Serway Vol 2 7th

Anuncio
767
Resumen
Resumen
DEFINICIONES
La corriente eléctrica I en un conductor se define como
dQ
I
(27.2)
dt
donde dQ es la carga que pasa a través de una sección transversal del conductor en un intervalo de tiempo dt. La unidad del SI para corriente es el ampere (A), donde 1 A 1 C/s.
La densidad de corriente J en un conductor es la corriente
por unidad de área:
I
(27.5)
J
A
La resistencia R de un conductor se define como
¢V
(27.7)
I
donde V es la diferencia de potencial a través de él e I es la corriente que conduce. La unidad del SI para resistencia es volts por ampere, que se define como 1 ohm (
); es decir: 1 1 V/A.
R
CONCEPTOS Y PRINCIPIOS
La corriente promedio en un conductor se relaciona con el movimiento de
los portadores de carga mediante la
correspondencia
Iprom nqvdA
La densidad de corriente en un conductor óhmico es proporcional al
campo eléctrico de acuerdo con la expresión
J sE
(27.4)
donde n es la densidad de portadores
de carga, q es la carga en cada portador,
vd es la rapidez de arrastre y A es el área
de sección transversal del conductor.
Para un bloque
uniforme de material, con área de
sección transversal
A y longitud , la
resistencia en toda
la longitud es
R
r
/
(27.10)
A
donde r es la resistividad del material.
La constante de proporcionalidad s es la conductividad del material del conductor. El inverso de s se conoce como resistividad r
(esto es, r 1/s). La ecuación 27.6 se conoce como ley de Ohm,
y un material obedece esta ley si la relación de su densidad de
corriente a su campo eléctrico aplicado es una constante independiente del campo aplicado.
En un modelo clásico de conducción eléctrica en metales, los electrones se tratan como
moléculas de un gas. En ausencia de un campo eléctrico, la velocidad promedio de los
electrones es cero. Cuando se aplica un campo eléctrico, los electrones se mueven (en
S
promedio) con una velocidad de arrastre vd que es opuesta al campo eléctrico. La velocidad de arrastre está dada por
S
qE
S
(27.13)
vd
t
me
donde q es la carga del electrón, me es la masa del electrón y t es el intervalo de tiempo promedio entre colisiones electrón-átomo. De acuerdo con este modelo, la resistividad del metal es
me
(27.16)
r
nq 2t
donde n es el número de electrones libres por unidad de volumen.
La resistividad de un conductor
varía de manera aproximadamente lineal con la temperatura, de acuerdo con la expresión
r r0[1 a(T T0)] (27.17)
donde r0 es la resistividad a
cierta temperatura de referencia T0 y a es el coeficiente de
temperatura de resistividad.
Cap_27_Serway.indd 767
(27.6)
Si a través de un elemento de circuito se mantiene una diferencia de potencial
V, la potencia, o proporción a la que se suministra energía al elemento, es
I V
(27.20)
Ya que la diferencia de potencial a través de un resistor es conocido por
V IR, la potencia entregada al resistor se expresa como
I 2R
1¢V 2 2
(27.21)
R
La energía entregada a un resistor por transmisión eléctrica aparece en la
forma de energía interna en el resistor.
9/11/08 5:25:27 PM
768
Capítulo 27
Corriente y resistencia
Preguntas
O indica pregunta complementaria.
1. A menudo los artículos periodísticos contienen afirmaciones
como la siguiente: “pasaron 10 000 volts de electricidad a través del cuerpo de la víctima”. ¿Qué es lo incorrecto en esta
frase?
2. ¿Cuáles son los factores que afectan la resistencia de un conductor?
3. O Dos alambres A y B con secciones transversales circulares
elaborados del mismo metal tienen iguales longitudes, pero
la resistencia del alambre A es tres veces mayor que la del
alambre B. i) ¿Cuál es la relación del área de sección transversal de A a la de B? a) 9, b) 3, c) 13, d) 1, e) 1/13,
f) 13, g) 19 , h) ninguna de estas respuestas necesariamente
es verdadera. ii) ¿Cuál es la relación de los radios de A al de
B? Elija entre las mismas posibilidades.
4. O Un alambre metálico de resistencia R es cortado en tres piezas iguales que después se trenzan lado a lado para formar un
nuevo cable con una longitud igual a un tercio la longitud original. ¿Cuál es la resistencia de este nuevo alambre? a) R/27,
b) R/9, c) R/3, d) R, e) 3R, f) 9R, g) 27R.
5. Al duplicar la diferencia de potencial aplicada a cierto conductor, se observa que la corriente aumenta en un factor igual
a tres. ¿Qué puede deducir del conductor?
6. Utilice la teoría atómica de la materia para explicar por qué la
resistencia de un material se incrementa conforme aumenta
su temperatura.
7. O Un alambre de metal óhmico es portador de corriente y
tiene un área de sección transversal que a partir de un extremo del alambre gradualmente se vuelve más pequeña. La
corriente tiene el mismo valor para cada sección del alambre,
así que la carga no se acumula en algún punto. i) ¿Cómo varía
la rapidez de arrastre a lo largo del alambre conforme el área
se vuelve más pequeña? a) Aumenta. b) Disminuye. c) Permanece constante. ii) ¿Cómo varía la resistencia por unidad
de longitud a lo largo del alambre conforme el área se vuelve
más pequeña? Elija entre las mismas posibilidades.
