UNIDAD 2. ELEMENTOS QUÍMICOS Y SU CLASIFICACIÓN. Desarrollo de la tabla periódica. El descubrimiento de nuevos elementos químicos ha sido un proceso continuo desde tiempos antiguos. Ciertos elementos, como el oro, aparecen en la naturaleza en forma elemental y por ello se descubrieron hace miles de años. En contraste, algunos elementos son radiactivos e intrínsecamente inestables. Sólo sabemos de ellos gracias a los avances tecnológicos del siglo XX. La mayor parte de los elementos, aunque estables, se encuentran dispersos ampliamente en la naturaleza y en numerosos compuestos. Por ello, durante siglos, los científicos no se dieron cuenta de su existencia. A principios del siglo XIX, los avances en la química hicieron más fácil aislar los elementos de sus compuestos. En consecuencia, el número de elementos conocidos se duplicó de 31 en 1800 a 63 hacia 1865. Al aumentar el número de elementos conocidos, los científicos comenzaron a investigar la posibilidad de clasificarlos de acuerdo con su utilidad. En 1869, Dmitri Mendeleev en Rusia y Lothar Meyer en Alemania publicaron esquemas de clasificación casi idénticos. Ambos científicos señalaron que las propiedades químicas y físicas similares ocurren periódicamente, si los elementos se acomodan en orden de peso atómico creciente. Los científicos de la época no tenían conocimiento de los números atómicos, pero los pesos atómicos generalmente aumentan al incrementarse el número atómico, así que tanto Mendeleev como Meyer acomodaron fortuitamente los elementos en la secuencia correcta. Las tablas de los elementos propuestas por Mendeleev y Meyer fueron las precursoras de la moderna tabla periódica. Aunque Mendeleev y Meyer llegaron, en lo esencial, a la misma conclusión acerca de la periodicidad de las propiedades de los elementos, se le da el crédito a Mendeleev, porque promovió sus ideas de forma mucho más vigorosa y estimuló gran cantidad de trabajos nuevos en química. Su insistencia en que los elementos con características similares se colocaran en las mismas familias le obligó a dejar varios espacios en blanco en su tabla. Por ejemplo, tanto el galio (Ga) como el germanio (Ge) eran desconocidos en esa época. Mendeleev predijo audazmente su existencia y sus propiedades, refiriéndose a ellos como eka-aluminio y eka-silicio, por los elementos abajo de los cuales aparecen en la tabla periódica. Cuando se descubrieron estos elementos, se constató que sus propiedades eran muy parecidas a las que había predicho Mendeleev. En 1913, dos años después de que Rutherford propusiera el modelo nuclear del átomo, un físico inglés llamado Henry Moseley (1887-1915) desarrolló el concepto de números atómicos. Moseley determinó las frecuencias de los rayos X emitidos cuando diferentes elementos son bombardeados con electrones de alta energía, y observó que cada elemento produce rayos X con una frecuencia característica; además, constató que la frecuencia generalmente crecía al aumentar la masa atómica. Moseley ordenó las frecuencias de rayos X asignándoles un número entero único, llamado número atómico, a cada elemento. Moseley identificó correctamente el número atómico como el número de protones en el núcleo del átomo y como al número de electrones que hay en él. Carga nuclear efectiva. Para entender las propiedades de los átomos, debemos conocer no sólo las configuraciones electrónicas, sino también la fuerza de la atracción entre los electrones exteriores y el núcleo. La ley de la atracción de Coulomb indica que la fuerza de la interacción entre dos cargas eléctricas depende de la magnitud de las cargas y de la distancia entre ellas. Por tanto, la fuerza de atracción entre un electrón y el núcleo depende de la magnitud de la carga nuclear neta que actúa sobre el electrón y de la distancia media entre el núcleo y el electrón. La fuerza de atracción se incrementa al aumentar la carga nuclear, y disminuye a medida que el electrón se aleja del núcleo. En un átomo con muchos electrones, cada electrón es simultáneamente atraído hacia el núcleo y repelido por los otros electrones. En general, hay tantas repulsiones electrón-electrón que es imposible analizar la situación con exactitud. Lo que sí podemos hacer es estimar la energía de cada electrón considerando su interacción con el entorno promedio creado por el núcleo y los demás electrones del átomo. Esto nos permite tratar a cada electrón individualmente, como si se estuviera moviendo en el campo eléctrico creado por el núcleo y la densidad electrónica circundante de los otros electrones. Este campo eléctrico equivale al generado por una carga situada en el núcleo, llamada carga nuclear efectiva. La carga nuclear efectiva, Zef, que actúa sobre un electrón es igual al número de protones del núcleo, Z, menos el promedio de electrones, S, que hay entre el núcleo y el electrón en cuestión: Dado que S representa un promedio, no tiene que ser entero. Muchas de las propiedades de los átomos dependen de la carga nuclear efectiva que