Centro guatemalteco de investigación y capacitación de la caña de azúcar. -CENGICAÑA- Joel Morales, José Luis Quemé y Mario Melgar. Primera Edición Santa Lucia Cotz. Agosto 2009. InfoStat Contenido Aspectos generales de InfoStat .......................................................................................................................................... 1 Aspecto de la base de datos: Video. ............................................................................................................................. 1 ¿Có mo importar una base de datos desde Excel? .................................................................................................. 1 ¿Có mo pegar una base de datos desde Excel? ....................................................................................................... 2 Transformación de datos ................................................................................................................................................ 3 Prueba de hipótesis .............................................................................................................................................................. 4 Términos de importancia al realizar una prueba de hipótesis .................................................................................. 4 Pasos para evaluar una hipótesis estadística. .............................................................................................................. 5 Prueba de hipótesis acerca de una media poblacional normal. Video .................................................................... 5 Prueba de hipotesis acerca de dos medias (parcelas apareadas). Video ................................................................ 8 Prueba de hipótesis acerca de dos medias independientes. Video ......................................................................... 9 Diseño completamente al azar ......................................................................................................................................... 10 Características generales............................................................................................................................................... 10 Utilización del d iseño.................................................................................................................................................... 10 Supuestos del modelo.................................................................................................................................................... 10 Diseño de bloques completos al azar .............................................................................................................................. 14 Hipótesis del modelo ..................................................................................................................................................... 14 Supuestos del modelo .................................................................................................................................................... 14 Serie de Experimentos....................................................................................................................................................... 19 Análisis de experimentos factoriales .............................................................................................................................. 23 Arreglos combinatorios................................................................................................................................................. 24 Parcelas div ididas .......................................................................................................................................................... 28 Franjas divid idas ............................................................................................................................................................ 31 Análisis de correlación lineal simp le. ............................................................................................................................. 34 Regresión Lineal................................................................................................................................................................. 36 RL Simple ....................................................................................................................................................................... 36 Supuestos del modelo de regresión ........................................................................................................................ 37 RL Mú ltiple ..................................................................................................................................................................... 41 Bibliografía.......................................................................................................................................................................... 42 Anexos ................................................................................................................................................................................. 43 Manual de uso Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Aspectos generales de InfoStat Aspecto de la base de datos: Video. La base de datos es la matriz de información, sobre la que se trabaja. La forma de ingreso de la información es en base a los criterios de organización de datos, donde se colocan en las columnas las variables y en las filas las observaciones, por lo que cada fila es un individuo o unidad experimental y cada celda contiene el dato o el valor que pertenece a cada variable para cada observación. ¿Cómo importar una base de datos desde Excel? InfoStat posee grandes ventajas respecto a la facilidad en el manejo de datos, es muy versátil en la importación de datos desde Excel (versión 2003 o anterior), esto es importante, pues este último es muy utilizado en la generación de bases de datos tomados en campo. Es posible importar directamente una base de datos desde Excel y otros formatos. Esto facilita el manejo y presentación de los mismos. Figura 1: S elección de la hoja de cálculo importada desde Excel. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 1 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA ¿Cómo pegar una base de datos desde Excel? Muchas veces poseemos la base de datos de tal forma, que no coincide la primera fila y la primera columna con información propia de la base , o se poseen objetos distintos como gráficas o logotipos. Considerando esto, es relativamente fácil, el copiar la base de datos que se desea analizar de forma directa a la tabla de InfoStat. Para esto se puede incluir la primera fila como el nombre de las columnas o no. Se debe de presionar el botón derecho del ratón y seleccionar la opción “pegar” o “pegar incluyendo nombre de columnas”. 