8. ¿De qué forma cambia la resistencia del cobre y del silicio en
función de la temperatura? ¿Por qué estos dos materiales tienen comportamientos diferentes?
9 Durante el intervalo de tiempo después de que se aplica una
diferencia de potencial entre los extremos de un alambre, ¿qué
ocurriría con la velocidad de arrastre de los electrones en un
alambre y a la corriente en el alambre, si los electrones pudieran moverse libremente sin resistencia a través del alambre?
10. Si las cargas circulan muy lentamente a través de un metal,
¿por qué no es necesario que pasen horas para que se encienda una luz cuando usted activa el interruptor?
11. O Un alambre metálico y cilíndrico a temperatura ambiente
conduce corriente eléctrica entre sus extremos. Un extremo
está a un potencial VA 50 V, y el otro a un potencial VB 0 V.
Clasifique las siguientes acciones en términos del cambio que
cada uno produciría por separado en la corriente, del mayor
aumento a la mayor disminución. En su clasificación, señale
cualquier caso de igualdad. a) Considere VA 150 V con VB
0 V. b) Haga VA 150 V con VB 100 V. c) Ajuste VA para
triplicar la potencia con que el alambre convierte la energía
eléctricamente transmitida en energía interna. d) Duplique
el radio del alambre. e) Duplique la longitud del alambre. f)
Duplique la temperatura Celsius del alambre. g) Cambie el
material a un aislador.
12. O Dos conductores hechos del mismo material son conectados a través de la misma diferencia de potencial. El conductor
A tiene el doble de diámetro y el doble de longitud que el
conductor B. ¿Cuál es la relación de la potencia entregada a
A, a la potencia entregada a B? a) 32, b) 16, c) 8, d) 4,
e) 2, f) 1, g) 12 , h) 14 .
13. O Dos alambres conductores A y B, con la misma longitud
y radio, son conectados a la misma diferencia de potencial.
El conductor A tiene el doble de resistividad del conductor
B. ¿Cuál es la relación de la potencia entregada a A, a la potencia entregada a B? a) 4, b) 2, c) 12 , d) 1, e) 1/12 ,
f) 12 , g) 14 , h) ninguna de estas respuestas necesariamente
es correcta.
14. O Dos focos funcionan a partir de 120 V. Uno tiene una potencia de 25 W y la otra de 100 W. i) ¿Cuál foco tiene mayor
resistencia? a) El foco débil de 25 W. b) La brillante lámpara
de 100 W. c) Ambas tienen la misma. ii) ¿Cuál foco conduce
más corriente? Elija entre las mismas posibilidades.
15. Las baterías de los automóviles están especificadas en ampere-hora. ¿Esta información designa a) la corriente, b) la
potencia, c) la energía, d) la carga, o e) el potencial que
se puede obtener de la batería?
16. Si tuviera que diseñar un calentador eléctrico utilizando alambre de nicromo como elemento calefactor, ¿qué parámetros
del alambre deben modificarse para cumplir con una potencia de salida específica, como por ejemplo 1000 W?
Problemas
Sección 27.1 Corriente eléctrica
1. En un tubo de rayos catódicos, la corriente medida en el haz
es de 30.0 mA. ¿Cuántos electrones chocan contra la pantalla
del tubo cada 40.0 s?
2 intermedio; 3 desafiante;
Cap_27_Serway.indd 768
2. Una tetera con un área superficial de 700 cm2 que debe recubrirse de plata por electrodeposición, se fija al electrodo
negativo de una celda electrolítica que contiene nitrato de
plata (Ag NO3). Si la celda está alimentada por una batería
razonamiento simbólico; razonamiento cualitativo
9/11/08 5:25:29 PM
Problemas
3.
4.
5.
6.
7.
8.
de 12.0 V y tiene una resistencia de 1.80 , ¿en cuánto tiempo
se formará sobre la tetera una capa de plata de 0.133 mm de
espesor? (La densidad de la plata es 10.5 103 kg/m3.)
Suponga que la corriente que pasa por un conductor se reduce de manera exponencial en función del tiempo, de acuerdo
con la ecuación I(t) I0et/t, donde I0 es la corriente inicial (en
t 0), y t es una constante que tiene dimensiones de tiempo.
Considere un punto de observación fijo dentro del conductor.
a) ¿Cuánta carga pasa por este punto en el intervalo de tiempo
entre t 0 y t t ? b) ¿Cuánta carga pasa por este punto en el
intervalo de tiempo entre t 0 y t 10t? c) ¿Qué pasaría si?
¿Cuánta carga pasa por este punto en el intervalo de tiempo
entre t 0 y t ?
Una esfera pequeña que tiene una carga q se hace girar en
círculo en el extremo de un hilo aislante. La frecuencia angular de rotación es v. ¿Qué corriente promedio representa esta
carga en rotación?
La cantidad de carga q (en coulombs) que ha pasado a través
de una superficie de área igual a 2.00 cm2 varía en función
del tiempo según la ecuación q 4t3 5t 6, donde t está
en segundos. a) ¿Cuál es la corriente instantánea que pasa
a través de la superficie en t 1.00 s? b) ¿Cuál es el valor de la
densidad de corriente?
