Manual bIR VOLUMEN III: BIOQUÍMICA GENERAL Y CLÍNICA Autoras: María del Carmen Enjo Mallou Hélade Sotomayor Pérez Dra. Idalmys Perdomo López Editora: Dra. Iliana Perdomo López Manual BIR. VOLUMEN III: BIOQUÍMICA GENERAL Y CLÍNICA Autoras: María del Carmen Enjo Mallou Hélade Sotomayor Pérez Dra. Idalmys Perdomo López © Iliana Perdomo López (editora). Depósito legal: C 611-2012 Reservado todos los derechos. Está prohibido, bajo las sanciones penales y el resarcimiento civil previsto en las leyes, reproducir, registrar o transmitir esta publicación, íntegra o parcialmente por cualquier sistema de recuperación y por cualquier medio, sea mecánico, electrónico, magnético, por fotocopia o por cualquier otro, sin la autorización previa por escrito de la editora. ÍNDICE BIOQUÍMICA GENERAL Y CLÍNICA UNIDAD I: BIOQUÍMICA GENERAL 1 1.- INTRODUCCIÓN. COMPOSICIÓN DE LOS SERES VIVOS 1 2.- GLÚCIDOS 7 2.1- OSAS O MONOSACÁRIDOS 2.1.1.- ACTIVIDAD ÓPTICA 8 9 2.1.2.- ESTRUCTURA CÍCLICA DE LOS MONOSACÁRIDOS 12 2. 1.3.- ISÓMEROS CONFORMACIONALES 14 2. 1.4.- PROPIEDADES GENERALES DE LAS OSAS 15 2. 1.5.- DERIVADOS DE MONOSACÁRIDOS 16 2.2- OLIGOSACÁRIDOS: DISACÁRIDOS 18 2.2.1.-CARACTERÍSTICAS DEL ENLACE GLUCOSÍDICO 19 2.2.2.-TIPOS DE ENLACE GLUCOSÍDICO 19 2.2.3.-OLIGOSACÁRIDOS MÁS IMPORTANTES 20 2.3- POLISACARIDOS 20 2.3.1.- HOMOPOLISACÁRIDOS 20 2.3.2.- HETEROPOLISACÁRIDOS 23 2.4- HETERÓSIDOS 26 2.4.1.- PROTEOGLUCANOS 26 2.4.2.- GLUCOPROTEÍNAS 28 2.4.3.- OTROS HETERÓSIDOS 29 3.- LÍPIDOS 31 3.1- LÍPIDOS SAPONIFICABLES SIMPLES 32 3.1.1.- ÁCIDOS GRASOS 32 3.1.2.- ACILGLICÉRIDOS 37 3.1.3.- CÉRIDOS 39 3.1.2.- ESTÉRIDOS 39 3.2- LÍPIDOS INSAPONIFICABLES COMPLEJOS 40 3.2.1.- FOSFOGLICÉRIDOS O GLICEROFOSFOLÍPIDOS 40 3.2.2.-ESFINGOLÍPIDOS 43 3.3- LÍPIDOS INSAPONIFICABLES 45 3.3.1.-TERPENOS 46 3.3.2.-ESTEROIDES 46 4.- AMINOÁCIDOS, PÉPTIDOS Y PROTEINAS 4.1- AMINOÁCIDOS 4.1.1.- CARÁCTERISTICAS ESTRUCTURALES 49 49 49 4.1.2.- ESTEREOQUIMICA DE LOS AMINOACIDOS 49 4.1.3.- CLASIFICACIÓN 49 4.1.4.- PROPIEDADES FISICAS 52 4.1.5.- IONIZACIÓN 52 4.1.6.- REACCIONES DE IDENTIFICACION DE AMINOACIDOS 54 4.2- PÉPTIDOS 55 4.2.1.- EL ENLACE PEPTIDICO 55 4.2.2.- CARACTERISTICAS DEL ENLACE PEPTÍDICO 55 4.2.3.- CARACTERIZACIÓN DE PÉPTIDOS Y PROTEINAS 56 4.2.4.- PÉPTIDOS DE IMPORTANCIA BIOLÓGICA 57 4.3- PROTEÍNAS 4.3.1.- CLASIFICACIÓN DE LAS PROTEÍNAS 57 57 4.3.1.1. ATENDIENDO A SU COMPOSICIÓN 58 4.3.1.2. ATENDIENDO A SU FORMA 58 4.3.1.3. ATENDIENDO A SU SOLUBILIDAD 59 4.3.1.4. ATENDIENDO A SU FUNCION BIOLÓGICA 59 4.3.2.- ESTRUCTURA DE LAS PROTEÍNAS 60 4.3.2.1. ESTRUCTURA PRIMARIA 60 4.3.2.2. ESTRUCTURA SECUNDARIA 60 4.3.2.3. ESTRUCTURA TERCIARIA 64 4.3.2.4. ESTRUCTURA CUATERNARIA 65 4.4- ENZIMAS 5.- COMPOSICIÓN, ESTRUCTURA Y FUNCIONES DE LAS BIOMEMBRANAS 77 91 5.1- LÍPIDOS DE MEMBRANAS 92 5.2- PROTEÍNAS DE MEMBRANAS 98 5.3- TRANSPORTES A TRAVÉS DE MEMBRANAS 100 6.- INTRODUCCIÓN AL METABOLISMO. 109 7.- GLUCOLISIS 117 8.- FERMENTACIONES 127 9.- DESCARBOXILACIÓN OXIDATIVA DEL PIRUVATO 131 10.- CICLO DE KREBS 135 11.- CADENA DE TRANSPORTE ELECTRÓNICO Y FOSFORILACIÓN OXIDATIVA 141 12.- LANZADERAS 155 13.- GLUCONEOGÉNESIS 157 14.- METABOLISMO DEL GLUCÓGENO 169 15.- OTRAS RUTAS DE OXIDACIÓN DE LA GLUCOSA 185 16.- OXIDACIÓN DE ÁCIDOS GRASOS 195 17.- BIOSÍNTESIS DE LÍPIDOS 209 18.- METABOLISMO DE CUERPOS CETONICOS 225 19.- BIOSÍNTESIS DE COLESTEROL 229 20.- METABOLISMO DE LAS LIPOPROTEÍNAS 235 21.- METABOLISMO DE AMINOÁCIDOS 247 22.- METABOLISMO DE NUCLEÓTIDOS 265 23.- INTEGRACIÓN DEL METABOLISMO 279 UNIDAD II: BIOQUÍMICA CLÍNICA 289 24.- BIOQUÍMICA CLÍNICA 289 GENERALIDADES DE ANÁLISIS CLÍNICOS 289 SANGRE 293 HECES 304 ORINA 304 LÍQUIDOS ESPECIALES 306 HORMONAS 309 INFARTO AGUDO DEL MIOCARDIO 311 PRINCIPALES REACTANTES DE FASE AGUDA 312 MARCADORES TUMORALES 312 DIAGNÓSTICO DE LABORATORIO DE ENFERMEDADES AUTOINMUNES 313 ANEXOS 315 BIBLIOGRAFÍA 319 UNIDAD I BIOQUÍMICA GENERAL Bioquímica InspiracleBIR/2015 TEMA 1. INTRODUCCIÓN. COMPOSICIÓN DE LOS SERES VIVOS. Todos los seres vivos están constituidos, cualitativa y cuantitativamente, por los mismos elementos químicos, aproximadamente 30, lo que confirma la idea de que la vida se ha desarrollado sobre unos elementos concretos que poseen unas propiedades físico-químicas acordes con los procesos químicos que se desarrollan como parte de ésta. Se denominan bioelementos o elementos biogénicos aquellos elementos químicos que forman parte de los seres vivos. Atendiendo a su abundancia (no importancia) se pueden agrupar en tres categorías: mayoritarios primarios, mayoritarios secundarios y oligoelementos. Bioelementos mayoritarios primarios o principales: C, H, N, O. Son los elementos más abundantes de la materia viva (constituyen más del 95 % de la masa total). Éstos son idóneos por sus propiedades físico – químicas. Bioelementos mayoritarios secundarios: S, P, Mg, Ca, Na, K, Cl. Presentes en todos los seres vivos, son los llamados macrominerales o macroelementos. MAYORITARIOS SECUNDARIOS: Azufre Se encuentra en los aminoácidos cisteína y metionina, así como en algunas sustancias como el Coenzima A. Fósforo Forma parte de los nucleótidos, unidades estructurales de los ácidos nucleicos y algunos de ellos con funciones específicas en el metabolismo intermediario (Ej: ATP). Forman parte de coenzimas y otras moléculas como fosfolípidos, componentes fundamentales de las membranas celulares. También forma parte de los fosfatos, sales minerales abundantes en los seres vivos. 