2 Figura 2: Como pegar una base de datos en la tabla de InfoS tat. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Transformación de datos Muchas veces se trabaja con variables cualitativas o datos no paramétricos, los cuales no cumplen con el supuesto de normalidad. Por lo anterior es necesario realizar transformación de estos datos. InfoStat ofrece una gran cantidad de transformaciones para una variable, y a la vez permite la operación entre variables. 3 Figura 3: Menú a seleccionar para realizar una transformación Para realizar la transformación se debe de seleccionar la variable, luego de indicar que se desea realizar una transformación. Figura 4: Opciones de trasformación InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Prueba de hipótesis Hipótesis Nula (Ho) Esta es la que el investigador evalúa y está dispuesto a sostener como probable, a menos que la evidencia experimental en su contra sea sustancial. Hipótesis alternativa (Ha) Es la negación de la hipótesis nula. 4 Términos de importancia al realizar una prueba de hipótesis Error tipo I (α) Es la probabilidad de rechazar una Ho cuando es falsa. Error tipo II (β) Es la probabilidad de no rechazar una Ho Cundo es falsa . Cuadro 1: Posibles errores. Tomada de Anderson, E; Black, W. et al. 1999. Nivel de significancia Es el valor de probabilidad de error tipo I, que el investigador está dispuesto a aceptar. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Pasos para evaluar una hipótesis estadística. 1. Definir la hipótesis nula y alternativa adecuada para el caso de evaluación . Cuadro 2: Casos de hipótesis a evaluar 5 2. Seleccionar el estadístico de prueba, necesario para evaluar la hipótesis. Cuadro 3: Estadísticos utilizados en la prueba de hipótesis Tomado de López, E. 2008. 3. Especificar el nivel de significancia. 4. Establecer la regla de decisión. 5. Establecer los valores del estadístico seleccionado de la prueba y comparar lo con el valor critico establecido. 6. Conclusión. Prueba de hipótesis acerca de una media poblacional normal. Video Ejemplo: En una región cañera se siembra predominantemente una variedad de caña de azúcar que tiene un TCH promedio de 103.5 toneladas ha -1 . Un programa de mejoramiento ha desarrollado una nueva variedad, comúnmente usada, con rendimientos mayores a la variedad predominante. Para probar esta aseveración se siembran nueve lotes experimentales con la nueva variedad y se obtienen los siguientes rendimientos: InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Cuadro 4: Rendimiento en toneladas de caña por hectárea, tomado de 9 lotes distintos. Lote TCH 1 2 3 4 5 6 7 8 9 Prom. 103.15 103.92 104.26 103.36 103.72 104.19 103.42 104.38 104.5 103.88 Identificación del parámetro sobre el cual se desea inferir en base a la muestra: Media (µ) Hipótesis a probar: Ho: µ≤103.5 Ha: µ>103.5 Elección del modelo probabilístico bajo el cual se operará: La t de Student Especificación del nivel de significancia. α = 5% o 0.05 Establecer la regla de decisión: Se Rechaza la Ho si p ≤ α InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 6 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA 7 Figura 5: Ubicación de la prueba Se debe de seleccionar la columna a analizar y se debe de indicar el parámetro con el cual se realizará la comparación. Prueba T para un parámetro Valor del parámetro probado: 103.5 Variable n Media DE LI(95) TCH 9 103.88 0.49 103.57 T 2.32 p(Unilateral D) 0.0246 La regla de desición: En base a la prueba T, se observa una probabilidad de p = 0.0246. Este valor es menor a la probabilidad permitida (α= 0.05), por lo que se rechaza Ho. Conclusión: La muestra apoya la aseveraión del programa de mejoramiento. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Prueba de hipotesis acerca de dos medias (parcelas apareadas). Video Cuadro 5: Rendimientos en toneladas de caña por hectarea, de dos variedades tamados de 6 lotes. NF CP72-2086 CG97-77 1 2 3 4 5 6 Prom. 160 112 184 186 104 152 150 130 118 225 149 168 139 155 8 Es importante que se ingresen los datos en dos columnas, una para cada población o conjunto de datos. Figura 6: Ubicación de la prueba En este caso la hipótesis a evaluar es: Ho: la diferencia entre las medias es igual a cero, que es igual a decir que ambas medias son iguales µ1 = µ2. Ha: µ1 ≠ µ2. Prueba T (muestras apareadas) Obs(1) Obs(2) CG97-77 CP72-2086 media(dif) 5.17 Media(1) 154.83 Media(2) 149.67 DE(dif) T 40.23 0.31 Bilateral 0.7658 Conclusión: En base a las evidencias se puede aseverar que los tonelajes de ambas variedades son semejantes. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Prueba de hipótesis acerca de dos medias independientes. Video Cuadro 6: Rendimientos en toneladas de caña por hectárea, bajo dos tratamientos de aplicación de fosforo. Fosforo 0 P0 150 155 149 153 Fosforo 240 P240 165 167 168 167 9 Es necesario que para ingresar los datos en InfoStat, se debe de crear una columna donde se coloque el nombre o código de la variable, útil para la clasificación, y una columna donde se ingrese el valor de la variable a estudiar. Figura 7: Ubicación de la prueba Prueba T para muestras Independientes Variab Grupo(1)Grupo(2) TCH {P0} {P240} media(1) 151.75 media(2) 166.75 p(Var.Hom.) T 0.2307-9.91 p 0.0001 Conclusión: Al observar la salida del análisis, se puede decir que el rendimiento del tratamiento P240 es mayor que el rendimiento del tratamiento P0. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Diseño completamente al azar Es importante que al momento de realizar un análisis de varianza, se tenga bien claro las fuentes de variación consideradas por dicho modelo. 10 Tomado de López, E. 2008 Como la media general y el error experimental son términos que poseen en común todos los modelos, no es necesario el indicarlos entre las fuentes de variación. Características generales Se usa cuando las unidades experimentales son homogéneas Con el se puede probar cualquier número de tratamientos (ya sean niveles de un solo factor o combinaciones de nivel de varios factores) Los tratamientos se aplican a las unidades experimentales al azar. Cualquier número de repeticiones por tratamiento es posible. Utilización del diseño Este diseño se recomienda cuando existe homogeneidad entre unidades experimentales, esto quiere decir que no existe influencia de la ubicación de la unidad experimental sobre el efecto del tratamiento, esto es muy utilizado en ensayos a nivel de laboratorio, cuando se utilizan macetas o medios de cultivos, donde las condiciones son las mismas para todas las unidades experimentales. Supuestos del modelo. Los errores son independientes. Los errores están normalmente distribuidos con media cero y varianza constante Existe homogeneidad de varianzas entre los tratamientos El modelo es lineal y de efectos aditivos. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Ejemplo: Video. Cuadro 7: Rendimiento (TCH), evaluando 3 frecuencias de riego. Tratamientos Repetición 1 Repetición 2 Repetición 3 Testigo (práctica regional) 123 133 131 Riego cada 21 días 175 167 192 Riego cada 28 días 199 203 166 Riego cada 35 días 179 188 203 11 Tomado de M artínez, A. (1998). En este caso los datos se deben de ingresar en la Tabla de InfoStat, indicando en una columna el tratamiento evaluado y en la columna de la par la variable de respuesta correspondiente a cada tratamiento. Cuadro 8: Tabla de datos como se debe de ingresar a InfoS tat. Tratamientos TCH Testigo (práctica regional) Riego cada 21 días Riego cada 28 días Riego cada 35 días Testigo (práctica regional) Riego cada 21 días Riego cada 28 días Riego cada 35 días Testigo (práctica regional) Riego cada 21 días Riego cada 28 días Riego cada 35 días 123 175 199 179 133 167 203 188 131 192 166 203 En la pestaña estadísticas se encuentra la opción análisis de varianza, al aceptar aparece un cuadro donde se debe de indicar las variables dependientes (TCH) y las variables de clasificación (Tratamientos). Para esto se debe de utilizar los botones de acción . InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA 12 Figura 8: S elección de las variables. Al aceptar aparecerá otro recuadro, donde se debe indicar las fuentes de variación del modelo, como ya se mencionó la media general y el error no se indican. Esto se realiza en la pestaña . A un lado se encuentra la pestaña donde se puede indicar la prueba de media que se desea realizar, donde se encuentran varias opciones. Figura 9: S elección del método de comparación de medias. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Análisis de la varianza Variable TCH N 12 R² 0.83 R² Aj CV 0.77 7.98 Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM F p-valor Modelo 7526.25 3 2508.75 13.37 0.0018 Tratamientos 7526.25 3 2508.75 13.37 0.0018 Error 1500.67 8 187.58 Total 9026.92 11 13 Test:LSD Fisher Alfa=0.05 DMS=25.78763 Error: 187.5833 gl: 8 Tratamientos Medias Riego cada 35 días 190.00 Riego cada 28 días 189.33 Riego cada 21 días 178.00 Testigo (práctica regional.. 129.00 n 3 3 3 3 A A A B Letras distintas indican diferencias significativas(p<= 0.05) 201.35 A A TCH 182.40 A 163.45 144.50 B 125.56 Riego cada 28 días Testigo (práctica regional) Riego cada 35 dias Riego cada 21 dias Tratamientos InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Diseño de bloques completos al azar 14 Tomado de López, E. 2008. Hipótesis del modelo τ = τi (todos los tratamientos producen el mismo efecto) τ ≠ τi para al menos un i; i = 1,2, . . . , t (al menos uno de los tratamientos produce efectos distintos). Supuestos del modelo εij ~ NID (0,σ2) Los errores son independientes y normalmente distribuidos, con media cero y varianza constante (homogeneidad de varianzas). No existe interacción entre bloque y tratamiento (*) (*) Significa que un tratamiento no debe modificar su acción (o efecto) por estar en uno u otro bloque. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Ejemplo: Video Cuadro 9: Rendimiento en Toneladas de caña por hectárea, caña plantilla, finca Margaritas. Bloques Variedad I II III IV CGSP98-08 CG00-032 CGSP-98-05 CGSP-98-16 CG00-120 CG00-129 CG00-001 CG00-092 CG99-045 CG00-028 CG00-044 CG-99-014 PR75-2002 CP72-2086 177 136 166 195 231 175 170 190 164 199 188 210 249 161 182 158 193 213 213 172 171 206 163 189 181 203 217 165 182 141 158 176 216 168 179 208 179 226 208 191 227 194 166 156 186 185 188 155 185 196 175 208 192 210 231 179 Para este análisis la base de datos se debe de ordenar de tal forma que se tenga una columna donde se indique el tratamiento aplicado y a la par en otra columna a que bloque pertenece y en una tercera el valor de la variable medida. Cuadro 10: Forma de ingresar los datos a la base de datos. Variedad Bloque TCH CGSP98-08 CG00-032 I I 177 136 … CP72-2086 IV 179 Para realizar el análisis de varianza se debe de ir a la pestaña estadísticas, se despliega un menú, donde se debe seleccionar la opción análisis de varianza. Se debe de seleccionar en el apartado “variables dependientes” la columna del tonelaje (TCH) y en el apartado “variable de clasificación” la columna que indica el tratamiento aplicado y la columna donde se indica a que bloque pertenece. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 15 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA 16 Figura 10: S elección de los términos del modelo. Para indicar el modelo de bloques completos al azar, se observan las fuentes de variación en el recuadro “términos del modelo”, y debajo de este se observa un botón de acción llamado “agregar interacción” en este caso no se debe de agregar, de esta forma se cumple con uno de los supuestos del modelo. No activar Figura 11: Especificaci ón del modelo. Luego de elegir el método de comparación de medias, se debe de seleccionar en base a que agrupación se desea la comparación. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA 17 Figura 12: Agrupamiento de las medias para su comparación. Análisis de la varianza Variable TCH N 56 R² 0.79 R² Aj CV 0.71 6.80 Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM F p-valor Modelo 24459.00 16 1528.69 9.40 <0.0001 Bloque 82.07 3 27.36 0.17 0.9172 Variedad 24376.93 13 1875.15 11.53 <0.0001 Error 6340.93 39 162.59 Total 30799.93 55 Test:LSD Fisher Alfa=0.05 DMS=18.23722 Error: 162.5879 gl: 39 Variedad Medias n PR75-2002 231.00 4 A CG00-120 212.00 4 B CG00-028 205.50 4 B CG-99-014 203.50 4 B CG00-092 200.00 4 B CG00-044 192.25 4 CGSP-98-16 192.25 4 CGSP98-08 176.75 4 CG00-001 176.25 4 CGSP-98-05 175.75 4 CP72-2086 174.75 4 CG99-045 170.25 4 CG00-129 167.50 4 CG00-032 147.75 4 C C C C C D D D D D D E E E E E E F Letras distintas indican diferencias significativas(p<= 0.05) InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA En la pestaña donde se selecciona el método de comparación de medias, también existe una opción que devuelve un gráfico de barras con la jerarquía del test seleccionado. 241.86 A 217.21 B TCH BC BC BC CD 192.56 CD DE DE 18 DE DE E E 167.92 CG00-032 CG00-129 CG99-045 CP72-2086 CGSP-98-05 CG00-001 CGSP98-08 CGSP-98-16 CG00-044 CG00-092 CG-99-014 CG00-028 CG00-120 PR75-2002 F 143.27 Variedad Figura 13: Evaluación de tres distintos ciclos de riego. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Serie de Experimentos Es común que se realicen experimentos con la misma estructura, pero en distintas localidades. Con esto se desea obtener conclusiones válidas para toda una región, esto suponiendo aleatorización de las localidades. Para esto es necesario el analizar por separado las localidades y luego realizar un análisis que integre todas las localidades. Estos ensayos se pueden realizar no solo para localidades distribuidas en el espacio, si no también ensayos distribuidos en el tiempo, por ejemplo el realizar un ensayo de herbicidas para verano y otro en invierno con la misma estructura, y concluir para todo el año. También es importante que se cumpla con el supuesto de homocedasticidad entre ensayos, esto se puede probar por medio de la prueba de Hartley. Siendo: Yijk = toneladas de caña por hectárea referentes al i-ésimo producto madurante en el jésimo bloque o repetición de la k-ésima localidad; μ = media general τi = efecto del i-ésimo producto madurante βj / k = efecto del j-ésimo bloque en la k-ésima localidad, lk = efecto de la k-ésima localidad, (τl)ik = efecto de la interacción entre el i-ésimo producto madurante y la k-ésima localidad, εijk = error experimental asociado a la observación Yijk. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 19 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Ejemplo: Video. Cuadro 11: Toneladas de caña por hectárea, plantilla, en tres localidades. Las Margaritas San Bonifacio Tululá Bloque Bloque Bloque Variedad I II III IV I II III IV I II III IV CGSP98-08 CG00-032 CGSP-98-05 CGSP-98-16 CG00-120 CG00-129 CG00-001 CG00-092 CG99-045 CG00-028 CG00-044 CG-99-014 PR75-2002 CP72-2086 177 136 166 195 231 175 170 190 164 199 188 210 249 161 182 158 193 213 213 172 171 206 163 189 181 203 217 165 182 141 158 176 216 168 179 208 179 226 208 191 227 194 166 156 186 185 188 155 185 196 175 208 192 210 231 179 148 115 153 153 162 153 164 171 162 172 157 144 169 130 152 124 140 117 164 127 158 133 117 103 150 152 162 123 168 104 104 111 153 144 157 157 149 109 90 156 175 155 175 141 145 179 158 99 153 181 153 107 92 151 190 153 111 95 99 125 107 105 81 50 96 131 137 108 123 83 110 90 127 82 112 117 82 99 85 122 109 99 112 100 115 68 130 119 113 115 103 97 111 135 111 127 128 106 103 125 132 107 110 119 122 92 93 100 94 136 129 112 En este caso, como se puede observar, en el modelo el efecto del bloque se encuentra anidado en la localidad, por lo que se debe de indicar en las fuentes de variación, para esto se utiliza el símbolo “>” para indicar que el efecto del bloque se encuentra dentro de la localidad (Localidad>Bloque) y teniendo en cuenta que el error de la localidad es Localidad>Repetición, como se ha mencionado en ejemplos anteriores. Figura 14: Fuentes de variación del modelo InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 20 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Análisis de la varianza Variable TCH N 168 R² 0.88 R² Aj CV 0.83 11.08 Cuadro de Análisis de la Varianza (SC tipo III) F.V. Modelo Localidad Localidad>Repetición Variedad Localidad*Variedad Error Total SC 227787.23 177483.08 3979.12 25378.43 20946.58 30873.63 258660.85 gl 50 2 9 13 26 117 167 CM 4555.74 88741.54 442.12 1952.19 805.64 263.88 Test:LSD Fisher Alfa=0.05 DMS=8.98910 Error: 442.1250 gl: 9 Localidad Medias n San Bonifacio 187.54 56 A Las Margaritas 144.36 56 Tululá 108.02 56 F 17.26 200.72 1.68 7.40 3.05 p-valor (Error) <0.0001 <0.0001 (Loc>Rep) 0.1025 <0.0001 <0.0001 21 B C Letras distintas indican diferencias significativas(p<= 0.05) Test:LSD Fisher Alfa=0.05 DMS=13.13374 Error: 263.8771 gl: 117 Variedad Medias n PR75-2002 176.00 12 A CG00-120 160.58 12 B CG-99-014 157.25 12 B CG00-028 150.08 12 B CGSP98-08 149.08 12 B CG00-092 148.33 12 B CGSP-98-16 146.83 12 CGSP-98-05 144.42 12 CG00-001 143.75 12 CG00-044 142.42 12 CP72-2086 138.42 12 CG00-129 137.42 12 CG99-045 137.25 12 CG00-032 121.08 12 C C C C C C D D D D D D D D D D E Letras distintas indican diferencias significativas(p<= 0.05) InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA 193.79 A TCH 171.33 148.86 B 22 126.40 C 103.93 San Bonifacio Tululá Las Margaritas Localidad 183.67 A 167.28 B BCD 150.89 BCD BCD CD CD D D D D D 134.49 CG00-032 CG99-045 CG00-129 CP72-2086 CG00-044 CG00-001 CGSP-98-05 CGSP-98-16 CG00-092 CGSP98-08 CG00-028 CG-99-014 CG00-120 E 118.10 PR75-2002 TCH BC Variedad InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Análisis de experimentos factoriales Cuando se habla de experimentos factoriales, es cuando evaluamos simultáneamente el efecto de dos o más valores. Dependiendo del arreglo y las interacciones entre los factores se pueden generar diversos diseños adecuados a distintas condiciones en campo. Ventajas a. Se logra una gran eficiencia en el uso de los recursos experimentales disponibles. b. Se obtiene información respecto a las diversas interacciones. c. Los resultados experimentales son aplicables a un rango de condiciones más amplio debido a las combinaciones de los diversos factores en un solo experimento. Los resultados son de naturaleza más comprensiva. d. Los experimentos factoriales son más eficientes que los experimentos simples. Inconvenientes a. El resultado del experimento y el análisis estadístico resultante son más complejos. b. Con un gran número de combinaciones de tratamientos, la relación de unidades experimentales homogéneas es más difícil. c. Convencidos de que algunas de las combinaciones de tratamientos pueden ser de muy poco o ningún interés, algunos de los recursos experimentales pueden ser malgastados. d. El número de tratamientos o combinaciones aumentan rápidamente. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 23 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Arreglos combinatorios El modelo que se describe corresponde a un experimento bifactorial, en arreglo combinatorio dispuesto en un diseño en bloques completos al azar, debido a que es el más usado. 