Una corriente eléctrica está definida por la expresión I(t) 100 sen (120 pt), donde I está en amperes y t en segundos.
¿Cuál es la carga total que genera esta corriente de t 0 hasta
t (1/240) s?
El haz de electrones que sale de cierto acelerador de electrones de alta energía tiene una sección transversal circular con
un radio de 1.00 mm. a) La corriente del haz es de 8.00 mA.
Determine la densidad de corriente en el haz, si es uniforme
en todos sus puntos. b) La rapidez de los electrones es tan cercana a la rapidez de la luz que su rapidez se puede tomar sin
un error apreciable como 300 Mm/s. Encuentra la densidad
del electrón en el haz. c) ¿Cuánto tiempo se necesita para que
emerja el número de Avogadro de electrones del acelerador?
La figura P27.8 representa una sección de un conductor
circular de diámetro no uniforme que porta una corriente
de 5.00 A. El radio de la sección transversal A1 es 0.400 cm.
a) ¿Cuál es la magnitud de la densidad de corriente a través
de A1? b) ¿El radio en A2 es mayor que el radio en A1?. ¿La
corriente en A2 es mayor, menor o igual? ¿La densidad de corriene es mayor, menor o la misma? Suponga que una de estas
dos cantidades es diferente en A2 en un factor de 4 de su valor
en A1. Especifique la corriente, la densidad de corriente y el
radio en A2.
A2
A1
I
Figura P27.8
9. Un generador Van de Graaff produce un haz de 2.00 MeV de
deuterones, que son los núcleos pesados de hidrógeno que
contienen un neutrón y un protón. a) Si la corriente del haz
es de 10.0 mA, ¿qué tan separados están los deuterones? b)
2 intermedio; 3 desafiante;
Cap_27_Serway.indd 769
769
¿Es un factor significativo en la estabilidad del haz la fuerza de
repulsión eléctrica presente entre ellos? Explique por qué.
10. Un alambre de aluminio de sección transversal de 4.00 106
m2 transporta una corriente de 5.00 A. Determine la velocidad de arrastre de los electrones en el alambre. La rapidez
del aluminio es de 2.70 g/cm3. Suponga que cada átomo de
aluminio aporta un electrón de conducción.
Sección 27.2
Resistencia
11. Una diferencia de potencial de 0.900 V se mantiene a través
de una longitud de 1.50 m de alambre de tungsteno que tiene un área de sección transversal de 0.600 mm2. ¿Cuál es la
corriente en el alambre?
12. Un foco tiene una resistencia de 240 cuando está funcionando con una diferencia de potencial de 120 V. ¿Cuál es la
corriente que pasa por el foco?
13. Suponga que desea fabricar un alambre uniforme a partir de
1.00 g de cobre. Si el alambre debe tener una resistencia R 0.500 , y si debe utilizarse todo el cobre disponible, ¿cuál
será a) la longitud y b) el diámetro de este alambre?
14. a). Estime el valor de la magnitud de la resistencia entre los
extremos de una banda elástica. b) Estime el valor de la magnitud de la resistencia entre los lados “cara” y “cruz” de una
moneda de un centavo. Proporcione las cantidades que toma
como datos y los valores que mida o estime para cada caso.
c) ¡PRECAUCIÓN! ¡No intente hacer esto en su casa! ¿Cuál
sería el valor de la magnitud de la corriente que existiría en
cada uno si estuvieran conectadas a una fuente de alimentación de 120 V?
15. En la atmósfera de una ubicación donde el campo eléctrico es
de 100 V/m, existe una densidad de corriente de 6.00 1013
A/m2. Calcule la conductividad eléctrica de la atmósfera de la
Tierra en esa región.
Sección 27.3 Modelo de conducción eléctrica
16. Si se duplica la corriente en un conductor, ¿qué sucede con
a) la densidad de los portadores de carga, b) la densidad de
la corriente, c) la velocidad de arrastre de los electrones, d) el
intervalo promedio de tiempo entre las colisiones? Explique
sus respuestas.
17. Si en un alambre de cobre la magnitud de la velocidad de
arrastre de los electrones libres es de 7.84 104 m/s, ¿cuál
es el campo eléctrico en el conductor?
Sección 27.4 Resistencia y temperatura
18. Cierto foco tiene un filamento de tungsteno con una resistencia de 19.0 cuando está frío y de 140 cuando está caliente.
Suponga que la resistividad del tungsteno varía linealmente con
la temperatura, incluso en el amplio intervalo de temperaturas
que aquí se mencionan. Determine la temperatura del filamento caliente. Suponga que la temperatura inicial es de 20.0°C.
19. Un alambre de aluminio con un diámetro de 0.100 mm tiene
aplicado en toda su longitud un campo eléctrico uniforme de
0.200 V/m. La temperatura del alambre es de 50.0°C. Suponga que sólo existe un electrón libre por cada átomo. a) Utilice
la información de la tabla 27.2 y determine la resistividad. b)
¿Cuál es la densidad de corriente en el alambre? c) ¿Cuál es la
corriente total en el alambre? d) ¿Cuál es la rapidez de arrastre de los electrones de conducción? e) ¿Cuál es la diferen-
razonamiento simbólico; razonamiento cualitativo
9/11/08 5:25:30 PM
770
Capítulo 27
Corriente y resistencia
cia de potencial que debe existir entre los extremos de un de
alambre 2.00 m de longitud para producir el campo eléctrico
establecido?