2+ Forma parte de la molécula de clorofila, ión Mg es requerido en muchas actividades enzimáticas, fundamentalmente en muchas reacciones que implican al ATP. Su déficit es producido por algunos estados de desnutrición, alcoholismo, algunos Magnesio diuréticos y la acidosis metabólica. Su carencia produce: temblores, debilidad, arritmia, hipotensión, apoplejía (accidente cerebrovascular), cálculos renales, etc… Calcio Mineral más abundante del organismo, formando parte huesos y dientes. En forma iónica interviene en la contracción muscular, coagulación sanguínea, algunas regulaciones hormonales y actividades enzimáticas, así como en la transmisión del impulso nervioso. Su control homeostático se realiza a través de vitamina D y parathormona (PTH). Su carencia produce: osteoporosis, tetania (calambres musculares), hipotensión, depresión, entre otros síntomas. Se une a proteínas: calmodulina (fijadora de calcio, actúa como sensora), calsecuestrina (almacenadora de calcio en el retículo sarcoplásmico, músculo estriado) y calreticulina (similar a calsecuestrina pero en células no musculares). Sodio Catión extracelular más abundante; necesario para la transmisión nerviosa y la contracción muscular; contribuye al mantenimiento del equilibrio ácido – base y electrolítico. Potasio Catión intracelular más abundante; necesario para la transmisión nerviosa y la contracción muscular; al igual que el sodio contribuye al mantenimiento del equilibrio ácido – base y electrolítico. Cloro Principal anión extracelular; necesario para mantener el balance hídrico en la sangre y 1 Bioquímica TEMA 2. GLÚCIDOS. InspiracleBIR/2015 [p. 200, 216 (2010); 158, 209, 210 (2011); 223 (2012); 133 (2013); 191, 192 (2014)] Los glúcidos son moléculas orgánicas caracterizadas por la presencia de cadenas carbonadas portadoras de grupos hidroxilos y funciones aldehídicas, cetónicas, ácidas o aminadas. DISTRIBUCIÓN EN LA NATURALEZA Son compuestos naturales ampliamente distribuidos: a) Como elementos estructurales; confiriendo resistencia Celulosa: pared celular de los vegetales quitina: exoesqueleto de invertebrados polisacáridos de la pared bacteriana b) Como reserva energética Almidón: vegetal Glucógeno: animal c) Como componentes de metabolitos fundamentales Glúcidos que forman parte de la composición de ácidos nucléicos Componentes de coenzimas d) Como moléculas de reconocimiento y portadoras de información (los oligosacáridos contienen una densidad de información mucho mayor que las proteínas o los ácidos nucléicos, suponiendo un auténtico código de azúcares) Oligosacáridos que forman parte de glucoproteínas o glucolípidos localizados en la superficie externa de la membrana plasmática 7 InspiracleBIR/2015 Bioquímica GLÚCIDOS CLASIFICACIÓN 2.1. OSAS O MONOSACÁRIDOS. [p. 208 (2009)] -Son compuestos cuya fórmula general es *(CH2O)n, y que poseen: (n-1) funciones alcohólicas, Una función carbonílica *Aunque esta es la fórmula general, no todos los compuestos la cumplen, por ejemplo, la desoxirribosa, y otros compuestos, sin pertenecer a este grupo, como el lactato, sí la cumplen. -La clasificación de los monosacáridos atiende a dos criterios: Nº de átomos de carbono; así tendremos triosas (3C), tetrosas (4C), hasta heptosas (7C) Naturaleza de la función carbonílica, aldosas (si poseen grupo aldehído) y cetosas (si poseen función cetónica) -La combinación de estos dos criterios permite caracterizar un monosacárido, así una aldohexosa, está constituida por 6 C, 5 funciones alcohólicas y una función aldehído, mientras una cetohexosa tendrá 6 C, 5 funciones alcohólicas y una función cetónica. 8 InspiracleBIR/2015 Bioquímica 2.2.3. Oligosacáridos más importantes DISACÁRIDOS. REDUCTORES Monosacáridos Enlace Fuente MALTOSA Glu + glu α 1-4 Hidrólisis del almidón CELOBIOSA Glu + glu β 1-4 Hidrólisis de la celulosa LACTOSA Gal + glu Β 1-4 Componente mayoritario de la leche. En la glándula mamaria se sintetiza por la lactosa sintetasa NO REDUCTORES SACAROSA Glu + fru α(glu) β(fru) (1- Azúcar de caña y remolacha 2) TREHALOSA Glu + glu α (1-1) Pared celular de hongos e insectos TRISACÁRIDOS. Destaca la rafinosa: gal + glu + fru, alfa 1-6 y alfa 1-2 2.3. POLISACÁRIDOS 2.3.1. HOMOPOLISACÁRIDOS (contienen el mismo tipo de azúcar). Según su función: De reserva. ALMIDÓN: supone la reserva glucídica esencial en el reino vegetal. Su estructura contempla una mezcla de dos polímeros distintos, la amilosa (30%) y la amilopectina (70%), ambos digeridos por las α-amilasas de glándulas salivares (también llamada ptialina) y páncreas, rindiendo como productos moléculas de maltosa y pequeños núcleos de dextrina (contienen en su caso los puntos de ramificación) *La elevación de esta enzima es de interés para el diagnóstico de pancreatitis aguda y parotiditis. - amilosa: es un polímero lineal constituido por unidades de glucosa unidas mediante enlace (α1-4). La cadena, de entre 200 y 3000 residuos adopta una conformación helicoidal debido a la presencia de los enlaces alfa (facilitan la formación de gránulos). Las vueltas de espira generadas se mantienen estabilizadas gracias a la formación de puentes de hidrógeno. 