24 Tomado de López, E. 2008. Siendo que: Yijk = Variable de respuesta observada o medida en la ijk - ésima unidad experimental μ = Media general αi = Efecto del i - ésimo nivel del factor "A" βj = Efecto del j - ésimo nivel del factor "B" (αβ)ij = Efecto de la interacción entre el i - ésimo nivel del factor "A" y el j - ésimo nivel del factor "B" γk = Efecto del k - ésimo bloque εijk = Error experimental asociado a la ijk - ésima unidad experimental Ejemplo: Video Cuadro 12: Rendimiento en toneladas de caña por hectárea, evaluando distintas concentraciones de tres elementos. Tratamientos N (Kg/ha) P (Kg/ha) K (Kg/ha) 50 0 0 150 0 0 50 100 0 150 100 0 50 0 100 150 0 100 50 100 100 150 100 100 Bloque I 147.88 129.79 148.61 148.12 126.82 135.96 160.48 178.69 II 160.41 136.2 160.53 163.32 141.77 142.43 160.53 159.99 III 129.54 124.1 135.84 161.08 124.09 135.96 136.02 163.81 IV 105.21 111.44 130.03 151.28 127.18 129.6 141.89 148.13 Tomado de Pérez, O. (2002) InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Es importante que se cree una columna para indicar los distintos niveles de cada factor y otra columna para indicar la repetición o el bloque como también la variable de respuesta. Cuadro 13: Ejemplo de cómo se debe de ingresar datos en la tabla de InfoS tat. Nivel N Nivel P 50 150 50 Nivel K Bloque TCH 0 0 0 I I I 147.88 129.79 148.61 IV 148.13 0 0 100 … 150 100 100 25 Figura 15: Variables de clasificación a seleccionar. Se debe de agregar la interacción de todos los elementos por medio del botón de acción , se agregará todas las combinaciones posibles, y se debe de eliminar las interacciones donde se relacione con el bloque. También existe la opción de agregar contrastes en el análisis, para esto se debe de indicar el contraste deseado en la pestaña contrastes. Se debe de seleccionar entre que agrupaciones se desean los contrastes y que tratamientos se desean realizar. Para esto se encuentran dos botones, el botón , sirve para indicar que tratamiento se desea contrastar al seleccionar el tratamiento y luego presionar el botón de acción. Y el botón tratamientos se realiza el contraste, es importante activar la casilla cuando se realizan más de un contraste. Por último con el botón contraste deseado. indica contra que se ingresa el InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA 26 Figura 16: Fuentes de variación del modelo. Figura 17: Pasos para agregar contrastes ortogonales InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Análisis de la varianza Variable TCH N 32 R² 0.81 R² Aj CV 0.71 6.31 Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM Modelo 7030.28 10 703.03 Bloque 2314.84 3 771.61 Nivel N 215.64 1 215.64 Nivel P 3611.86 1 3611.86 Nivel K 152.99 1 152.99 Nivel N*Nivel P 434.46 1 434.46 Nivel N*Nivel K 146.68 1 146.68 Nivel P*Nivel K 30.99 1 30.99 Nivel N*Nivel P*Nivel K 122.81 1 122.81 Error 1695.89 21 80.76 Total 8726.17 31 F p-valor 8.71 <0.0001 9.55 0.0004 2.67 0.1171 44.73 <0.0001 1.89 0.1832 5.38 0.0305 1.82 0.1921 0.38 0.5423 1.52 0.2311 Contrastes Nivel N*Nivel P*Nivel K SC Contraste1 215.64 Contraste2 3611.86 Contraste3 152.99 Contraste4 434.46 Contraste5 146.68 Contraste6 30.99 Contraste7 122.81 Total 4715.44 gl 1 1 1 1 1 1 1 7 CM 215.64 3611.86 152.99 434.46 146.68 30.99 122.81 673.63 Coeficientes de los contrastes Nivel N*Nivel P*Nivel K Cont.1 50.00:0.00:0.00 -1.00 50.00:0.00:100.00 -1.00 50.00:100.00:0.00 -1.00 50.00:100.00:100.00 -1.00 150.00:0.00:0.00 1.00 150.00:0.00:100.00 1.00 150.00:100.00:0.00 1.00 150.00:100.00:100.00 1.00 Cont.3 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 Cont.4 Cont.5 Cont.6 Cont.7 1.00 1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 -1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 -1.00 -1.00 -1.00 1.00 1.00 1.00 1.00 Cont.2 -1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 F p-valor 2.67 0.1171 44.73 <0.0001 1.89 0.1832 5.38 0.0305 1.82 0.1921 0.38 0.5423 1.52 0.2311 8.34 0.0001 Conclusión: El análisis indicó que el efecto principal de P fue estadísticamente significativo. Con la inclusión de ambos (N y P) se obtuvieron las máximas producciones. No hay diferencia estadística significativa entre 50 y 0 Kg de N/ha evaluando bajo aplicaciones de P y K. El nivel 150 Kg de N/ha difieren estadísticamente del nivel 0 Kg de N/ha, con aplicaciones iguales de PK. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 27 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Parcelas divididas En este diseño se trabajan con todas las posibles combinaciones de los factores, lo que lo diferencia del anterior es el arreglo, por lo que se puede adecuar de mejor forma a condiciones reales de campo. 28 Figura 16: Arreglo de parcelas divididas en el espacio. Tomado de López, E. 2008 Siendo: Yijk = Variable de respuesta medida en la ijk - ésima unidad experimental μ = Media general βj = Efecto del j - ésimo bloque αi = Efecto del i - ésimo nivel del factor A. (αβ)ij = Efecto de la interacción del i-ésimo nivel del factor A con el j – ésimo bloque, que es utilizado como residuo de parcelas grandes y es representado por error(a) ρk = Efecto del k - ésimo nivel del factor B (αρ)ik = Efecto debido a la interacción del i-ésimo nivel del factor A con el k – ésimo nivel del factor B. εijk = Error experimental asociado a Yijk , es utilizado como residuo a nivel de parcela pequeña, y es definido como: Error(b) InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Ejemplo: Video. Cuadro 14: Efecto de dos distintas mezclas de herbicidas, en 13 variedades, evaluando altura . Bloque Mezcla de herbicida M1 M2 Variedad I II III CP72-2086 16.2 13.8 19 CP73-1312 21.8 22 23 CP88-1165 23.2 31 29.6 RB73-2577 17.8 17 15.6 SP79-1287 31.6 28.2 27 CG98-10 26.2 30.8 26.6 CG96-78 15.6 16.4 20 CG98-78 20.4 17.2 14.8 CG99-048 33.8 30 30 MEX82-114 23 13.8 18.2 RB84-5210 21.2 29.2 28 RB87-2015 23.4 21.6 25 CG96-135 17 18.6 18.6 CP72-2086 24.8 22.4 30.6 CP73-1312 38.8 20 18.8 CP88-1165 21.4 40.8 31.2 RB73-2577 17.8 38.6 19.2 SP79-1287 25.8 20 30.4 CG98-10 19.8 21.8 26 CG96-78 21.8 20.4 34 CG98-78 26.4 24.6 18 CG99-048 17.6 26.4 21.2 MEX82-114 36.6 25.2 15.4 RB84-5210 20.6 20.6 32.4 RB87-2015 21.2 32.4 36.8 CG96-135 20 19.4 21.2 Datos tomados de Ing. Gerardo Espinoza, Fisiólogo. CENGICAÑA. Cuadro 15: Forma de crear la base de datos en InfoStat. Variedad Mezcla Bloque Altura CP72-2086 M1 I 16.2 CP73-1312 M1 I 21.8 CP88-1165 M1 I 23.2 InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 29 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Para este caso es importante el considerar las fuentes de variación del modelo y el error del efecto A o parcela grande. Para este caso se debe de indicar el error apropiado de dicho efecto (Factor A*Bloque), por medio de el carácter \ (diagonal invertida), para lo cual se utiliza el comando Alt + 93, esto es importante pues en el momento de realizar la comparación de medias se utiliza el error adecuado. En este caso el factor A o parcela grande es la mezcla de herbicida, y el factor B parcela pequeña la variedad. 30 Figura 17: Ingreso del modelo de parcelas divididas a InfoS tat. Análisis de la varianza Variable Altura N 78 R² 0.49 R² Aj CV 0.18 24.51 Cuadro de Análisis de la Varianza (SC tipo III) F.V. Modelo Mezcla Bloque Mezcla*Bloque Variedad Mezcla*Variedad Error Total SC 1545.05 139.20 14.45 10.45 737.85 643.10 1633.63 3178.68 gl 29 1 2 2 12 12 48 77 Test:Tukey Alfa=0.05 DMS=2.23128 Error: 5.2267 gl: 2 Mezcla Medias n M2 25.14 39 A M1 22.47 39 CM 53.28 139.20 7.23 5.23 61.49 53.59 34.03 F 1.57 26.63 0.21 0.15 1.81 1.57 p-valor 0.0830 0.0356 0.8094 0.8581 0.0739 0.1314 (Error) (Mezcla*Bloque) B Letras distintas indican diferencias significativas(p<= 0.05) InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Franjas divididas Cuando las condiciones del campo o la naturaleza de los tratamientos no permiten una completa aleatorización de todas las combinaciones de los factores, este diseño es recomendable. 