experimentan sus electrones exteriores (o de valencia). Toda densidad electrónica entre el núcleo y un electrón exterior reduce la carga nuclear efectiva que actúa sobre ese electrón. Decimos que la densidad electrónica debida a los electrones internos escuda a los electrones exteriores de la carga cabal del núcleo. Dado que los electrones internos están situados principalmente entre el núcleo y los electrones externos, son muy eficientes para escudar a estos últimos. En cambio, los electrones que están en la misma capa casi no se escudan mutuamente del núcleo. Por ello, la carga nuclear efectiva experimentada por los electrones exteriores depende primordialmente de la diferencia entre la carga del núcleo y la carga de los electrones internos. Podemos estimar de forma burda la carga nuclear efectiva empleando la carga nuclear y el número de electrones internos. El magnesio (número atómico 12), por ejemplo, tiene una configuración electrónica de [Ne]3s2. La carga nuclear del átomo es 12+, y el centro interno del Ne consta de 10 electrones. Por tanto, de forma muy aproximada, cabría esperar que cada electrón de la capa exterior experimente una carga nuclear efectiva de 12 - 10 = 2+, como se muestra de forma simplificada en la figura 7.3(a). Sin embargo, este cálculo subestima la carga nuclear efectiva porque los electrones exteriores de un átomo tienen cierta probabilidad de estar dentro del centro, como se muestra en la figura 7.3(b). Efectivamente, cálculos más detallados indican que la carga nuclear efectiva que actúa sobre los electrones exteriores de Mg es en realidad 3.3+. La carga nuclear efectiva experimentada por los electrones exteriores aumenta a medida que pasamos de un elemento al siguiente a lo largo de cualquier fila (periodo) de la tabla periódica. Aunque el número de electrones internos no cambia cuando avanzamos por un periodo, la carga nuclear real sí aumenta. Los electrones de capa exterior que se añaden para equilibrar la carga nuclear creciente se escudan mutuamente de manera poco ineficaz. Por tanto, la carga nuclear efectiva aumenta continuamente. Por ejemplo, los electrones internos 1s2 del litio (1s22s1) escudan al electrón exterior 2s de la carga 3+ del núcleo de forma muy eficaz. Por ello, el electrón exterior experimenta una carga nuclear efectiva de aproximadamente 3 - 2 = 1+. En el caso del berilio (1s22s2), la carga nuclear efectiva que cada electrón exterior experimenta es mayor; en este caso, los electrones internos 1s2 están escudando un núcleo 4+, y cada electrón 2s sólo escuda parcialmente del núcleo al otro. Por ello, la carga nuclear efectiva que cada electrón experimenta es de aproximadamente 4 - 2 = 2+. Figura 7.3 (a) La carga nuclear efectiva experimentada por los electrones de valencia del magnesio depende principalmente de la carga 12+ del núcleo y de la carga 10- del centro de neón. Si el centro fuera absolutamente eficaz para escudar del núcleo a los electrones de valencia, cada electrón de valencia experimentaría una carga nuclear efectiva de 2+. (b) Los electrones 3s tienen cierta probabilidad de estar dentro del centro del Ne. Como consecuencia de esta “penetración”, el centro no es totalmente eficaz para escudar del núcleo a los electrones 3s. Por ello, la carga nuclear efectiva que experimentan los electrones 3s es mayor que 2+. Al bajar por una familia, la carga nuclear efectiva que los electrones de capa exterior experimentan cambian mucho menos que a lo ancho de un periodo. Por ejemplo, cabría esperar que la carga nuclear efectiva para los electrones exteriores del litio y el sodio sea casi la misma, aproximadamente 3 - 2 = 1+ para el litio y 11 - 10 = 1+ para el sodio. Sin embargo, la realidad es que la carga nuclear efectiva aumenta un poco al bajar por una familia porque las nubes de electrones internas no pueden escudar tan bien de la carga nuclear a los electrones exteriores. No obstante, el ligero cambio en la carga nuclear efectiva que se observa al bajar por una familia es de menor importancia que el aumento que se da a lo ancho de un periodo. Tamaño de los átomos y de los iones. Imaginemos un conjunto de átomos de argón en la fase gaseosa. Cuando los átomos chocan entre sí durante sus movimientos, rebotan de forma parecida a bolas de billar. Esto se debe a que las nubes de electrones de los átomos que chocan no pueden penetrar mucho una en la otra. Las distancias más pequeñas que separan a los núcleos durante tales choques determinan los radios aparentes de los átomos de argón. Podríamos llamar a ese radio el radio de no enlace de un átomo. Cuando dos átomos están unidos químicamente, como en la molécula de Cl2, existe una interacción atractiva entre los dos átomos que da lugar a un enlace químico. Examinaremos la naturaleza de tales enlaces en el capítulo 8. Por ahora, sólo necesitamos entender que esta interacción atractiva junta a los dos átomos más de lo que se juntarían en un choque sin enlace. Podemos definir un radio atómico con base en las