VOLTAJE El voltaje (también se usa la expresión "tensión") es la energía potencial eléctrica por unidad de carga, medido en julios por culombio es decir voltios. A menudo es referido como "el potencial eléctrico", el cual se debe distinguir de la energía de potencial eléctrico, haciendo notar que el "potencial" es una cantidad por unidad de carga. La diferencia de voltaje medido, cuando se mueve del punto A al punto B, es igual al trabajo que debe realizarse por unidad de carga contra el campo eléctrico, para mover la carga desde A hasta B. Ley de Ohm Para muchos conductores de la electricidad, la corriente eléctrica que fluye a través de ellos, es directamente proporcional al voltaje que se le aplica. Cuando se toma una vista microscópica de la ley de Ohm, se encuentra que la velocidad de desplazamiento de las cargas a través del material, es proporcional al campo eléctrico en el conductor. A la proporción entre el voltaje y la corriente, se le llama resistencia, y si esta proporción es constante sobre un amplio rango de voltajes, al material se le dice que es un material "óhmico". Si el material se puede caracterizar por tal resistencia, entonces la corriente se puede predecir de la relación: 𝐼= 𝑉 𝑅 MAYA Una malla o lazo es cualquier trayectoria cerrada en un circuito. Un lazo inicia en un nodo, pasa por un conjunto de nodos y retorna al nodo inicial sin pasar por ningún nodo más de una vez. Se dice que un lazo es independiente si contiene al menos una rama que no forma parte de ningún otro lazo independiente. Los lazos o trayectorias independientes dan por resultado conjuntos independientes de ecuaciones. AMPERAJE Potencia en una corriente eléctrica circulando entre dos puntos, estos son el negativo y el positivo a través de un conductor o cable eléctrico. La corriente eléctrica circula del negativo hacia el positivo. La forma de saber que amperaje circula por una corriente eléctrica es conectado en serie un amperímetro, para esto debe de haber una carga entre el negativo y el positivo, por ejemplo, un receptor de radio, una lavadora de ropa, etc. El amperaje en un circuito eléctrico se ha comparado con un flujo de agua por un conducto, cuanto más caudal de agua, mayor presión, otro factor que influye es el grosor del conducto. Si el conducto es reducido el agua contiene más presión pero su caudal será menor. Si por el contrario, el conducto es mayor, la cantidad de agua será, por lo mismo mayor pero a menor presión. Lo mismo sucede con un conductor eléctrico, si su calibre (grueso) es reducido, la corriente encontrará resistencia u oposición a su paso, si el calibre es mayor, fluirá de forma libre con menor resistencia. VOLTAJE El voltaje, tensión, también diferencia de potencial, se le denomina a la fuerza electromotriz (FEM) que ejerce una presión o carga en un circuito eléctrico cerrado sobre los electrones, completando con esto un circuito eléctrico. Esto da como resultado el flujo de corriente eléctrica. Cuanto mayor sea la presión ejercida de la fuerza electromotriz sobre los electrones o cargas eléctricas que circulan por el conductor, en esa medida será el voltaje o tensión que existirá en el circuito. RESISTENCIA Se le denomina resistencia eléctrica a la igualdad de oposición que tienen los electrones al moverse a través de un conductor. La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω), en honor al físico alemán Georg Ohm, quien descubrió el principio que ahora lleva su nombre. Para un conductor de tipo cable, la resistencia está dada por la siguiente fórmula: Donde ρ es el coeficiente de proporcionalidad o la resistividad del material, es la longitud del cable y S el área de la sección transversal del mismo. LEYES DE KIRCHHOFF La primera ley de Kirchhoff describe con precisión la situación del circuito: La suma de las tensiones en un bucle de corriente cerrado es cero. Las resistencias son sumideros de potencia, mientras que la batería es una fuente de potencia, por lo que la convención de signos descrita anteriormente hace que las caídas de potencial a través de las resistencias sean de signo opuesto a la tensión de la batería. La suma de todas las tensiones da cero. En el caso sencillo de una única fuente de tensión, una sencilla operación algebraica indica que la suma de las caídas de tensión individuales debe ser igual a la tensión aplicada. E= El + E2 + E3 E= 37,9 + 151,5 + 60,6 E= 250 V En problemas como éste, cuando la corriente es suficientemente pequeña para ser expresada en miliamperios, se puede ahorrar cantidad de tiempo y problemas expresando la resistencia en kilohms mejor que en ohms. Cuando se sustituye directamente la resistencia en kilohms en la ley de Ohm, la corriente será en miliamperios si la FEM está en voltios. Resistencias en paralelo En un circuito con resistencias en paralelo, la resistencia total es menor que la menor de las resistencias presentes. Esto se debe a que la corriente total es siempre mayor que la corriente en cualquier resistencia individual. La fórmula para obtener la resistencia total de resistencias en paralelo es R=1 / (1/R1) + (1/R2) + (1/R3) +... Donde los puntos suspensivos indican que cualquier número de resistencias pueden ser combinadas por el mismo método. En el caso de dos resistencias en paralelo (un caso muy común), la fórmula se convierte en R= R1xR2 / R1+R2 Ejemplo: Si una resistencia de 500 O está en paralelo con una de 1200 O, la resistencia total es: R = 500x1200/500+1200=600000 / 1700 =353 LEY DE COULOMB La Ley de Coulomb, que establece cómo es la fuerza entre dos cargas eléctricas puntuales, constituye el punto de partida de la Electrostática como ciencia cuantitativa. Fue descubierta por Priestley en 1766, y redescubierta por Cavendish pocos años después, pero fue Coulomb en 1785 quien la sometió a ensayos experimentales directos. Entendemos por carga puntual una carga eléctrica localizada en un punto geométrico del espacio. Evidentemente, una carga puntual no existe, es una idealización, pero constituye una buena aproximación cuando estamos estudiando la interacción entre cuerpos cargados eléctricamente cuyas dimensiones son muy pequeñas en comparación con la distancia que existen entre ellos. La Ley de Coulomb dice que "la fuerza electrostática entre dos cargas puntuales es proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia que las separa, y tiene la dirección de la línea que las une. La fuerza es de repulsión si las cargas son de igual signo, y de atracción si son de signo contrario". Es importante hacer notar en relación a la ley de Coulomb los siguientes puntos: Cuando hablamos de la fuerza entre cargas eléctricas estamos siempre suponiendo que éstas se encuentran en reposo (de ahí la denominación de Electrostática); Nótese que la fuerza eléctrica es una cantidad vectorial, posee magnitud, dirección y sentido. Las fuerzas electrostáticas cumplen la tercera ley de Newton (ley de acción y reacción); es decir, las fuerzas que dos cargas eléctricas puntuales ejercen entre sí son iguales en módulo y dirección, pero de sentido contrario. Hasta donde sabemos la ley de Coulomb es válida desde distancias de muchos kilómetros hasta distancias tan pequeñas como las existentes entre protones y electrones en un átomo.