20 InspiracleBIR/2015 Bioquímica Fuente: Fig 7-22 (pag 252) del libro “Lehninger. Principios de Bioquímica. Ediciones Omega, Barcelona, 4ª ed., 2006”. 3. De origen animal: los más importantes son los glucosaminoglucanos (mucopolisacáridos), polímeros lineales compuestos por la repetición de un disacárido, formado generalmente por un ácido hexurónico (glucurónico, idurónico…) y una hexosamina (N-Ac-glucosamina, N-Ac-galactosamina…), que suele estar acetilada. Los glucosaminoglucanos están presentes en la matriz extracelular de los tejidos de animales multicelulares, están interconectados con proteínas fibrosas (elastina, la fibronectina y la minina). 24 Bioquímica MUCOPOLISACÁRIDO InspiracleBIR/2015 UNIDAD REPETITIVA DISACÁRIDA LOCALIZACIÓN FUNCIÓN ESTRUCTURAL Elevada tendencia a la hidratación, actuando como lubricantes Confieren viscosidad y elasticidad (conforman el cemento intercelular y son amortiguadores) Suelen unirse de forma covalente a proteínas (excepto el ácido hialurónico) Compuestos sensibles al ataque por hialuronidasa (presente en microorganismos y espermatozoides) ÁC HIALURÓNICO Líquido sinovial No está sulfatado Cordón umbilical Humor vítreo Cartílago CONDROITÍN Ligamentos SULFATO Tendón Es el más abundante Piel Vasos DERMATÁN SULFATO sanguíneos Válvulas Córnea (queratán QUERATÁN SULFATO sulfato-I) Cartílago No contiene ácido (quer. Salufato-II) hexurónico 25 Bioquímica InspiracleBIR/2015 TEMA 3. LÍPIDOS [p. 217, 218, 250 (2010); 211 (2011)] Los lípidos son compuestos orgánicos que se definen por su insolubilidad en agua y solubilidad en disolventes polares (éter, cloroformo, benceno..), no obstante se contemplan excepciones. Entre las características más sobresalientes: - compuestos hidrofóbicos - no son moléculas poliméricas - exhiben una mayor variedad estructural Funciones biológicas - energética - estructural - aislante - funciones especiales: Por ejemplo, los esteroides, los eicosanoides y algunos metabolitos de los fosfolípidos funcionan como señales. Actúan como hormonas, mediadores y segundos mensajeros. Algunos son cofactores de reacciones enzimáticas (vit. K..). otros se utilizan como anclas para fijar las proteínas a las membranas. Clasificación Ácidos grasos Lípidos saponificables Simples Acilglicéridos (C, H, O) Céridos Estéridos - Contienen ácidos grasos Otros: etólidos y eteroglicéridos -Tras la hidrólisis alcalina se Complejos obtienen jabones Fosfoacilglicéridos Además de (C, H, O) Esfingolípidos pueden contener N, Lipoproteínas P, S Lípidos insaponificables - No contienen en estructura ácidos grasos - Derivan del isopreno Terpenoides su Esteroides Vit. A, E, K Ubiquinonas Vit D Colesterol1 Ácidos biliares Hormonas esteroideas2 1 Las células procariotas carecen de colesterol, pero éste se encuentra en distintas cantidades en prácticamente todas las membranas de animales, fundamentalmente mamíferos. 2 Las hormonas esteroídicas incluyen a las hormonas sexuales femeninas (estrógenos, progestágenos), masculinas (andrógenos) y a los corticoesteroides (glucocorticoides y mineralocorticoides). 31 InspiracleBIR/2015 3.1. 3.1.1. Bioquímica LÍPIDOS SAPONIFICABLES SIMPLES ÁCIDOS GRASOS [p. 247 (2009)]. Los ácidos grasos son en su mayor parte ácidos monocarboxílicos con un nº de átomos de carbono superior o igual a 4, saturados o no, generalmente no ramificados, a veces cíclicos, o llevando otras funciones diferentes además de la función ácido. - En la gran mayoría de los casos, los ácidos grasos tienen un nº par de átomos de carbono (los de 16 y 18 carbonos son los más abundantes). - Los átomos de carbono se numeran empezando por el extremo carboxilo - Los carbonos 2 y 3 suelen llamarse alfa y beta - El carbono final se denomina omega Fuente: Esquema (pag 292) del libro “Bioquímica Estructural. Editorial AC. España, 1977” - La nomencatura de los ácidos grasos deriva del nombre de sus hidrocarburos parentales (terminado en –oico) - A nivel fisiológico pueden estar como ácidos grasos libres, no esterificados, unidos a albúmina (poco habitual) o bien formando parte de la estructura de otros lípidos saponificables (casi siempre por esterificación). *El aumento de ácidos grasos libres en sangre se da en ciertas situaciones: ejercicio, diabetes, ayuno, feocromocitoma… Clasificación de los ácidos grasos [p. 102 (2004)]. De cadena sencilla Saturados (Cn:0) Los ácidos grasos saturados y de cadena lineal son los que más abundan en la naturaleza, suelen ser de nº par de átomos de carbono (entre 2 y 32). Los principales son el ácido laúrico (12C), el ácido mirístico3 (14C), el ácido palmítico (16C), el ácido esteárico (18C), el araquídico (20C) y el lignocérico (24C) Desaturados 3 El ácido mirístico está presente en la subunidad α de las proteínas G. p 257 (2006). 