distancias que separan a los núcleos de los átomos cuando están unidos químicamente. Esa distancia, llamada radio atómico de enlace, es más corta que el radio de no enlace, como se ilustra en la figura 7.4. Los modelos de espacio ocupado, usan los radios de no enlace (también llamados radios de van der Waals) para determinar los tamaños de los átomos. Los radios atómicos de enlace (también llamados radios covalentes) se usan para determinar las distancias entre sus centros. Figura 7.4 Ilustración de la distinción entre radio atómico de no enlace y de enlace. Los valores de los radios atómicos de enlace se obtienen de mediciones de distancias interatómicas en compuestos químicos. Los científicos han desarrollado diversos medios para medir las distancias que separan a los núcleos en las moléculas. Con base en observaciones de esas distancias en muchas moléculas, es posible asignar a cada elemento un radio atómico de enlace. Por ejemplo, en la molécula de I2, la distancia que separa los núcleos de yodo es de 2.66 Å. Con base en esto, definimos el radio atómico de enlace del yodo como 1.33 Å. De forma análoga, la distancia que separa dos núcleos adyacentes de carbono en el diamante, que es una red sólida tridimensional, es de 1.54 Å; por tanto, se asigna el valor de 0.77 Å al radio atómico de enlace del carbono. Los radios de otros elementos se pueden definir de manera similar (Figura 7.5). (En el caso del helio y el neón, es preciso estimar los radios de enlace, porque no se conocen combinaciones químicas de esos elementos.) Los radios atómicos nos permiten estimar las longitudes de enlace entre los diferentes elementos en las moléculas. Por ejemplo, la longitud del enlace Cl - Cl en el Cl2 es de 1.99 Å, por lo que se asigna un radio de 0.99 Å al Cl. En el compuesto CCl 4, la longitud del enlace C - Cl es de 1.77 Å, muy cercana a la suma (0.77 Å + 0.99 Å) de los radios atómicos del C y el Cl. Figura 7.5 Radios atómicos de enlace de los primeros 54 elementos de la tabla periódica. La altura de la barra para cada elemento es proporcional a su radio, lo que produce un “mapa de relieve” de los radios. EJERCICIO TIPO 7.1 El gas natural empleado en los hogares para calefacción y para cocinar es inodoro. En vista de que las fugas de gas natural representan un peligro de explosión o de asfixia, se agregan diversas sustancias olorosas al gas que permiten detectar las fugas. Una de dichas sustancias es el metil mercaptano, CH3SH, cuya estructura se muestra al margen. Utilice la figura 7.5 para predecir las longitudes de los enlaces C ⎯ S, C ⎯ H y S ⎯ H en esta molécula. Solución Análisis y estrategia: Nos dan tres enlaces específicos y la lista de radios atómicos. Supondremos que las longitudes de enlace son la suma de los radios de los átomos en cuestión. Resolución: Con base en los radios para C, S y H de la figura 7.5, predecimos Comprobación: Las longitudes de enlace determinadas experimentalmente en el metil mercaptano son C ⎯ S = 1.82 Å, C ⎯ H = 1.10 Å y S ⎯ H = 1.33 Å. (En general, las longitudes de los enlaces en los que interviene hidrógeno muestran mayores desviaciones respecto a los valores predichos por la suma de los radios atómicos, que en el caso de enlaces en los que participan átomos más grandes.) EJERCICIO DE APLICACIÓN Utilizando la figura 7.5, prediga qué será mayor, la longitud del enlace P ⎯ Br en PBr3 o la longitud del enlace As ⎯ Cl en AsCl3. Respuesta: La longitud del enlace P ⎯ Br Tendencias periódicas en los radios atómicos. Si examinamos el “mapa de relieve” de los radios atómicos que se muestra en la figura 7.5, observaremos dos tendencias interesantes en los datos: 1. Dentro de cada columna (grupo), el radio atómico tiende a aumentar conforme bajamos por la columna. Esta tendencia es resultado primordialmente del aumento en el número cuántico principal (n) de los electrones externos. Al bajar por un grupo, los electrones externos pasan más tiempo lejos del núcleo, lo que hace que aumente el tamaño del átomo. 2. Dentro de cada fila (periodo), el radio atómico tiende a disminuir conforme nos movemos de izquierda a derecha. El principal factor que influye en esta tendencia es el aumento en la carga nuclear efectiva (Zef) al avanzar por una fila. Al aumentar, la carga nuclear efectiva atrae a los electrones, incluidos los exteriores, más cerca del núcleo, y esto hace que disminuya el radio. EJERCICIO TIPO 7.2 Consultando la tabla periódica, acomode (hasta donde sea factible) los átomos siguientes en orden de tamaño creciente: 15P, 16S, 33As, 34Se. (Hemos dado los números atómicos de los elementos para que sea más fácil encontrarlos en la tabla periódica.) Solución Análisis y Estrategia: Nos dan los símbolos químicos de cuatro elementos. Podemos usar sus posiciones relativas en la tabla periódica y las dos tendencias que acabamos de señalar para predecir el orden relativo de sus radios atómicos. Resolución: Observamos que el P y el S están en la misma fila de la tabla periódica, con el S a la derecha