20. Una ingeniera necesita un resistor con coeficiente de resistencia de temperatura global cero a 20°C. Ella diseña un par
de cilindros circulares, uno de carbono y el otro de nicromo,
como se muestra en la figura P27.20. El dispositivo debe tener
una resistencia global de R1 R2 10.0 , independiente de
la temperatura y un radio uniforme de r 1.50 mm. ¿Puede satisfacer las metas de diseño con este método? Si es así,
establezca lo que pueda determinar acerca de las longitudes
1 y 2 de cada segmento. Ignore la expansión térmica de los
cilindros y suponga que ambos siempre están a la misma temperatura.
29.
30.
31.
Figura P27.20
21. ¿Cuál es el cambio fraccionario en la resistencia de un filamento de hierro cuando su temperatura pasa de 25.0°C a 50.0°C?
22. Problema de repaso. Una varilla de aluminio tiene una resistencia de 1.234 a 20.0°C. Calcule la resistencia de la varilla a
120°C, considere los cambios tanto en las resistividades como
en las dimensiones de la varilla.
Sección 27.6 Energía eléctrica
23. Un tostador es especificado en 600 W al conectarse a una alimentación de 120 V. ¿Cuál es la corriente en el tostador y cuál
es su resistencia?
24. Un generador Van de Graaff (vea la figura 25.24) está funcionando de forma tal que la diferencia de potencial entre el
electrodo de alto potencial y las agujas de carga en es de
15.0 kV. Calcule la energía necesaria para impulsar la banda
en contra de fuerzas eléctricas en un instante en el cual la
corriente efectiva entregada al electrodo de alto potencial es
de 500 mA.
25. Un calentador eléctrico de agua bien aislado calienta 109 kg
de agua de 20.0°C a 49.0°C en 25.0 min. Encuentre la resistencia de su elemento calefactor, que se conecta a través de una
diferencia de potencial de 220 V.
26. Un motor de 120 V tiene potencia de salida mecánica de 2.50
hp. Es 90.0% eficiente al convertir la potencia que toma por
transmisión eléctrica en potencia mecánica. a) Encuentre la
corriente en el motor. b) Encuentre la energía entregada al
motor mediante transmisión eléctrica en 3.00 h de operación.
c) Si la compañía eléctrica carga $0.160/kWh, ¿cuánto cuesta
que funcione el motor durante 3.00 h?
27. Suponga que una oscilación de voltaje produce durante un
momento 140 V. ¿En qué porcentaje se incrementa la potencia de salida de una lámpara de 120 V, 100 W? Suponga que
su resistencia no cambia.
28. Una batería recargable de 15.0 g de masa suministra una
corriente promedio de 18.0 mA a 1.60 V a un reproductor de
CD durante 2.40 h antes de que dicha batería necesite recargarse. El cargador mantiene una diferencia de potencial de
2.30 V en las terminales de la batería y entrega una corriente
de carga de 13.5 mA durante 4.20 h. a) ¿Cuál es la eficiencia de
la batería como dispositivo de almacenamiento de energía?
b) ¿Cuánta energía interna se produce en el interior de la
2 intermedio; 3 desafiante;
Cap_27_Serway.indd 770
32.
33.
34.
35.
36.
37.
batería durante un ciclo de carga-descarga? c) Si la batería
está rodeada por un aislamiento térmico ideal y tiene un calor
específico efectivo global de 975 J/kg °C, ¿cuánto aumentará
su temperatura durante el ciclo?
Una bobina calefactora de 500 W, diseñada para funcionar a
110 V, está hecha de alambre de nicromo de 0.500 mm de diámetro. a) Si la resistividad del nicromo se mantiene constante
a 20.0°C, determine la longitud del alambre utilizado. b) ¿Qué
pasaría si? Ahora considere la variación de la resistividad en
función de la temperatura. ¿Cuál será la potencia que se da a la
bobina del inciso a) cuando se calienta a 1200°C?
Una bobina de alambre de nicromo tiene 25.0 m de largo. El
alambre tiene un diámetro de 0.400 mm y está a 20.0°C. Si
el alambre transporta una corriente de 0.500 A, ¿cuáles son a)
la magnitud del campo eléctrico en el alambre y b) la potencia
entregada? c) ¿Qué pasaría si? Si la temperatura se incrementa
hasta 340°C y la diferencia de potencial aplicada al alambre se
mantiene constante, ¿cuál es la potencia entregada?
Las baterías se especifican en ampere-hora (A h). Por ejemplo, una batería que puede producir una corriente de 2.00 A
durante 3.00 h se especifica como 6.0 A h. a) ¿Cuál es la
energía total, en kilowatt-horas, almacenada en una batería
de 12.0 V, nominalmente de 55.0 A h? b) A $0.060 por kilowatt-hora, ¿cuál es el valor de la electricidad producida por
esta batería?