32 Bioquímica InspiracleBIR/2015 Colesterol (27C) [p. 107 (2004); 199 (2006)]. Fuente: Fig 10-16 (pag 355) del libro “Lehninger. Principios de Bioquímica. Ediciones Omega, Barcelona, 4ª ed., 2006”. El colesterol es el principal esteroide en los tejidos animales, es un compuesto anfipático, con: - un grupo de cabeza polar, un hidroxilo en C3 (polo hidrofílico y posición de esterificación con ácidos grasos), - un cuerpo hidrocarbonato apolar formado por el núcleo esteroide y la cadena lateral hidrocarbonada ramificada en C20 (cola apolar) - una insaturación en C5 - grupos metilo en C18 y C19 El colesterol ejerce un papel fundamental regulando la fluidez de las membranas de las células eucariotas, puesto que ello depende del cociente fosfolípidos/colesterol, de este modo, a mayor contenido en colesterol, menor será la fluidez de la membrana. Es, además, el principal precursor de los esteroides Ácidos biliares (24C). [p. 132; (2005)] - Se clasifican en primarios (cólico y quenodeoxicólico) y en secundarios (deoxicólico y litocólico), obtenidos a partir de los primarios. - Los ácidos biliares se conjugan con ciertos aminoácidos, como la glicina y la taurina para formar sales biliares, compuestos que cumplen una importante función emulsionando las gotas de grasa y facilitando la acción de las lipasas durante el proceso digestivo, se sintetizan a partir del colesterol en el hígado. - Además, sufren una circulación enterohepática en un 95%. - Se reabsorben mayoritariamente en el íleon distal mediante cotransporte con sodio. - Su síntesis es regulada por la 7-α-hidroxilasa hepática. El mecanismo más importante para degradar el colesterol es su conversión en ácidos biliares. 47 Bioquímica InspiracleBIR/2015 Las características más relevantes de este tipo de estructura secundaria: - El esqueleto polipeptídico se encuentra compactamente enrollado alrededor del eje longitudinal imaginario de la molécula, esta rotación helicoidal es dextrógira - Los grupos R de los *L-aminoácidos se disponen hacia el exterior del esqueleto helicoidal, permitiendo su ubicación y evitando los impedimentos estéricos - La unidad repetitiva es el giro de hélice, que abarca unos 5,4 Å a lo largo del eje longitudinal - Cada giro de hélice incluye 3,6 aminoácidos *En algún caso excepcional se han encontrado proteínas que contienen fragmentos de hélice alfa levógira formada por D- aminoácidos. Experimentos con modelos moleculares han demostrado que una hélice se puede formar tanto con D- como con L- aminoácidos, pero todos los residuos deben pertenecer a la misma serie. Fuente: Fig 4-4 (pag 121) del libro “Lehninger. Principios de Bioquímica. Ediciones Omega, Barcelona, 4ª ed., 2006”. 61 InspiracleBIR/2015 Bioquímica Giros beta Son elementos de conexión que unen tramos sucesivos de hélices alfa o conformaciones beta. Son muy frecuentes los giros beta que conectan los extremos adyacentes de dos segmentos de hojas beta antiparalelas. Estas estructuras forman giros cerrados de 180º mediante enlaces de H establecidos entre los grupos peptídicos del primer y cuarto aminoácidos de los 4 implicados en el giro. A menudo se encuentran Gly y Pro. Los giros B suelen ubicarse en la superficie de las proteínas globulares 4.3.2.3. Estructura terciaria. [p. 232 (2005); 218 (2007); 213 (2008)] Hace referencia al plegamiento espacial completo y compacto de cada cadena. Incluye el conjunto de interacciones, covalentes o de otro tipo, como puentes disulfuro, puentes de hidrógeno, interacciones hidrofóbicas, fuerzas de Van der Waals e interacciones iónicas. En esta estructura, los fragmentos con estructuras secundarias variadas pueden combinarse con zonas sin estructura secundaria definida, o zonas de giro donde las cadenas se pliegan con un patrón determinado. La disposición de los aminoácidos difiere según la proteína sea fibrosa o globular, así, en las proteínas globulares (que suelen ser solubles): - los aminoácidos no polares se sitúan preferentemente hacia el interior de la proteína, para evitar el contacto con el disolvente acuoso - los residuos con carga suelen ubicarse hacia el exterior , interaccionando con el medio acuoso - los grupos polares de los aminoácidos sin carga se distribuyen a lo largo de la cadena polipeptídica, pero con cierta preferencia, aparecen también hacia la zona externa 64 InspiracleBIR/2015 Bioquímica SEPARACIÓN Y PURIFICACIÓN DE PROTEÍNAS: Para estudiar una proteína es fundamental su extracción, separación y purificación. Primero se procede a la rotura de las células para liberar las proteínas, posteriormente se realiza la centrifugación diferencial. A continuación se