del P. Por tanto, esperaremos que el radio del S sea menor que el del P (los radios disminuyen conforme nos movemos de izquierda a derecha). Por lo mismo, esperamos que el radio del Se sea menor que el del As. También tomamos nota de que el As está directamente abajo del P y que Se está directamente abajo del S. Por tanto, cabe esperar que el radio del As sea mayor que el del P y que el radio del Se sea mayor que el del S (los radios aumentan conforme bajamos). A partir de estas observaciones, podemos concluir que los radios siguen las relaciones S < P, P < As, S < Se y Se < As. Entonces, podemos concluir que el S tiene el radio más pequeño de los cuatro elementos y que el As tiene el radio más grande. Utilizando estas dos tendencias generales, no podemos determinar si el P es más grande que el Se o al revés; para ir del P al Se en la tabla periódica debemos bajar (el radio tiende a aumentar) y movernos a la derecha (el radio tiende a disminuir). En la figura 7.5 vemos que el radio del Se (1.17 Å) es mayor que el del P (1.10 Å). Si examinamos detenidamente la figura 7.5, descubriremos que, para los elementos representativos, el aumento en el radio al bajar por una columna suele ser el efecto más importante. Sin embargo, hay excepciones. Comprobación: En la figura 7.5 vemos que S (1.02 Å) < P (1.10 Å) < Se (1.17 Å) < As (1.19 Å). EJERCICIO DE APLICACIÓN Ordene los átomos siguientes de menor a mayor radio atómico: Na, Be, Mg. Respuesta: Be < Mg < Na Tendencias en los tamaños de los iones. Los tamaños de los iones se basan en las distancias entre iones en los compuestos iónicos. Al igual que el tamaño de un átomo, el tamaño de un ion depende de su carga nuclear, del número de electrones que posee y de los orbitales en los que residen los electrones de capa externa. La formación de un catión desocupa los orbitales más extendidos en el espacio y también reduce las repulsiones electrón-electrón totales. El resultado es que los cationes son más pequeños que sus átomos progenitores, como se ilustra en la figura 7.6. Lo contrario sucede con los iones negativos (aniones). Cuando se añaden electrones a un átomo neutro para formar un anión, el aumento en las repulsiones electrón-electrón hace que los electrones se extiendan más en el espacio. Por tanto, los aniones son más grandes que sus átomos progenitores. En iones de la misma carga, el tamaño aumenta al bajar por un grupo de la tabla periódica. Esta tendencia también se observa en la figura 7.6. Al aumentar el número cuántico principal del orbital ocupado más exterior de un ion, aumenta el tamaño del ion. Figura 7.6 Comparaciones de los radios, en Å, de átomos neutros y iones de varios grupos de elementos representativos. Los átomos neutros aparecen en gris, los cationes en rojo y los aniones en azul. EJERCICIO TIPO 7.3 Ordene los átomos y los iones siguientes de mayor a menor tamaño: Mg 2+, Ca2+ y Ca. Solución Los cationes son más pequeños que su átomo progenitor, así que el Ca 2+ es más pequeño que el átomo del Ca. Puesto que el Ca está abajo del Mg en el grupo 2A de la tabla periódica, el Ca2+ es más grande que el Mg2+. Por tanto, Ca < Ca2+ < Mg2+. EJERCICIO DE APLICACIÓN ¿Cuál de los átomos y iones siguientes es el más grande: S2-, S, O2-? Respuesta: S2-. El efecto de una variación en la carga nuclear, sobre los radios iónicos, se aprecia en una serie isoelectrónica de iones. El término isoelectrónica implica que los iones poseen el mismo número de electrones. Por ejemplo, todos los iones de la serie O2-, F-, Na+, Mg2+ y Al3+ tienen 10 electrones. En esta serie, la carga nuclear aumenta continuamente en el orden que se da. Puesto que el número de electrones es constante, el radio del ion disminuye al aumentar la carga nuclear, porque los electrones son atraídos más fuertemente hacia el núcleo: Observe las posiciones de estos elementos en la tabla periódica y también sus números atómicos. Los aniones de los no metales están antes del gas noble Ne en la tabla. Los cationes metálicos están después del Ne. El oxígeno, el ion más grande de esta serie isoelectrónica, tiene el número atómico más bajo, 8. El aluminio, el más pequeño de estos iones, tiene el número atómico más alto, 13. EJERCICIO TIPO 7.4 Ordene los iones S2-, Cl-, K+ y Ca2+ de mayor a menor tamaño. Solución Se trata de una serie isoeléctrica de iones, pues todos los iones tienen 18 electrones. En una serie así, el tamaño disminuye a medida que la carga nuclear (número atómico) del ion aumenta. Los números atómicos de los átomos son 16 (S), 17 (Cl), 19 (K) y 20 (Ca). Por tanto, el tamaño de los iones disminuye en el orden S2- < Cl- < K+ < Ca2+. EJERCICIO DE APLICACIÓN ¿Cuál de estos iones es el más grande, Rb+ Sr2+ o Y3+? Respuesta: Rb+. Energía de ionización. La facilidad con que los electrones se pueden sacar de un átomo es un indicador importante del comportamiento químico del átomo. La energía de ionización de un átomo o un ion es la energía mínima necesaria para eliminar un electrón desde el estado