31 Figura 18: Arreglo de un diseño de franjas divididas. Este es el modelo estadístico- matemático, propuesto para dos factores y un diseño de bloques completos al azar. Siendo: Yijk = Variable de respuesta medida en la ijk - ésima unidad experimental μ = Media general βj = Efecto del j - ésimo bloque αi = Efecto del i - ésimo nivel del factor A. (αβ)ij = Efecto de la interacción entre el i-ésimo nivel del factor A con el j - ésimo bloque, o sea, es el error experimental asociado al factor A, tal que (αβ)ij ~ N (0, σ2 1 ) e independientes, es utilizado como error(a). ρk = Efecto del k - ésimo nivel del factor B (ρβ)jk = Efecto de la interacción entre el k-ésimo nivel del factor A con el j - ésimo bloque, o sea, es el error experimental asociado al factor B, tal que (ρβ)jk ~ N (0, σ22 ) e independientes, es utilizado como error(b). (αρ)ik = Efecto debido a la interacción del i-ésimo nivel del factor A con el k - ésimo nivel del factor B. (αβρ)ijk = Error experimental asociado a Yijk, tal que (αβρ)ijk ~ N (0, σ2) e independientes, es utilizado como término de error o residuo. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Ejemplo: Video. Cuadro 16: Evaluación de cuatro tipos de surco y tres densidades de siembra, midiendo % Pol. Bloque Tipo de surco Surco Simple Surco doble surco base larga surco base corta Densidad de siembra I II III IV 4 TSH 6 TSH 8 TSH 4 TSH 6 TSH 8 TSH 4 TSH 6 TSH 8 TSH 4 TSH 6 TSH 8 TSH 17.67 17.31 17.49 17.19 17.21 18.04 17.39 17.39 17.69 17.19 16.78 17.86 17.23 17.6 17.3 17.85 17.26 16.38 17.54 17.67 17.02 17.57 17.57 16.85 17.43 17.05 17.68 17.44 16.71 17.23 16.61 16.77 17.34 17.72 17.79 18.12 17.61 16.91 18.27 17.56 17.52 17.14 17.51 17.61 18.02 17.73 18.27 17.94 Datos tomados de López, E. 2008. Para este caso se debe de considerar los errores de cada factor e indicarlos, pues es necesario para que al realizar la comparación de medias se utilice el error adecuado. Figura 19: Fuentes de variación para un diseño de franjas divididas. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 32 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Análisis de la varianza Variable % Pol N 48 R² 0.77 R² Aj CV 0.39 1.89 Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM Modelo 6.47 29 0.22 Tipo de surco 0.68 3 0.23 Densidad de siembra 0.28 2 0.14 Bloque 0.99 3 0.33 Tipo de surco*Densidad de .. 0.62 6 0.10 Tipo de surco*Bloque 1.62 9 0.18 Densidad de siembra*Bloque.. 2.29 6 0.38 Error 1.95 18 0.11 Total 8.42 47 Test:LSD Fisher Alfa=0.05 DMS=0.48936 Error: 0.1085 gl: 18 Tipo de surco Densidad de siembra surco base corta 8 TSH Surco Simple 8 TSH surco base corta 6 TSH surco base corta 4 TSH surco base larga 8 TSH Surco doble 4 TSH Surco Simple 4 TSH surco base larga 6 TSH surco base larga 4 TSH Surco Simple 6 TSH Surco doble 8 TSH Surco doble 6 TSH F 2.06 1.25 0.36 3.05 0.95 1.66 3.52 p-valor (Error) 0.0563 0.3473 (Tipo de surco*Bloque) 0.7104 (Densidad de siembra*Bloqu.. 0.0554 0.4869 0.1731 0.0175 Medias 17.69 17.69 17.60 17.55 17.52 17.51 17.49 17.36 17.26 17.22 17.20 17.18 n 4 4 4 4 4 4 4 4 4 4 4 4 A A A A A A A A A A B B B B B B B B B B C C C C C C C C C C Letras distintas indican diferencias significativas(p<= 0.05) 17.89 A 17.70 AB ABC % Pol ABC ABC 17.52 ABC ABC ABC 17.33 ABC BC C Surco doble:6 TSH Surco doble:8 TSH Surco Simple:6 TSH surco base larga:4 TSH surco base larga:6 TSH Surco Simple:4 TSH Surco doble:4 TSH surco base larga:8 TSH surco base corta:4 TSH surco base corta:6 TSH Surco Simple:8 TSH 17.14 surco base corta:8 TSH ABC Tipo de surco*Densidad de siembra Figura 20: Grafica resumen de la comparación de medias. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 33 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Análisis de correlación lineal simple. En este análisis se relacionan dos variables aleatorias. Para este ejemplo tomaremos como estadístico de prueba el coeficiente de correlación de Pearson, y se realizará una prueba de hipótesis para evaluar si el coeficiente de Pearson (ρ) es igual a cero, lo que indicaría una ausencia de correlación lineal. Ejemplo: Video. Cuadro 17: Peso de tallos y rendimiento de caña en Kg. peso del tallo Kg Rendimiento de caña Kg 1.12 1.21 0.99 1.02 0.93 1.14 0.86 1.03 1.22 1.17 7.74 8.02 8.16 8.46 6.3 10.01 4.79 7.04 7.62 7.54 Se ingresan ambas variables en la casilla de variables a analizar. Figura 21: Ubicación de coeficiente de correlación. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 34 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA 35 Figura 22: S elección del coeficiente de correlación de Pearson. Recordemos que se trabajará con el coeficiente de correlación de Pearson, por lo que se debe de seleccionar cuando InfoStat lo indique. Coeficientes de correlación Correlacion de Pearson: coeficientes\probabilidades Rendimiento de caña peso del tallo Kg Rendimiento de caña 1.00 0.62 peso del tallo Kg 0.05 1.00 En la matriz podemos observar en la parte inferior de la diagonal conformada por unos, los coeficientes de correlación que nos indica el grado de asociación, donde un número negativo indica una asociación negativa, este valor se encuentra entre -1 y 1 y 0 indica que no existe una correlación lineal entre variab les. En la parte superior de la diagonal se muestra el valor de la probabilidad (p) de la prueba de hipótesis realizada, al evaluar que el coeficiente de Pearson es igual a cero, se debe de tener en cuenta el valor de significancia con el que se desea trabajar, pues al trabajar con un nivel de significancia del 5%, se acepta la hipótesis alternativa (existe correlación entre ambas variables) si el valor de p≤ 0.05. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Regresión Lineal Existen casos cuando se desea conocer la relación funcional que puede existir entre dos o más variables cuantitativas, en estos casos la regresión es muy útil. También un análisis de regresión nos puede servir para predecir o describir el comportamiento de una variable respecto al comportamiento de otra, que por su naturaleza es difícil la observación directa, por lo que con la ayuda de un modelo se puede entender lo anterior relacionando una o más de una variable. 