Los reglamentos de construcción para residencias requieren el uso de alambre de cobre calibre 12 (diámetro 0.205 3
cm) para cablear los contactos de pared. Estos circuitos llevan
corrientes de hasta 20 A. Un alambre con un diámetro menor
(de un calibre superior), podría llevar una corriente similar,
pero el alambre se podría calentar a una temperatura elevada
y causar un incendio. a) Calcule la rapidez a la cual se produce energía interna en 1.00 m de alambre de cobre calibre 12
que lleva una corriente de 20.0 A. b) ¿Qué pasaría si? Repita
el cálculo, pero para un alambre de aluminio. Explique si un
alambre de aluminio calibre 12 sería tan seguro como el de
cobre.
Un lámpara fluorescente ahorradora de energía de 11.0 W
está diseñada para producir la misma iluminación que una
lámpara incandescente convencional de 40 W. ¿Cuánto ahorra el usuario de la lámpara ahorradora de energía durante
100 horas de uso? Suponga que la compañía eléctrica cobra
$0.080/kWh.
Se estima que en Estados Unidos existen 270 millones de relojes de conexión eléctrica, es decir, aproximadamente un
reloj por persona. Los relojes convierten energía a una rapidez promedio de 2.50 W. Para suministrar esta energía, ¿cuántas toneladas métricas de carbón se queman por hora en las
plantas generadoras eléctricas de carbón, que son, en promedio, 25% eficientes? El calor de la combustión para el carbón
es de 33 MJ/kg.
Calcule el costo diario de operación de una lámpara que toma
una corriente de 1.70 A de una línea de 110 V. Suponga que el
costo de esta energía es de $0.060 0/kWh.
Problema de repaso. El elemento calefactor de una cafetera
opera a 120 V y tiene una corriente de 2.00 A. Si el agua absorbe toda la energía suministrada al resistor, calcule el tiempo que se necesita para elevar la temperatura de 0.500 kg de
agua de la temperatura ambiente (23.0°C) hasta el punto
de ebullición.
Cierto tostador tiene un elemento calefactor hecho de alambre de nicromo. Cuando se le conecta por primera vez a una
alimentación de 120 V (estando el alambre a una temperatura
razonamiento simbólico; razonamiento cualitativo
9/11/08 5:25:31 PM
Problemas
de 20.0°C), la corriente inicial es de 1.80 A. Sin embargo, la
corriente empieza a reducirse conforme el elemento calefactor se calienta. Cuando el tostador alcanza su temperatura de
operación final, la corriente se ha reducido a 1.53 A. a) Determine la potencia entregada al tostador cuando está a su
temperatura de operación. b) ¿Cuál es la temperatura final
del elemento calefactor?
38. El costo de la electricidad varía ampliamente en Estados Unidos;
un valor representativo es $0.120/kWh. Con este precio unitario, calcule el costo de a) dejar encendida la luz de 40 W del
pórtico de una casa durante dos semanas mientras el propietario está de vacaciones, b) obtener una rebanada de pan tostado
oscuro en 3.00 min utilizando un tostador de 970 W, y c) secar
una carga de ropa en 40.0 min en una secadora de 5 200 W.
39. Hacer una estimación de orden de magnitud del costo de usar
diario una secadora de pelo durante un año. Si usted no utiliza una secadora, observe o entreviste a alguien que la use.
Enuncie las cantidades que estime y sus valores.
Problemas adicionales
40. Una lámpara está marcada como “25 W 120 V” y otra “100
W 120 V”; esto significa que cuando cada lámpara esté conectada a una diferencia de potencial constante de 120 V, recibirá cada una la potencia que se indica. a) Encuentre el valor
de la resistencia de cada lámpara. b) ¿Cuánto tiempo transcurrirá para que pase 1.00 C a través de la lámpara de menor
potencia? ¿Ha cambiado la carga en alguna forma a su salida de la lámpara en comparación con su entrada? Explique
c) ¿Cuánto tiempo transcurrirá para que pase 1.00 J a través
de la lámpara de menor potencia? ¿Mediante qué mecanismos entra y sale esta energía de la lámpara? d) Determine
cuánto cuesta mantener encendida la lámpara de menor
potencia durante 30 días, si la empresa eléctrica vende su
producto en $0.070 0 por kWh. ¿Cuál es el producto que la
compañía eléctrica de hecho vende? ¿Cuál es el precio de una
unidad en el SI?
41. Un oficinista usa un calentador de inmersión para calentar
250 g de agua en una taza aislada, cubierta y ligera de 20°C a
100°C en 4.00 min. En términos eléctricos, el calentador es un
alambre de resistencia de nicromo conectado a una fuente de
poder de 120 V. Especifique el diámetro y longitud que puede
tener el alambre. ¿Puede estar hecho a menos de 0.5 cm3 de
nicromo? Puede suponer que el alambre está a 100°C durante
todo el intervalo de tiempo.
42. En un capacitor de capacitancia C se coloca una carga Q. El
capacitor está conectado en el circuito que se muestra en la
figura P27.42, junto con un interruptor abierto, un resistor y
un capacitor inicialmente descargado con una capacitancia de
3C. Después se cierra el interruptor y el circuito se equilibra.
Determine, en función de Q y de C, a) la diferencia de potencial final entre las placas de cada capacitor, b) la carga de cada
capacitor, y c) la energía final almacenada en cada capacitor.
d) Determine la energía interna que aparece en el resistor.