basal del átomo o ion gaseoso aislado. La primera energía de ionización, I1, es la energía requerida para quitar el primer electrón de un átomo neutro. Por ejemplo, la energía de la primera ionización del átomo de sodio es la energía necesaria para el proceso siguiente: La segunda energía de ionización, I2, es la energía requerida para quitar el segundo electrón, y así para la eliminación sucesiva de electrones adicionales. Por tanto, I2 para el átomo de sodio es la energía asociada al proceso: Cuanto mayor es la energía de ionización, más difícil es quitar un electrón. Tendencias en las energías sucesivas de ionización. Las energías de ionización para los elementos del sodio al argón se muestran en la tabla 7.2. Adviértase que las energías de ionización de un elemento aumentan en magnitud conforme se eliminan electrones sucesivos: I1 < I2 < I3, etc. Esta tendencia se debe a que, con cada eliminación sucesiva, se está quitando un electrón a un ion cada vez más positivo, lo que requiere más energía. Una segunda característica importante de la tabla 7.2 es el marcado aumento en la energía de ionización que se observa cuando se elimina un electrón de capa interna. Por ejemplo, consideremos el silicio, cuya configuración electrónica es 1s22s22p63s23p2, o sea, [Ne]3s23p2. Las energías de ionización aumentan continuamente de 786 kJ/mol a 4360 kJ/mol para la pérdida de los cuatro electrones de las subcapas exteriores 3s y 3p. La eliminación del quinto electrón, que proviene de la subcapa 2p, requiere mucha más energía, 16,100 kJ/mol. El gran salto en energía se debe a que el electrón de capa interna 2p está mucho más cerca del núcleo y experimenta una carga nuclear efectiva mucho mayor que los electrones 3s y 3p de la capa de valencia. Todos los elementos muestran un aumento importante en la energía de ionización cuando se eliminan electrones de su centro (Kernell) de gas noble. Esta observación apoya la idea de que sólo los electrones más exteriores, los que están más allá del centro de gas noble, intervienen en el compartimiento y transferencia de electrones que dan pie a los enlaces y reacciones químicos. Los electrones internos están unidos con demasiada fuerza al núcleo como para perderse del átomo o siquiera compartirse con otro átomo. EJERCICIO TIPO 7.5 En la tabla periódica de abajo se indican tres elementos. Con base en su ubicación, prediga cuál tendrá la segunda energía de ionización más alta. Solución Análisis y estrategia: La ubicación de los elementos en la tabla periódica nos permite predecir sus configuraciones electrónicas. Las energías de ionización más grandes implican eliminar electrones internos. Por tanto, deberemos ver si alguno de los elementos sólo tiene un electrón de capa exterior. Resolución: El elemento del grupo 1A (Na), indicado por el cuadrito rojo, sólo tiene un electrón exterior. Por tanto, la segunda energía de ionización está asociada a la eliminación de un electrón interno. Los otros elementos indicados tienen dos o más electrones exteriores; por tanto, el Na es el que tiene la mayor energía de segunda ionización. Comprobación: Si consultamos un manual de química, encontraremos los valores siguientes para las energías de segunda ionización (I2) de los respectivos elementos: Ca (1,145 kJ/mol) S (2,251 kJ/mol) Na (4562 kJ/mol). EJERCICIO DE APLICACIÓN ¿Qué es mayor, la tercera energía de ionización del Ca o la del S? Respuesta: La del Ca, porque el tercer electrón es interno. Tendencias periódicas en la energía de ionización. En la figura 7.9 se muestra una gráfica de I1 vs. número atómico para los primeros 54 elementos. Las tendencias importantes son: 1. Dentro de cada fila, I1 generalmente aumenta al incrementarse el número atómico. Los metales alcalinos tienen la energía de ionización más baja de cada fila, y los gases nobles, la más alta. Hay pequeñas irregularidades en esta tendencia que veremos en breve. 2. Dentro de cada grupo, la energía de ionización generalmente disminuye al aumentar el número atómico. Por ejemplo, las energías de ionización de los gases nobles siguen el orden He > Ne > Ar > Kr > Xe. 3. Los elementos representativos muestran una gama más grande de valores de I1 que los metales de transición. En general, las energías de ionización de los elementos de transición aumentan lentamente de izquierda a derecha en un periodo. Los metales del bloque f, que no aparecen en la figura 7.9, también muestran variaciones muy pequeñas en los valores de I1. Figura 7.9 Primera energía de ionización vs. número atómico. Los puntos rojos marcan el inicio de un periodo (metales alcalinos), y los azules, el final de un periodo (gases nobles). Se utilizan puntos verdes para los metales de transición. Las tendencias periódicas de las energías de la primera ionización de los elementos representativos se ilustran en la figura 7.10. En general, los átomos más pequeños tienen energías de ionización más altas. Los mismos factores que influyen en el tamaño atómico también influyen en