utilizan uno o varios métodos de separación / purificación: 1. Precipitación: la solubilidad de una proteína depende de: pH: a pH próximos al pHi disminuye la solubilidad de la proteína. Temperatura: la solubilidad aumenta con la temperatura, hasta aproximadamente 40 ºC, por encima de esta temperatura la disminución brusca de la temperatura refleja la desnaturalización de las proteínas. Disolventes: disolventes orgánicos neutros miscibles con el agua (etanol, acetona) disminuyen la solubilidad de las proteínas, actuando con el interior hidrofóbico y desorganizando la estructura terciaria, lo que provoca su desnaturalización y precipitación. Concentración salina: a concentraciones salinas moderadas se incrementa la solubilización por salado (salting in), en tanto que a concentraciones salinas muy elevadas se produce la precipitación por salado (salting out). Es muy utilizado el sulfato amónico. 2. Diálisis: permite separar las proteínas de los disolventes, aprovechando el mayor tamaño de estas. De esta forma se puede eliminar el sulfato amónico utilizado en pasos anteriores. 3. Cromatografía: es un método potente para el fraccionamiento de proteínas. Según las características de la proteína a separar se pueden utilizar distintas técnicas cromatográficas: Cromatografía de intercambio iónico: separa las proteínas en función de la carga eléctrica. Se utilizan un intercambiador aniónico (dietil aminoetil celulosa) y un intercambiador catódico (carboximetil celulosa), que se utilizan para captar proteínas negativas (aniones) o positivas (cationes), respectivamente. Cromatografía de fase reversa (= fase sólida apolar): separa en función del gradiente de solubilidad. Cromatografía de exclusión molecular, de filtración o de permeación: separa en función del tamaño (peso molecular). Para ello se utiliza un relleno de bolas (de poliacrilamida, dextrano, agarosa, ....) con diferentes tamaños; sirve para determinar masas moleculares (eluyen primero las proteínas de mayor PM). 72 Bioquímica InspiracleBIR/2015 4.4 ENZIMAS. [p. 236; 237; 238 (2005); 194 (2006); 213 (2007); 212 (2009)] CARACTERÍSTICAS GENERALES DE LOS ENZIMAS. - Casi todas son proteínas (excepción- ribozimas) - Poseen una elevada especificidad (suelen actuar sobre un único sustrato, incluso pueden presentar estereoselectividad, distinguir entre los isómeros D y L de un sustrato) - Aumentan la velocidad de reacción, recuperándose al final de ésta sin ser modificados - Su actividad puede regularse Con la excepción de un pequeño grupo de moléculas de RNA catalítico, todos los enzimas son proteínas. Algunos enzimas no requieren para su actividad más grupos químicos que unos cuantos residuos aminoácidos, otros, requieren para su actividad un componente químico adicional denominado cofactor. Así, a la molécula enzimática completa catalíticamente activa, junto con su coenzima y/o iones metálicos se denomina HOLOENZIMA, que estaría compuesta por: - apoenzima, fracción protéica del enzima o aquella que se desnaturaliza por calefacción. Es catalíticamente inactiva en ausencia de cofactor (si lo requiere) - cofactor: fracción del enzima que no se desnaturaliza por calefacción y cuya naturaleza puede ser: - inorgánica (uno o varios iones) Algunos elementos inorgánicos que actúan como cofactores enzimáticos Cu2+ Fe2 + o Fe3+ K+ Mg2+ Mn2+ Mo Ni 2+ Se Zn 2+ - Citocromo oxidasa Citocromo oxidasa, catalasa, peroxidasa Piruvato quinasa Hexoquinasa, glucosa 6-fosfatasa, quinasa (enzimas de glucolisis) Arginasa, ribonucleótido reductasa Dinitrogenasa Ureasa (Urea → NH4 + CO2) Glutation peroxidasa Anhidrasa carbónica, deshidrogenada, carboxipeptidasas orgánica o metaloorgánica compleja, denominada coenzima piruvato alcohol * Un coenzima o ión metálico, unido muy fuertemente o de forma covalente a la proteína se denomina grupo prostético *Algunos enzimas requieren tanto un coenzima como uno o varios iones metálicos para su actividad MECANISMO DE ACCIÓN ENZIMÁTICA. [p. 190 (2006); 214; 215 (2007); 236 (2008)] Existe una barrera energética a superar para transformar el sustrato en una forma llamada Estado de Transición 77 InspiracleBIR/2015 Bioquímica La km nos indica la afinidad que un enzima presenta por un sustrato La constante de M-M y la velocidad de una reacción enzimática que siga esta cinética pueden calcularse de forma sencilla a partir de las velocidades de catálisis a diferentes concentraciones de sustratos, y manteniendo fija la concentración de enzima. Para ello se transforma la ecuación de M-M, tomando los valores inversos de V y S, para obtener otra ecuación que resulte en una línea recta al ser representada gráficamente. La representación gráfica de 1/V frente a 1/S se denomina representación de LineweaverBurk (o representación de los dobles recíprocos), es una línea recta con una pendiente Km/Vmáx. [p. 172 (2003)] Otra representación, aunque menos utilizada, es la de Eadie-Hofstee V0 Vmax K m 80 V0 [S ] InspiracleBIR/2015 Bioquímica Reversibles: pueden separarse