3C
C
R
Figura P27.42
2 intermedio; 3 desafiante;
Cap_27_Serway.indd 771
771
43. Una definición más general del coeficiente de resistividad por
temperatura es
1 dr
r dT
a
donde r es la resistividad a la temperatura T. a) Si a es constante, demuestre que
r
r 0e a1T
T02
donde r0 es la resistividad a la temperatura T0. b) Utilizando
la expansión en serie ex 1 x para x 1, demuestre que la
resistividad es conocida aproximadamente por la expresión
r r0 [1 a(T T0)] para a(T T0) 1.
44. Una línea de transmisión con un diámetro de 2.00 cm y una
longitud de 200 km lleva una corriente estable de 1000 A. Si
el conductor es un alambre de cobre con una densidad de
cargas libres de 8.49 1028 electrones/m3, ¿cuánto tarda un
electrón en recorrer la línea de transmisión completa?
45. Con la finalidad de medir la resistividad eléctrica del nicromo se lleva a cabo un experimento con alambres de diferentes
longitudes y áreas de seccion transversal. Para un conjunto de
mediciones, el estudiante usa alambre de calibre 30, que tiene
un área de sección transversal de 7.30 108 m2. El estudiante
mide la diferencia de potencial de un extremo a otro del alambre, así como la corriente en el mismo, utilizando un voltímetro y un amperímetro, respectivamente. Para cada una de las
mediciones que aparecen en la tabla, calcule la resistencia de
los alambres y los valores correspondientes de la resistividad.
¿Cuál es el valor promedio de la resistividad, y cómo se compara este valor con el valor incluido en la tabla 27.2?
L (m)
V (V)
I (A)
0.540
1.028
1.543
5.22
5.82
5.94
0.500
0.276
0.187
R ()
R ( m)
46. Una empresa pública eléctrica suministra energía al domicilio
de un cliente a partir de las líneas de energía propias (a 120
V) mediante dos alambre de cobre, cada uno de los cuales
tiene 50.0 m de largo y una resistencia de 0.108 por tramo
de 300 m. a) Determine la diferencia de potencial en el domicilio del cliente para una corriente de carga de 110 A. Para
esta corriente, encuentre b) la potencia que está recibiendo
el cliente y c) la proporción a la cual es producida la energía
interna en los alambres de cobre.
47. Un alambre cilíndrico recto que yace a lo largo del eje x
tiene una longitud de 0.500 m y un diámetro de 0.200 mm.
Está fabricado de un material que obedece la ley de Ohm
con una resistividad r 4.00 108 m. Suponga que se
mantiene en x 0 un potencial de 4.00 V, y que en x 0.500
m, V 0. Determine a) el campo eléctrico en el alambre, b)
la resistencia del mismo, c) la corriente eléctrica que pasa
por el alambre y d) la densidad de corriente J en el alambre.
Exprese la dirección del campo eléctrico y de la corriente. e)
Demuestre que E rJ.
48. Un alambre cilíndrico recto que yace a lo largo del eje x
tiene una longitud L y un diámetro d. Está fabricado de un
material que obedece la ley de Ohm y tiene una resistividad
r. Suponga que en x 0 se mantiene un potencial V y que el
potencial es igual a cero en x L. Deduzca, en función a L,
razonamiento simbólico; razonamiento cualitativo
9/11/08 5:25:31 PM
772
Capítulo 27
Corriente y resistencia
d, V y r, así como otras constantes físicas, expresiones para a) el
campo eléctrico en el alambre, b) la resistencia del mismo, c)la
corriente eléctrica que pasa por el alambre y d) la densidad
de corriente en el alambre. Exprese la dirección del campo
y de la corriente. e) Demuestre que E rJ.
49. Un automóvil eléctrico (no un híbrido)ha sido diseñado para
funcionar a partir de un banco de baterías de 12.0 V con un
almacenamiento total de la energía de 2.00 107 J. a) Si el
motor eléctrico consume 8.00 kW, ¿cuál es la corriente que se
le suministra al motor? b) Si el motor eléctrico consume 8.00
kW conforme el automóvil se mueve a una rapidez constante
de 20.0 m/s, ¿qué distancia recorrerá el automóvil antes de
quedarse sin energía?
50. Problema de repaso. Cuando se calienta un alambre recto,
su resistencia está expresada por R R0[1 a(T T0)], de
acuerdo con la ecuación 27.19, donde a es el coeficiente
de resistividad por temperatura. a) Demuestre que un resultado más preciso, ya que tanto la longitud como el área del
alambre se modifican al calentarse, es
R
R 0 31
a 1T
31
T0 2 4 3 1
a¿ 1T
T0 2 4
2a¿ 1T
T0 2 4
donde a9 es el coeficiente de expansión lineal (vea el capítulo
19). b) Explique cómo se comparan estos dos resultados para
el caso de un alambre de cobre de 2.00 m de largo con un
radio de 0.100 mm, primero a 20.0°C y después calentado a
100.0°C.
51. Los coeficientes de resistividad por temperatura que aparecen
en la tabla 27.2 se determinaron a una temperatura de 20°C.
¿Cómo serían de haberse determinado a 0°C? Observe que el
coeficiente de resistividad por temperatura a 20°C satisface la
expresión r r0[1 a(T T0)], donde r0 es la resistividad
del material a T0 20°C. El coeficiente de resistividad por
temperatura a9 a 0°C debe satisfacer la expresión r r90[1 a9T], siendo r90 la resistividad del material a 0°C.