las energías de ionización. La energía requerida para eliminar un electrón de la capa exterior depende tanto de la carga nuclear efectiva como de la distancia media entre el electrón y el núcleo. Un aumento de la carga nuclear efectiva, o una disminución de la distancia al núcleo, aumentan la atracción entre el electrón y el núcleo. Al aumentar esta atracción, se hace más difícil quitar el electrón y por ende aumenta la energía de ionización. Al movernos hacia la derecha en un periodo, hay tanto un aumento en la carga nuclear efectiva como una disminución en el radio atómico, lo que hace que la energía de ionización aumente. En cambio, cuando bajamos por una columna, el radio atómico aumenta, mientras que la carga nuclear efectiva casi no cambia. Así, la atracción entre el núcleo y el electrón disminuye, y la energía de ionización disminuye también. Las irregularidades dentro de una fila dada son un poco más sutiles pero no es difícil explicarlas. Por ejemplo, la disminución en la energía de ionización del berilio ([He]2s2) al boro ([He]2s22p1) se debe a que los electrones del orbital 2s lleno escudan de forma más eficaz a los electrones de la subcapa 2p que como se escudan mutuamente. Ésta es en esencia la misma razón por la que en los átomos de muchos electrones el orbital 2p tiene una energía más alta que el 2s (Figura 6.22). La disminución en la energía de ionización al pasar del nitrógeno ([He]2s 22p3) al oxígeno ([He]2s22p4) se debe a la repulsión de los electrones apareados en la configuración p 4. (Recuerde que, según la regla de Hund, cada electrón de la configuración p3 reside en un orbital p distinto.) Figura 7.10 Primera energía de ionización para los elementos representativos de los primeros seis periodos. La energía de ionización por lo regular aumenta de izquierda a derecha y disminuye de arriba hacia abajo. La energía de ionización del astato aún no se ha determinado. EJERCICIO TIPO 7.6 Consultando la tabla periódica, ordene los átomos siguientes de menor a mayor energía de primera ionización: Ne, Na, P, Ar, K. Solución Análisis y estrategia: Nos dan los símbolos químicos de cinco elementos. Para ordenarlos de menor a mayor energía de primera ionización, necesitamos ubicarlos en la tabla periódica. Luego, utilizaremos sus posiciones relativas y las tendencias de las energías de primera ionización para predecir su orden. Resolución: La energía de ionización aumenta de izquierda a derecha en las filas, y disminuye de arriba hacia abajo en las columnas. Dado que el Na, el P y el Ar están en la misma fila de la tabla periódica, cabe esperar que I1 varíe en el orden Puesto que el Ne está arriba del Ar en el grupo 8A, esperamos que exhiba una energía de primera ionización mayor: De forma similar, el K es el metal alcalino que está directamente debajo del Na en el grupo 1A, por lo que esperaremos que I1 para el K sea menor que para el Na: A partir de estas observaciones, concluimos que las energías de ionización siguen el orden Comprobación: Los valores que se muestran en la figura 7.10 confirman esta predicción. EJERCICIO DE APLICACIÓN Con base en las tendencias estudiadas en esta sección, prediga cuál de los siguientes átomos ⎯B, Al, C o Si⎯ tiene la energía de primera ionización más baja y cuál tiene la energía de primera ionización más alta. Respuesta: El Al tiene la más baja y el C tiene la más alta. Configuración electrónica de los iones. Cuando se quitan electrones a un átomo para formar un catión, siempre se quitan primero de los orbitales con el número cuántico principal disponible más alto, n. Por ejemplo, cuando se quita un electrón al átomo de litio (1s22s1), es el electrón 2s1 el que se quita: Li (1s22s1) -------- Li+ (1s2) Asimismo, cuando se quitan dos electrones al Fe ([Ar]3d64s2), son los electrones 4s2 los que se quitan: Fe ([Ar]3d64s2) -------- Fe2+ ([Ar]3d6) Si se quita un electrón adicional para formar Fe3+, se quita de un orbital 3d, porque todos los orbitales con n = 4 ya están vacíos: Fe2+ ([Ar]3d6) --------- Fe3+ ([Ar]3d5) Podría parecer extraño que se quiten los electrones 4s antes que los electrones 3d para formar cationes de metales de transición, pues al escribir las configuraciones electrónicas los electrones 4s se añadieron antes que los 3d. Sin embargo, cuando escribimos la configuración electrónica de un átomo, estamos siguiendo un proceso imaginario en el que avanzamos por la tabla periódica de un elemento a otro. Al hacerlo, no sólo estamos añadiendo un electrón, sino también un protón al núcleo, para cambiar la identidad del elemento. Cuando hablamos de ionización, no invertimos ese proceso porque sólo se quitan electrones, no protones. Cuando se añaden electrones a un átomo para formar un anión, se colocan en el orbital vacío o parcialmente lleno que más bajo valor disponible de n tiene. Por ejemplo, cuando se añade un electrón a un átomo de flúor para formar el ion F -, el electrón ocupa la única vacante que queda en la subcapa 2p: F (1s22s22p5) ---------- F- (1s22s22p6) EJERCICIO