestos cuyas moléculas contienen carbono, hidrógeno y oxígeno. Dicho proceso se desencadena gracias a una energía almacenada en moléculas de ATP que da como resultado el carbohidrato llamado glucosa (C6HI2O6), un tipo de compuesto similar al azúcar, y moléculas de agua como desecho. Después de la formación de glucosa, ocurre una secuencia de otras reacciones químicas que dan lugar a la formación de almidón y varios carbohidratos más. A partir de estos productos, la planta elabora lípidos y proteínas necesarios para la formación del tejido vegetal, lo que produce el crecimiento. No necesitas memorizar el esquema, sólo debe darte una idea del proceso ocurrido 16 Ciclo de Calvin El proceso de síntesis de compuestos de carbono fue descubierta por Melvin Calvin y por ello se llama el ciclo de Calvin. La síntesis de compuestos de carbono es un ciclo complejo. En él intervienen muchos metabolitos intermediarios que, al final, fijan el dióxido de carbono atmosférico, -introducido en el vegetal por los estomas de las hojas- a compuestos existentes en el estroma del cloroplasto y que conducen a la síntesis de materia orgánica compleja: pentosas, hexosas (glucosa), disacáridos, almidón, ácidos grasos y aminoácidos No necesitas memorizar el esquema, sólo debe darte una idea del proceso ocurrido 17 Balance energético de la fotosíntesis: La fase luminosa de la fotosíntesis produce ATP y NADPH. Si se sintetiza una molécula de glucosa (C6H12O6) se necesitan 6 CO2 y 12 de Agua. El agua libera 6 O2 a la atmósfera y aporta 12 hidrógenos de la glucosa y los 12 hidrógenos necesarios para pasar los 6 O2 sobrantes del CO2 a Agua. Intervienen 24 Hidrógenos. Aparecen así 24 protones y 24 electrones y, como cada electrón precisa dos fotones (uno en el PS. I y otro en el PS. II), se necesitan 48 fotones. El ciclo de Calvin necesita por cada CO2 incorporado, 2 NADPH y 3 ATP. Para una molécula de glucosa se necesitan 12 NADPH y 18 ATP. 18 Importancia biológica de la fotosíntesis La fotosíntesis es un proceso bioquímico muy importante de la Biosfera por varios motivos: 1. La síntesis de materia orgánica a partir de la inorgánica se realiza fundamentalmente mediante la fotosíntesis; luego irá pasando de unos seres vivos a otros mediante las cadenas tróficas, para ser transformada en materia propia por los diferentes seres vivos. 2. Produce la transformación de la energía luminosa en energía química, necesaria y utilizada por los seres vivos 3. En la fotosíntesis se libera oxígeno, que será utilizado en la respiración aerobia como oxidante. 4. La fotosíntesis fue causante del cambio producido en la atmósfera primitiva, que era anaerobia y reductora. 5. De la fotosíntesis depende también la energía almacenada en combustibles fósiles como carbón,petróleo y gas natural. 6. El equilibrio necesario entre seres autótrofos y heterótrofos no sería posible sin la fotosíntesis. 19