52. Una oceanógrafa estudia cómo dependen las concentraciones
de iones de la profundidad del agua de mar. Su procedimiento
es sumergir dentro del agua un par de cilindros metálicos concéntricos (figura P27.52) en el extremo de un cable y registrar
los datos para determinar la resistencia entre dichos electrodos
en función de la profundidad. El agua entre los dos cilindros
forma una envoltura cilíndrica de radio interior ra, de radio
exterior rb y una longitud L mucho mayor que rb. La científica
aplica una diferencia de potencial V entre las superficies interna y externa, produciendo una corriente radial hacia fuera
I. Suponga que r representa la resistividad del agua. a) Determine la resistencia del agua entre los cilindros en función de
L, r, ra y rb . b) Exprese la resistividad del agua en función de las
cantidades medidas L, ra, rb, V e I.
resistencia original entre sus extremos, y d L/Li (L – Li)/
Li la deformación resultante de la aplicación de tensión. Suponga que la resistividad y el volumen del alambre no cambian conforme el alambre se estira. Demuestre que la resistencia entre
los extremos del alambre bajo deformación está dada por R Ri(1 2d d2). Si las suposiciones son precisamente ciertas,
¿este resultado es exacto o aproximado? Explique su respuesta.
54. En cierto sistema estéreo, cada altavoz tiene una resistencia
de 4.00 . El sistema es nominalmente de 60.0 W por canal, y
cada circuito de altavoz incluye un fusible de 4.00 A nominales. ¿Este sistema está protegido adecuadamente contra sobrecargas? Explique su razonamiento.
55. Existe una gran analogía entre el flujo de energía por calor
debido a una diferencia de temperaturas (vea la sección 20.7)
y el flujo de cargas eléctricas debido a una diferencia de potencial. Tanto la energía dQ como la carga eléctrica dq pueden
transportarse mediante electrones libres en el material conductor. En consecuencia, usualmente un buen conductor eléctrico
es también un buen conductor térmico. Considere una placa
conductora delgada de espesor dx, área A y de conductividad
eléctrica s, con a una diferencia de potencial dV entre sus caras
opuestas. a) Demuestre que la corriente I dq/dt se conoce
por la ecuación de la zquierda:
Conducción de cargas Conducción térmica
dq
dt
sA `
dV
`
dx
kA `
dQ
dt
dT
`
dx
(ecuación 20.15)
En la ecuación de conducción térmica análoga de la derecha,
la rapidez del flujo de energía dQ/dt (en unidades del SI es
joules por segundo) se debe al gradiente de temperatura dT/
dx, en un material de conductividad térmica k. b) Establezca
reglas similares que relacionen la dirección de la corriente
eléctrica con el cambio en el potencial, y que relacionen la dirección del flujo de energía con el cambio en temperaturas.
56. Un material de resistividad r se modela como un cono truncado de altura h, según se muestra en la figura P27.56. El
extremo inferior tiene un radio b, en tanto que el extremo
superior tiene un radio a. Suponga que la corriente está uniformemente distribuida en cualquier sección transversal circular del cono, de forma que la densidad de la corriente no
dependerá de la posición radial. (La densidad de corriente variará dependiendo de su posición a lo largo del eje del cono.)
Demuestre que la resistencia entre ambos extremos del cono
queda descrita mediante la expresión
R
r h
a b
p ab
a
rb
ra
h
b
L
Figura P27.56
Figura P27.52
53. La deformación en un alambre se monitorea y calcula al
medir la resistencia del alambre. Sea Li la longitud original del
alambre, Ai su área de sección transversal original, Ri rLi/Ai la
2 intermedio; 3 desafiante;
Cap_27_Serway.indd 772
57. Un material con una resistividad uniforme r se modela en forma
de cuña como se muestra en la figura P27.57. Demuestre que la
resistencia entre la cara A y la cara B de esta cuña es igual a
R
r
w 1y 2
L
y1 2
ln a
y2
y1
b
razonamiento simbólico; razonamiento cualitativo
9/11/08 5:25:32 PM
Respuestas a las preguntas rápidas
y 1 Cara A
773
cas. Ahora la placa dieléctrica se retira del capacitor, como
se observa en la figura P27.61. a) Determine la capacitancia
cuando el borde izquierdo del material dieléctrico esté a una
distancia x del centro del capacitor. b) Si se va retirando el
dieléctrico a una rapidez constante v, ¿cuál será la corriente
en el circuito conforme se retira el dieléctrico?
Cara B
y2
L
w
Figura P27.57
58. Una envolvente esférica, con radio interior ra y radio exterior
rb, se forma a partir de un material de resistividad r. Porta
corriente radialmente, con densidad uniforme en todas direcciones. Demuestre que su resistencia es
R
r 1
a
4p r a
1
b
rb
59. Los problemas 56, 57 y 58 se refieren al cálculo de la resistencia entre superficies específicas de un resistor con forma extraña. Para verificar los resultados experimentalmente, se puede
aplicar una diferencia de potencial a las superficies indicadas y
medir la corriente resultante. Después se calcula la resistencia
a partir de su definición. Describa un método para asegurar
que el potencial eléctrico es uniforme en toda la superficie. Explique si después puede asegurar que la corriente se dispersa
sobre las superficies completas donde entra y sale.