TIPO 7.7 Escriba las configuraciones electrónicas de los iones (a) Ca2+; (b) Co3+; y (c) S2-. Solución Análisis y estrategia: Nos piden escribir las configuraciones electrónicas de varios iones. Para hacerlo, primero escribimos la configuración electrónica del átomo progenitor. Luego, quitamos electrones para formar cationes o añadimos electrones para formar aniones. Los electrones se quitan primero de los orbitales con más alto valor de n, y se añaden a los orbitales vacíos o parcialmente llenos que más bajo valor de n tienen. Resolución: (a) El calcio (número atómico 20) tiene la configuración electrónica: Para formar un ion 2+, es preciso quitar los dos electrones exteriores para dar un ion que es isoelectrónico con el Ar: (b) El cobalto (número atómico 27) tiene la configuración electrónica Para formar un ion 3+, es preciso quitar tres electrones. Como vimos en el texto que precede a este ejercicio, se quitan los electrones 4s antes que los 3d. Por tanto, la configuración electrónica del ion Co3+ es (c) El azufre (número atómico 16) tiene la configuración electrónica Para formar un ion 2-, es preciso añadir dos electrones. Hay espacio para otros dos electrones en los orbitales 3p. Por tanto, la configuración electrónica del ion S2- es EJERCICIO DE APLICACIÓN Escriba la configuración electrónica de los iones (a) Ga3+; (b) Cr3+; y (c) Br-. Respuestas: Afinidades electrónicas. La mayor parte de los átomos puede ganar electrones para formar iones con carga negativa. El cambio de energía que ocurre cuando se agrega un electrón a un átomo gaseoso se denomina afinidad electrónica porque mide la atracción, o afinidad, del átomo por el electrón añadido. En casi todos los casos, se libera energía cuando se agrega un electrón. Por ejemplo, la adición de un electrón a un átomo de cloro va acompañada por un cambio de energía de - 349 kJ/mol, donde el signo negativo indica que se libera energía durante el proceso. Por tanto, decimos que la afinidad electrónica de Cl es - 349 kJ/mol: Es importante entender las diferencias entre la energía de ionización y la afinidad electrónica: la energía de ionización mide la facilidad con que un átomo pierde un electrón, mientras que la afinidad electrónica mide la facilidad con que un átomo gana un electrón. Cuanto mayor sea la atracción entre un átomo dado y un electrón añadido, más negativa será la afinidad electrónica del átomo. Para algunos elementos, como los gases nobles, la afinidad electrónica tiene un valor positivo, lo que implica que el anión tiene más alta energía que el átomo y el electrón separados: Puesto que ΔE > 0, el ion Ar_ es inestable y no se forma. En la figura 7.11 se muestran las afinidades electrónicas de los elementos representativos de las cinco primeras filas de la tabla periódica. En general, la afinidad electrónica se vuelve más negativa conforme avanzamos por cada fila hacia los halógenos. Los halógenos, a los que sólo les falta un electrón para tener una subcapa p llena, tienen las afinidades electrónicas más negativas. Al ganar un electrón, un átomo de halógeno forma un ion negativo estable que tiene la configuración de un gas noble (Ecuación 7.6). La adición de un electrón a un gas noble, en cambio, requeriría que el electrón residiera en una nueva subcapa de mayor energía (Ecuación 7.7). La ocupación de una subcapa de más alta energía no es favorable desde el punto de vista energético, así que la afinidad electrónica es muy positiva. Las afinidades electrónicas del Be y del Mg son positivas por la misma razón; el electrón adicional residiría en una subcapa p que antes estaba vacía y que tiene mayor energía. Figura 7.11 Afinidades electrónicas en kJ/mol para los elementos representativos de los primeros cinco periodos de la tabla periódica. Cuanto más negativa es la afinidad electrónica, mayor es la atracción entre un átomo y un electrón. Una afinidad electrónica > 0 indica que el ion negativo tiene mayor energía que el átomo y el electrón separados. Las afinidades electrónicas de los elementos del grupo 5A (N, P, As, Sb) también son interesantes. Dado que estos elementos tienen subcapas p llenas hasta la mitad, el electrón adicional se debe colocar en un orbital que ya está ocupado, lo que causa mayores repulsiones electrón-electrón. En consecuencia, estos elementos tienen afinidad electrónica positiva (N) o menos negativa que la de sus vecinos a la izquierda (P, As, Sb). Las afinidades electrónicas no cambian mucho conforme bajamos en un grupo. Por ejemplo, consideremos las afinidades electrónicas de los halógenos (Figura 7.11). En el caso del F, el electrón adicional ocupa un orbital 2p, en el del Cl, ocupa un orbital 3p, en el del Br, ocupa un orbital 4p, etcétera. Así, conforme avanzamos del F al I, la distancia media entre el electrón añadido y el núcleo aumenta continuamente, lo que hace que la atracción entre el núcleo y el electrón disminuya. Sin embargo, el orbital que contiene el electrón más externo está cada vez más