36 RL Simple Cuando se relaciona una variable dependiente o explicada con una variable independiente o explicativa realizamos un análisis de regresión simple, con la finalidad de generar un modelo que exprese el comportamiento de la variable dependiente respecto a la independiente. Tomado de López, E. 2008. a) El coeficiente de posición (α) o intercepto, indica la posición en la cual la recta corta el eje Y. Si la recta pasa por el origen, entonces α =0. En términos prácticos, indica el valor que asume la variable Y cuando la variable es X=0. En algunos casos se requiere que la recta corte en el origen, esto siguiendo la lógica de la variable explicada. b) El coeficiente de regresión lineal (β) o coeficiente angular de la regresión, determina la pendiente de la recta. Este coeficiente indica la variación en Y causada por la variación de una unidad en X. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Supuestos del modelo de regresión 1. El término de error ε es una variable aleatoria con media o valor esperado igual a cero, esto es, E(ε). Esto implica que como α y β son constantes, E(α )= α y E(β)=β. 2. La varianza de ε representada por σ2 , es igual para todos los valores de x. Homocedasticidad. Implicación: la varianza de y es igual a σ2 , y es la misma para todos los valores de x. 3. Los valores de ε son independientes. Implicación: el valor de ε para un determinado valor de x no se relaciona con el valor de ε para cualquier otro valor de x; así, el valor de y para determinado valor de x no se relaciona con el valor de y para cualquier otro valor de x. 4. El término de error ε es una variable aleatoria con distribución normal. Implicación: como y es una función lineal de ε, y es también una variable aleatoria distribuida normalmente. La siguiente figura ilustra los supuestos del modelo y sus implicaciones: Tomado de López, E. 2008. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 37 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Ejemplo: Video. Cuadro 18: Datos de tres variables de 10 híbridos de caña de azúcar. Híbrido peso del tallo Kg Rendimiento de caña Kg Brix Kg 1 2 3 4 5 6 7 8 9 10 1.12 1.21 0.99 1.02 0.93 1.14 0.86 1.03 1.22 1.17 7.74 8.02 8.16 8.46 6.3 10.01 4.79 7.04 7.62 7.54 0.9 0.87 0.92 0.99 0.58 1.11 0.53 0.73 0.87 0.9 Datos tomados del articulo Combining ability and yield component in five parent diallet cross in sugarcane, por el Dr. J. D. M iller. Se pide que se investigue la relación Rendimiento de caña en Kg (X) y Brix en Kg (Y). Es importante que tengamos en cuenta que al realizar el análisis de varianza, evaluamos la hipótesis de que β (la pendiente de la recta) es igual a cero, por lo que no existe re lación entre ambas variables. Figura 23: Ubicación de la herramienta regresión lineal. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 38 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Es importante que recordemos al momento de indicar las variables a análisis, que la variable dependiente en este caso es Brix en Kg (Y), y la variable regresora es el rendimiento de caña en Kg (X). 39 Figura 24: Diagnostico de la regresión lineal simple. En el cuadro de análisis de regresión lineal, en la pestaña diagnóstico debemos de indicar las graficas que deseamos como prueba de los supuestos y si deseamos se debe de indicar que la presencia de las bandas de confianza y predicción en el gráfico del modelo. Análisis de regresión lineal Variable Brix Kg N 10 R² 0.92 R² Aj ECMP 0.91 5.0E-03 AIC -26.30 BIC -25.40 Coeficientes de regresión y estadísticos asociados Coef Est. const -0.10 Rendimiento 0.12 E.E. 0.10 0.01 LI(95%) LS(95%) -0.33 0.09 0.13 0.15 T p-valor -1.03 0.3326 9.54 <0.0001 CpMallows 82.02 Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM F p-valor Modelo 0.26 1 0.26 91.03 <0.0001 Rendimiento de caña 0.26 1 0.26 91.03 <0.0001 Error 0.02 8 2.9E-03 Total 0.29 9 InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA 1.33 Brix Kg 1.07 0.82 40 0.56 0.31 4.53 5.96 7.40 8.84 10.27 Rendimiento de caña En base al análisis de varianza se acepta la hipótesis alterna, donde se dice que β es distinto a 0, y por lo tanto la variable Y está explicada o relacionada con la variable X. Utilizando los coeficientes de los parámetros, se puede generar un modelo que prediga el comportamiento de la variable Brix Kg en función de rendimiento de caña en Kg. Y= -0.103 + 0.125X Donde: Y= Kg Brix y X= Kg de caña. Y en base al coeficiente de determinación ajustado, se puede afirmar en un 91% de certeza que el modelo puede predecir la realidad. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA RL Múltiple En este caso se relaciona una variable dependiente (Y), con dos o más variables independientes (X). El modelo que relaciona esta variable dependiente que debe de ser aleatoria y variables independientes que son fijas y predeterminadas, medidas sin error, se llama ecuación de regresión múltiple. Este modelo se diferencia de la regresión lineal simple, ya que la adición de una o más variables independientes, debe de contribuir significativamente a la predicción de la variable dependiente (Y), después de haber tomado en cuenta la contribución de la variable independiente de la RLS. También es importante tener en cuenta un supuesto que se agrega a los de la RLS, este considera que dos variables independientes no debes de tener correlación entre ellas, pues al existir esta relación la variable dependiente es mejor explicada únicamente con una sola variable independiente al presentar un modelo más simple, a este supuesto se le llama multicolinalidad. Para realizar una RLM en InfoStat, se siguen los mismo s pasos que para realizar una RLS, únicamente se agrega las variables independientes deseadas en la casilla de “Regresoras”. Ejemplo: Video. Con las variables del ejemplo anterior (RLS), realice un análisis de regresión lineal múltiple. El primer paso es el realizar una matriz de correlación, como ya se ha visto en incisos anteriores. Coeficientes de correlación Correlacion de Pearson: coeficientes\probabilidades Brix Kg % Brix Rendimiento de caña Brix Kg 1.000 0.595 0.959 % Brix 0.070 1.000 0.344 Rendimiento de caña 1.2E-05 0.331 1.000 Como se puede apreciar en la matriz anterior, se observa que existe correlación entre las variables Brix Kg y rendimiento de caña y Brix Kg y % Brix mayor a un 10% de significancia, por lo que son útiles en la elaboración de un modelo de RLM. También se observa que no existe correlación entre las variables de Rendimiento de caña y % Brix, por InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 41 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA lo que se cumple con el supuesto de multicolinalidad y ambas variables contribuyen a la predicción de la variable Brix Kg. Análisis de regresión lineal Variable Brix Kg N 10 R² 1.00 R² Aj ECMP 1.00 1.5E-04 AIC -70.02 BIC -68.80 42 Coeficientes de regresión y estadísticos asociados Coef const Rendimiento de caña % Brix Est. -0.74 0.11 0.05 E.E. LI(95%) LS(95%) T 0.03 -0.80 -0.68 -27.50 1.5E-03 0.11 0.11 73.50 1.8E-03 0.04 0.05 25.88 p-valor CpMallows <0.0001 <0.0001 4729.69 <0.0001 588.05 Cuadro de Análisis de la Varianza (SC tipo III) F.V. SC gl CM Modelo 0.29 2 0.14 Rendimiento de caña 0.18 1 0.18 % Brix 0.02 1 0.02 Error 2.4E-04 7 3.4E-05 Total 0.29 9 F 4184.19 5402.93 669.63 p-valor <0.0001 <0.0001 <0.0001 El modelo tomando en cuenta los coeficientes anteriores se presentaría de la siguiente manera: Y= -074 + 0.11X1 + 0.05X2 Donde: Y= Brix Kg, X1 = Rendimiento de caña y X2 = % Brix. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Bibliografía Anderson, E; Black, W; Hair, F; Tatham, R. (1999). Análisis Multivariado. Madrid. Prentice Hall Iberia. Hines, W; Montgomery, D. (1995). Probabilidades y estadística para ingenieria y administración. México. Co mpañía editorial continental, S.A. de C.V. Mé xico. InfoStat. (2009). In foStat versión 2009. Grupo InfoStat, FCA, Universidad Nacional de Córdova, Argentina. Levin, R. (1981). Estadística para administradores. México. Prentice Hall. López, E. (2008). Diseño y análisis de experimentos, fundamentos y aplicaciones en agronomía. Guatemala. USA C. López, E. (2008). Elaboración de proyectos de investigación, notas de acompañamiento de curso. Guatemala. USA C. López, E. (2008). Estadística, con aplicaciones en agronomía y ciencias forestales. Guatemala. USAC. Martínez, A. (1988). Diseños experimentales: métodos y elementos de teoría. México. Trillas. Mendenhall, W; Scheaffer, R; Wackerly, D. (1986). Estadística matemática con aplicaciones. México. Iberoamérica. Pérez, O. (2002). Diplomado de estadística: experimentos factoriales. Santa Lucia Cotz. CENGICA ÑA. Quemé, J. (2002). Análisis de regresión. Santa Lucía Cotz. CENGICAÑA. Quemé, J. (2002). Introducción al uso del ayudante de datos MST y MSTAT-C. Santa Lucía Cotz. CENGICAÑA. Quemé, J. (2002). Sitematización de una prueba de hipótesis, diseños completamente al azar, bloques completos al azar y prueba de medias. Santa Lucía Cotz. CENGICAÑA. InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 42 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Anexos Cuadro 19: Resumen. Términos a considerar en la definición del modelo, en InfoS tat. Diseño Términos del modelo. Diseño completamente al azar. DCA. (1) Diseño completamente al azar con submuestreo DCAsm. Diseño de bloques completos al azar. DBCA. Tratamiento Tratamiento Repetición*Tratamiento>Muestreo Bloque Tratamiento (1) Diseño de bloques completos al azar con submuestreo. DBCAs m. Serie de experimentos con DBCA. Arreglo co mbinatoria en DBCA. (Factorial) Parcelas div ididas Franjas divid idas Bloque Tratamiento Bloque*Tratameinto>Muestreo Localidad\Localidad>Bloque Localidad>Bloque Tratamiento Localidad*Tratamiento Bloque Factor A Factor B Factor A*Factor B Bloque Factor A\Factor A*Bloque Factor A*Bloque Factor B Factor A*Factor B Bloque Factor A\Factor A*Bloque Factor A*Bloque Factor B\Factor B* Bloque Factor B* Bloque Factor A*Factor B (1) Cuando se definen modelos con submuestro es importante que tengamos en cuenta las distintas decisiones que debemos de tomar en el mo mento de aceptar o rechazar una hipótesis. InfoStat realiza de forma parcial el análisis de este modelo, por lo que se debe de seguir los siguientes pasos: 1. Prueba de hi pótesis para e valuar la efecti vi dad del muestreo. Ho: σ2 e = 0 Ha: σ2 e > 0 En este caso si se acepta la Ho, se dice que el muestreo no fue efectivo, en caso contrario, si se rechaza la Ho se dice que el muestreo fue efectivo. Para esto se debe realizar los siguientes cálculos: InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 43 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA Se considerar el cuadrado medio del error experimental (CM ee) y el cuadrado medio del error del muestreo (CM e m). Se debe de encontrar el valor F, para esto se realiza la relación CM ee/CM em. Para realizar la toma de decisión de rechazar o aceptar la Ho, se puede estimar, en Excel, el valor p (probabilidad), para esto se utiliza la función DISTR.F donde se ingresa el grado de libertad del Error experimental (g l 1 ), los grados de libertad del erro r de muestreo (gl2 ) y el valor F (CM ee/CM em), el cual es nombrado en Excel por la letra “X”. Si el valor p estimado en Excel, es menor al nivel de significancia establecido, se rechaza la Ho, por lo que se dice que el muestreo fue efectivo. 2. Prueba de hi pótesis para evaluar si existe diferencia entre tratameintos, cuando el muestreo es efecti vo La segunda hipótesis a evaluar, corresponde a la diferencia entre los tratamientos, donde: Ho: τ = τi (todos los tratamientos producen el mis mo efecto) Ha: τ ≠ τi para al menos un i; i = 1,2, . . . , t (al menos uno de los tratamientos produce efectos distintos). En este caso, los valores de F y p utilizados en la toma de decisión de aceptar o rechazar la Ho, son los proporcionados por la salida de InfoStat, de igual forma el coeficiente de variación. 2.1. Prueba de medias, cuando el muestreo es efecti vo. Si el muestreo fue efectivo las prueba de medias se realiza de manera co mún, de igual forma co mo se presenta en la sección de diseño completamente al azar. 3. Prueba de hi pótesis para evaluar si existe diferencia entre tratamietnos, cuando el muestreo no es efectivo. Al no ser el muestreo efectivo, se debe de unir los errores del error experimental y el error de muestreo de la siguiente forma: CM ep = SCee+ SCe m / glee + gle m Donde: CM ep = Cuadrado med io del error ponderado SCee = Su ma de cuadrados del error experimental SCe m= Su ma de cuadrados del error de muestreo glee= grados de libertad del error experimental glem= grados de libertad del error de muestreo Y el valor F (el valor F del tratameinto), se estima así: F= CM Tratamiento / CM ep Para encontrar el valor p que se utiliza para realizar la to ma de decisión respecto a la segunda hipótesis, relacionada al efecto de los tratamientos, se debe de seguir las instrucciones mencionadas anteriormente en el inciso 1. Y el valor del coeficiente de variación debe de encontrarse de la siguiente forma: InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar. 44 Métodos estadísticos utilizados en la industria cañera. CENGICAÑA 3.1. Prueba de medias, cuando el muestreo no es efecti vo Para esto, se debe de indicar el error y los grados de libertad a utilizar (estimados previamente, de la forma explicada anteriormente en el inciso 3) en la comparación de medias, donde el error es el valor de CM ep y los grados de libertad la suma de g lee y gle m. 45 Figura 25: Indicación del error a utilizar en la comparación de medias InfoStat. | Centro guatemalteco de investigación y capacitación de la caña de azúcar.