60. El material dieléctrico que existe entre las placas de un capacitor de placas paralelas tiene siempre alguna conductividad s
diferente de cero. Suponga que A representa el área de cada
placa y d la distancia entre ellas. Sea k la constante dieléctrica
del material. a) Demuestre que la resistencia R y la capacitancia C del capacitor están interrelacionadas mediante
RC
kP0
s
b) Determine la resistencia entre las placas de un capacitor de
14.0 nF con un dieléctrico de cuarzo fundido.
61. Problema de repaso. Un capacitor de placas paralelas está
constituido por placas cuadradas de bordes de longitud separadas una distancia d, donde d . Entre las placas se
mantiene una diferencia de potencial V. Un material de
constante dieléctrica k llena la mitad del espacio entre las pla-
v
V
d
x
Figura P27.61
62. La curva característica corriente-voltaje de un diodo semiconductor en función de la temperatura T está dada por la ecuación
I
I 0 1e e ¢V>k BT
12
En este caso, el primer símbolo e representa el número de
Euler, es decir, la base de los logaritmos naturales, la segunda e
es la magnitud de carga de un electrón; kB representa la constante de Boltzmann y T es la temperatura absoluta. Prepare
una hoja de cálculo para calcular I y R V/I para V 0.400
V a 0.600 V, en incrementos de 0.005 V. Suponga que I0 1.00
nA. Trace R en función de V para T 280 K, 300 K y 320 K.
63. El oro es el más dúctil de todos los metales. Por ejemplo, un
gramo de oro se puede convertir en un alambre de 2.40 km
de largo. ¿Cuál es la resistencia de tal alambre a 20°C? En este
libro puede encontrar la información de referencia necesaria.
64. Una línea de transmisión de alto voltaje lleva 1000 A desde
700 kV al inicio por una distancia de 100 millas. Si la resistencia del alambre es de 0.500 /milla, ¿cuál es la pérdida de
energía debida a la resistencia del alambre?
65. La diferencia de potencial entre los extremos del filamento de
una lámpara se mantiene en un nivel constante mientras se llega a la temperatura de equilibrio. Se observa que la corriente
en estado estacionario de la lámpara es de sólo la décima parte
de la corriente que utiliza la lámpara cuando se enciende por
primera vez. Si el coeficiente de temperatura de resistividad
para la lámpara a 20.0°C es de 0.004 50 (°C)1, y si la resistencia aumenta linealmente al elevarse la temperatura, ¿cuál será
la temperatura final de operación del filamento?
Respuestas a las preguntas rápidas
27.1 d), b) c), a). La corriente en el inciso d) es equivalente a
dos cargas positivas moviéndose hacia la izquierda. Los incisos
b) y c) representan cada uno cuatro cargas positivas que se
mueven en la misma dirección, ya que las cargas negativas que
se mueven hacia la izquierda son equivalentes a las cargas positivas que se mueven hacia la derecha. La corriente del inciso
a) es equivalente a cinco cargas positivas moviéndose hacia la
derecha.
27.2 b) La duplicación del radio hace que el área A sea cuatro veces mayor, por lo que la ecuación 27.10 indica que la resistencia disminuye.
2 intermedio; 3 desafiante;
Cap_27_Serway.indd 773
27.3 b) De acuerdo con la ecuación 27.7, la resistencia es la relación del voltaje a través de un dispositivo respecto a la corriente en el dispositivo. En la figura 27.7b, una línea dibujada desde el origen hasta el punto en la curva tendrá una pendiente
igual a I/V, que es el inverso de la resistencia. Conforme V
aumenta, la pendiente de la línea también aumenta, de modo
que la resistencia disminuye.
27.4 a) Cuando el filamento está a la temperatura ambiente, su
resistencia es baja, y por lo tanto la corriente es relativamente grande. Conforme el filamento se calienta, su resistencia
se incrementa y la corriente se reduce. Las lámparas viejas a
razonamiento simbólico; razonamiento cualitativo
9/11/08 5:25:34 PM
774
Capítulo 27
Corriente y resistencia
menudo fallan justo en el momento en que se encienden debido a que este gran “pico” inicial de corriente produce un
incremento rápido en la temperatura y por tanto un esfuerzo
mecánico sobre el filamento que lo hace fallar.
27.5 Ia Ib Ic Id Ie If. La corriente Ia sale de la terminal
positiva de la batería y se divide para fluir a través de las
dos lámparas; de ahí que Ia Ic Ie. Por la ecuación 27.21 la
potencia disponible es inversa a la resistencia. Por lo tanto
Cap_27_Serway.indd 774
la corriente que circula en una lámpara de 60 W es mayor
a la que fluye en la lámpara de 30 W. Puesto que la carga no
se acumula en las lámparas, la misma cantidad de carga que
circula en una de las lámparas del lado izquierdo debe fluir
del lado derecho; en consecuencia Ic Id e Ie Iƒ. Las dos
corrientes que salen de las lámparas se combinan de nuevo
para formar la corriente de regreso a la batería, If Id Ib.
9/11/08 5:25:35 PM
Descargar