disperso conforme avanzamos del F al I, lo que reduce las repulsiones electrón-electrón. Así, la menor atracción electrón-núcleo se compensa por la disminución en las repulsiones electrónelectrón. Números de Oxidación. El número de oxidación de un átomo en una sustancia es la carga real del átomo cuando se trata de un ion monoatómico; en los demás casos, es la carga hipotética que se asigna al átomo con base en una serie de reglas. Hay oxidación cuando el número de oxidación aumenta; hay reducción cuando el número de oxidación disminuye. Las reglas para asignar números de oxidación son: 1. El número de oxidación de un átomo en su forma elemental siempre es cero. Así, cada uno de los átomos de H en una molécula de H2 tiene número de oxidación de 0, y cada átomo de P en una molécula de P4 tiene un número de oxidación de 0. 2. El número de oxidación de cualquier ion monoatómico es igual a su carga. Así, K+ tiene un número de oxidación de +1, S2- tiene un estado de oxidación de -2, etc. Los iones de metales alcalinos (grupo 1A) siempre tienen carga +1; por tanto, los metales alcalinos siempre tienen un número de oxidación de +1 en sus compuestos. De forma análoga, los metales alcalinotérreos (grupo 2A) siempre son +2 en sus compuestos, y el aluminio (grupo 3A) siempre es +3. (Al escribir números de oxidación, pondremos el signo a la izquierda del número, para distinguirlos de las cargas electrónicas reales, que escribiremos con el signo a la derecha.) 3. Los no metales por lo regular tienen números de oxidación negativos, aunque en ocasiones pueden tener números positivos: a. El número de oxidación del oxígeno normalmente es -2 en compuestos tanto iónicos como moleculares. La principal excepción son los compuestos llamados peróxidos, que contienen el ion O22-, donde cada átomo de oxígeno tiene un número de oxidación de -1. b. El número de oxidación del hidrógeno es +1 cuando está unido a no metales y -1 cuando está unido a metales. c. El número de oxidación del flúor es de -1 en todos sus compuestos. Los demás halógenos tienen un número de oxidación de -1 en la mayor parte de sus compuestos binarios, pero cuando se combinan con oxígeno, como en los oxianiones, tienen estados de oxidación positivos. 4. La suma de los números de oxidación de todos los átomos de un compuesto neutro es cero. La suma de los números de oxidación en un ion poliatómico es igual a la carga del ion. Por ejemplo, en el ion hidronio, H3O+, el número de oxidación de cada hidrógeno es +1 y el del oxígeno es -2. Así, la suma de los números de oxidación es 3(+1) - (-2) = +1, que es igual a la carga neta del ion. Esta regla es muy útil para obtener el número de oxidación de un átomo en un compuesto o ion si se conocen los números de oxidación de los demás átomos. Electronegatividad. Definimos la electronegatividad como la capacidad de un átomo en una molécula para atraer electrones hacia sí. Cuanto mayor sea la electronegatividad de un átomo, mayor será su capacidad para atraer electrones. La electronegatividad de un átomo en una molécula está relacionada con su energía de ionización y su afinidad electrónica, que son propiedades de los átomos aislados. La energía de ionización mide la fuerza con que el átomo se aferra a sus electrones, y la afinidad electrónica es una medida de la fuerza con que un átomo atrae electrones adicionales. Un átomo con una afinidad electrónica muy negativa y una energía de ionización elevada atraerá electrones de otros átomos y además se resistirá a perder los suyos; será muy electronegativo. Las estimaciones numéricas de la electronegatividad se pueden basar en diversas propiedades, no sólo la energía de ionización y la afinidad electrónica. La primera escala de electronegatividad, y la de más amplio uso, fue desarrollada por el químico estadounidense Linus Pauling (1901-1994), quien basó su escala en datos termoquímicos. La figura 8.6 muestra los valores de electronegatividad de Pauling para muchos de los elementos. Dichos valores no tienen unidades. El flúor es el elemento más electronegativo, con una electronegatividad de 4.0. El elemento menos electronegativo, el cesio, tiene una electronegatividad de 0.7. Los valores para los demás elementos quedan entre estos dos extremos. Dentro de cada periodo, generalmente hay un aumento continuo en la electronegatividad de izquierda a derecha; es decir, de los elementos más metálicos a los más no metálicos. Con algunas excepciones (sobre todo dentro de los metales de transición), la electronegatividad disminuye al aumentar el número atómico en cualquier grupo. Esto es lo esperado, ya que sabemos que las energías de ionización tienden a disminuir al aumentar el número atómico en un grupo, y las afinidades electrónicas no cambian mucho. No es necesario memorizar valores numéricos de electronegatividad, pero sí es aconsejable conocer las tendencias periódicas para poder predecir cuál de dos elementos es el más electronegativo. Figura 8.6 Electronegatividades de los elementos.