del enzima mediante diálisis - INHIBICIÓN COMPETITIVA Inhibidor y sustrato compiten por unirse al centro activo, suelen tener estructuras análogas. Vmáx: no varía Km: aumenta Normalmente revierte al incrementar la concentración de sustrato INHIBICIÓN NO COMPETITIVA Inhibición no competitiva El inhibidor se une de forma reversible a un sitio diferente del centro activo. Vmáx: disminuye Km: no varía E+S Puede unirse al enzima libre o al complejo E-S. En ambos casos no se produce formación de productos También se denomina mixta K1 ES K2 1/V E+P K-1 E+I ES+I Ki Ki2 EI EIS 1/Vmax Disminuyen el número de recambio de la enzima. INHIBICIÓN ACOMPETITIVA Es un tipo de inhibición Vmáx. Disminuye propia de reacciones Km: disminuye con más de un sustrato. El inhibidor se une al complejo E-S, no al enzima libre. 86 K1 ES K-1 ES+I Ki Sin I 1/V ’max - 1/Km E+S Con I EIS K2 E+P 0 1/[S] Bioquímica InspiracleBIR/2015 REGULACIÓN ENZIMÁTICA. [p. 165 (2003); 89 (2004); 239 (2005); 216 (2007)] Existen diferentes niveles de regulación de la actividad enzimática: - Control de la cantidad / concentración de enzima: regulación LENTA. Se lleva a cabo a nivel de la expresión de los genes que codifican las enzimas, implicando un control de la síntesis y la degradación de las mismas. (ADN → ARN → proteína). - Compartimentación: de forma general las enzimas que participan en una misma ruta suelen ubicarse en el mismo compartimiento subcelular. La compartimentación permite la separación de dos rutas opuestas que podrían interferirse mutuamente (ej: biosíntesis de ácidos grasos transcurre en el citosol, mientras su degradación transcurre en la matriz mitocondrial), y permite regular la velocidad de funcionamiento de ambas rutas controlando la disponibilidad de sustrato. Algunas rutas poseen enzimas en compartimentos diferentes (ej: gluconeogénesis, ruta para sintetizar glucosa a partir de precursores no glucídicos, posee etapas citosólicas, la mayor parte, y una mitocondrial) . - Existencia de Isoenzimas: Formas múltiples de una enzima con diferente localización en el organismo, que catalizan la misma reacción pero exhibiendo parámetros cinéticos diferentes (afinidad diferente por un sustrato). Presentan diferente pHi, PM (movilidad electroforética), sensibilidad a moduladores de la actividad enzimática, etc. (Ej: LDH, CPK, FAlc). - Activación por proteólisis o existencia de zimógenos (proenzimas): Muchas enzimas son sintetizadas de una forma inactiva como zimógenos o proenzimas y se activan por proteólisis. Este tipo de activación es irreversible y transcurre por la acción de proteasas. (Ej: proteasas digestivas: quimotripsinógeno/quimotripsina, pepsinógeno/pepsina; proteínas de la cascada de la coagulación: fibrinógeno/ fibrina; proteínas del complemento, proinsulina/insulina por pérdida del péptido C). - Control de la actividad enzimática: regulación RÁPIDA, mediante enzimas reguladoras, implica el control de la velocidad de la ruta. Puede ser: regulación covalente reversible (Ej: por fosforilación, adenilación, metilación, etc.) y/o regulación alostérica reversible por sustrato o moduladores. Regulación covalente reversible: Generalmente por fosforilación reversible de una enzima que alterna entre dos formas: una más activa y otra menos activa. Suele estar mediada por la acción hormonal. Mecanismo más habitual: H → H – R → activación de proteína G → activación de Adenilato Ciclasa → ↑ AMPc → activación de proteína kinasa A → fosforilacion de la enzima . La enzima fosforilada puede ser más o menos activa. La regulación por modificación covalente requiere de la acción de otras enzimas. En el caso de la fosforilación (generalmente sobre aa hidroxilados como Ser o Tyr) es llevada a cabo por proteín-quinasas (fosforilan) y la defosforilación, por proteín-fosfatasas (desfosforilan). 87 Bioquímica InspiracleBIR/2015 TEMA 5. COMPOSICIÓN, ESTRUCTURA Y FUNCIONES DE LAS BIOMEMBRANAS. [p. 186 (2006); 208 (2010); 197 (2014)] Las membranas biológicas son asociaciones unitarias supramoleculares de lípidos, proteínas y carbohidratos que recubren las estructuras celulares y subcelulares (en células eucariotas), definiendo su extensión y manteniendo las diferencias esenciales entre el contenido de la célula (u organelo en cuestión) y su entorno. La membrana plasmática es la que rodea a la célula y sus funciones son: Barrera selectiva al paso de sustancias. Transporte de moléculas al interior y exterior de la célula. Implicada en los movimientos y extensión celular. Actúa como receptora de la información captada del exterior y transmitida al interior de la célula. En resumen: papel primordial en la señalización celular. Se establecen a través de las membranas gradientes iónicos, que pueden ser usados para la síntesis de ATP, dirigir el movimiento transmembranoso de solutos seleccionados o, en células nerviosas y musculares , para producir y transmitir señales eléctricas. Aunque realicen diferentes funciones, todas las membranas biológicas tienen una estructura básica común: una finísima bicapa lipídica y con moléculas proteicas, que se mantienen unidas fundamentalmente por interacciones no covalentes (hidrofóbicas) y cooperativas. Las membranas celulares son estructuras asimétricas, dinámicas, fluidas, y la mayoría de sus moléculas son capaces de desplazarse en el plano de la membrana. Figura. Dibujos esquemáticos que muestran en dos (A) y tres dimensiones (B) la membrana celular. (A, por cortesía de Daniel S. Friend.). Fuente: Fig 10-1 (pag 509) del libro “Biología Molecular de la Célula. Editorial Omega, Barcelona, 3ª ed., 2002”. 91 Bioquímica InspiracleBIR/2015 Fuente: Fig 10-2 (pag 510) del libro “Biología Molecular de la Célula. Editorial Omega, Barcelona, 3ª ed., 2002”. Los fosfolípidos predominantes en la membrana plasmática de muchas células de mamíferos son: fosfatidilcolina (lecitina), esfingomielina, fosfatidilserina y fosfatidiletanolamina. Las estructuras de estas moléculas se muestran en la figura. Sólo la fosfatidilserina: tiene una carga neta negativa, las otras tres moléculas son eléctricamente neutras a pH fisiológico, presentando una carga negativa y otra positiva. En conjunto, estos cuatro fosfolípidos constituyen más de la mitad de la masa de lípidos de la mayoría de las membranas. Otros fosfolípidos, tales como los fosfolipidos de inositol, son funcionalmente importantes, tienen un papel crucial en las señalización celular, pero se hallan en cantidades relativamente pequeñas. Fuente: Fig 10-10 (pag 515) del libro “Biología Molecular de la Célula. Editorial Omega, Barcelona, 3ª ed., 2002”. 93 Bioquímica InspiracleBIR/2015 FIGURA. Generación e inactivación de ROS. SOD (superóxido dismutasa), GSH (glutatión reducido), GSSG (glutatión oxidado), TRX (tiorredoxina). Superóxido Dismutasa: dismuta el anión superóxido en peróxido de hidrógeno. Catalasa: actúa sobre el peróxido de hidrógeno transformándolo en agua y oxígeno. FOSFORILACIÓN OXIDATIVA. [p. 222 (2008); 216 (2009)] Las posibles formas de obtención de ATP en la célula: - Fosforilación a nivel de sustrato: la oxidación de los sustratos está acoplada con la síntesis de ATP a través de un intermediario rico en energía. (Ej: se convierte el fosfoenolpiruvato en piruvato y al mismo tiempo ADP y Pi en ATP). - Fosforilación oxidativa: la oxidación del NADH y del FADH2 están acopladas a la síntesis de ATP a través de un gradiente de protones. La fosforilación oxidativa puede definirse como un proceso mediante el cual la energía liberada por el trasiego de los electrones a lo largo de la cadena respiratoria se conserva mediante la fosforilación de ADP a ATP; es decir, la energía liberada en el transporte electrónico se convierte en la energía del enlace fosfato contenido en la molécula de ATP. La fosforilación oxidativa requiere que esté intacta la membrana interna mitocondrial. 147 Bioquímica InspiracleBIR/2015 ALTERACIONES EN EL METABOLISMO DE AMINOÁCIDOS[ Fenilcetonuria Clásica (99%) Maligna* (1%) [p. 234 (2006)] Tirosinemia Fenilalanina hidroxilasa (requiere tetrahidrobiopterina) Phe –x→ Tyr ó Dihidropteridina reductasa Altos niveles de Phe son neurotóxicos y produce retraso psicomotor (se requiere diagnóstico neonatal y tto precoz sin fenilalanina) Fumaril acetoacetato hidrolasa (último Ez de la degradación de Tyr: Tipo I fumaril-acetoacetato→fumarato +acetoacetato Tipo II Tirosina aminotransferasa (primer Ez de la degradación de Tyr: Dieta rica en Tyr, y restricción de Phe y aspartamo (edulcorante: contiene Phe). Excreción urinaria de ácido fenil pirúvico. Test de Guthrie: método para estimar Phe en sangre. Dieta rica en biopterina (deriva de GTP) Se produce hiperfenilalaninemia. * La biopterina también es necesaria para la síntesis de catecolaminas y serotonina. Clínica: afectación renal y hepática y evolución a carcinoma hepacelular. Tto: restricción de Tyr, Phe y Met. También denominada síndrome de Richner Hanhart. Tyr → 4-OH fenilpirúvico Tirosinasa (difenol oxidasa): síntesis de melanina Albinismo Alcaptonuria Tyr –x→DOPA –x→ dopaquinona → melanina Homogentísico – oxidasa Homogentísico 1,2-dioxigenasa Phe → Tyr → OH fenilpirúvico → ácido homogentísico –x→ maleil acetoacetato Homocistinuria e hiperhomocisteinemia No tiene cura. Prevención: cuidado de piel y ojos y protección solar. Cistationina β-sintasa HomoCys –x→ Cys Hay un bloqueo del metab. de Phe y Tyr. Tto: → restricción de Phe y Tyr. Se acumula ácido homogentísico (produce pigmentación oscura de tejido cartilaginoso y conjuntivo → artritis y reumatismo) y se excreta por la orina (se oscurece y es fuertemente reductora). El metabolismo de la Met está afectado. Tto: dieta pobre en Met + suplementos de Cys, betaína, B6, y B12. Clínica: Alteraciones oculares, osteoporosis, riesgo de enferm. cardiovasculares, tromboembolismo. Acidurias orgánicas de cadena ramificada 1. Enfermedad de la orina con olor a Jarabe de Arce. Descarboxilasas de aa ramificados (2oxo-isovalerato-deshidrogenasa) 2. Acidemia propiónica Propionil CoA carboxilasa (propionil CoA –x→ metilmalonil CoA) 3. Acidemia metilmalónica Metilmalonil CoA mutasa (L-metilmalonil CoA –x→Succinil CoA) Restricción de Val; Leu e Ile. Clínica: orina con olor a jarabe de arce (azúcar quemada), retraso mental y del crecimiento. Dieta hipoproteica y dar suplementos de carnitina. Idem tto. Como en otras acidemias orgánicas, puede producir hiperamonemia, debido a la inhibición de carbamil P sintasa I por metabolitos orgánicos ácidos. 261 Bioquímica InspiracleBIR/2015 EFECTOS DEL GLUCAGÓN [p. 180 (2006); 222 (2007); 241 (2008)] EFECTO METABÓLICO ↑↑Degradación del glucógeno ↓ Síntesis de glucógeno (hígado) RESULTADO Glucógeno → glucosa Menos glucosa almacenada como glucógeno ↓ Glicólisis (hígado) Menos glucosa usada como combustible en hígado ↑ Gluconeogénesis (hígado) Aminoácidos Glicerol → glucosa Oxalacetato ↑ Movilización de ácidos grasos Menos glucosa usada como (tejido adiposo) combustible en hígado y músculo ↑ Cetogénesis Provee cuerpos cetónicos como alternativa a glucosa ENZIMA DIANA ↑ Glucógeno fosforilasa ↓ Glucógeno sintasa ↓ FFK 1 ↑ Fructosa bifosfatasa 2 ↓ piruvato quinasa ↑ PEP carboxiquinasa ↑ TAG lipasa La adrenalina comparte muchos de estos efectos del glucagón, aunque en ocasiones con diferente significado biológico. 285 UNIDAD II BIOQUÍMICA CLÍNICA InspiracleBIR/2015 Bioquímica Para asegurar la identificación correcta del tubo apropiado, los tapones de los tubos que contienen anticoagulante y aditivo están codificados, según normativa internacional, por colores: INTERFERENCIAS: Pueden ser debidas a: 1) Lisis de células: Ciertas sustancias están en el interior de las células en concentraciones muy diferentes respecto a las del suero/plasma. Por tanto, la lisis de las células puede alterar la concentración normal en suero/plasma para algunas sustancias. La hemólisis (lisis anormal de los eritrocitos) puede deberse a muchas causas pero cabe destacar por su frecuencia: 1. extracción muy rápida de la sangre 2. transporte-almacenamiento prolongado; El suero presenta un aspecto hemolítico cuando la concentración de la Hb es >200 mg/L. 296 Bioquímica o InspiracleBIR/2015 Su elevación en LA y suero materno indica defectos de cierre del tubo neural, lo cual se confirma mediante detección de acetil-colinesterasa en LA. o La detección de AFP y β-HCG en suero "materno", junto con las semanas de gestación, edad de la embarazada, peso, raza y enfermedades asociadas, permite estimar el riesgo de Síndrome de Down: que se confirmaría con un cariotipo. o En no embarazadas: es un marcador tumoral ( ej : hepatocarcinoma). Cociente lecitina/esfingomielina útil en diagnóstico de posible distres respiratorio en el recién nacido. Cariotipo: sirve para detectar alteraciones cromosómicas en el feto. LIQUIDO ARTICULAR (SINOVIAL): está en la cavidad articular y tiene como función la de lubricar la articulación. En condiciones normales, presenta aspecto transparente, escaso número de células. - La muestra se obtiene por paracentesis (al igual que en los líquidos pleural, peritoneal, etc) Generalmente se realizan estudios conocer si se trata de un exudado o un trasudado. Características macroscópicas: es un líquido claro, incoloro, viscoso. Si el líquido aparece turbio indica proceso inflamatorio. Si tiene aspecto opaco puede ser septico (Ej: una artritis tuberculosa). Caracteristicas en estudios de laboratorio: Se hace conteo celular. Según la cifra de leucocitos encontrada por microlitro, se clasifican los líquidos en 4 tipos: Normal: < 200 Mecánico: 200-2.000 Inflamatorio: 2.000-75.000 Séptico: > 100.000 Estudio bioquímico: Glucosa puede disminuir en caso de infección. Proteínas Totales: la cantidad normal es de 20 g/L, y aumenta en inflamaciones. Investigación de cristales: Se utiliza el microscopio de luz polarizada para investigar la presencia de cristales en el líquido sinovial, que tiene lugar en las artritis gotosa, artritis reumatoide, etc). 307 Bioquímica InspiracleBIR/2015 BIBLIOGRAFÍA. - NELSON, D.L. y COX, M.M.: Lehninger. Principios de Bioquímica. Ediciones Omega, Barcelona, 4ª ed., 2006. - LOZANO, J. A., et al: Bioquímica y Biología Molecular. Editorial McGraw-Hill Interamericana. Madrid, 3ª ed., 2005. - LOUISOT, P.: Bioquímica Estructural. Editorial AC. España, 1977. - DEBLIN, T. M.: Bioquímica, libro de texto con aplicaciones clínicas, Editorial Reverté, S.A. España. 4ª ed., 2004. - KOOLMAN, J.A., ROHM, K-H.: Bioquímica, texto y atlas. Editorial Médica Panamericana, 3ª Ed., 2004. - The Merck Manual Online. 2004-2010 Merck Sharp & Dohme Corp. Robert S. Porter, Justin L. Kaplan, Eds. - Harrison Principios de Medicina Interna. 17a edición. Anthony S. Fauci, Eugene Braunwald, Dennis L. Kasper, Stephen L. Hauser, Dan L. Longo, J. Larry Jameson, and Joseph Loscalzo, Eds. - Medimecum. Guia de terapia farmacológica. Adis International. 2002. - ALBERTS, B.; BARY, D.; LEWIS, J.; RAFF, M,; ROBERTS, K.; WATSON, J.D. “Biología Molecular de la célula”. Ediciones Omega, 3ª ed., 2002. 319