6LWXDFLRQHVSUREOHPiWLFDVDxR (FXDFLRQHV 5HVROYpSODQWHDQGRODHFXDFLyQFRUUHVSRQGLHQWH D5RVLWDFRPSUyXQDFDPLVD\XQDSROOHUDSDJySRUWRGR/DFDPLVDFXHVWD PiVTXHODSROOHUD¢&XiOHVHOSUHFLRGHODFDPLVD" E 8QDERWHOODFRQVXUHVSHFWLYRWDSyQFXHVWD/DERWHOODFXHVWDPiVTXH HOWDSyQ¢&XiQWRFXHVWDHOWDSyQ" F (OSHUtPHWURGHXQUHFWiQJXORHVGHFP/DEDVHPLGHFP¢&XiQWRPLGH ODDOWXUD" G (OSDWLRUHFWDQJXODUGHXQDHVFXHODWLHQHXQSHUtPHWURGHP(OODUJRHVHO GREOHGHODQFKR¢&XiOHVVRQVXVGLPHQVLRQHV" H ¢&XiQWRJDVWpHQPLVYDFDFLRQHVVLORVGHHVDVXPDHV" I /DVXPDGHOWULSORGHXQQ~PHUR\GLH]HV¢&XiOHVHVHQ~PHUR" J &DOFXOiHOYDORUGH[SDUDTXHHOSHUtPHWURGHODVLJXLHQWHILJXUDVHDLJXDOD FP FP [ [ FPFP ;[ FP K+DOOiQ~PHURVFRQVHFXWLYRVTXHVXPDGRVGDQ L (OSHUtPHWURGHOVLJXLHQWHWULiQJXORHVFP&ODVLILFDORVHJ~QVXVODGRV [[ [ M $OWULSORGHXQQ~PHURVHOHVXPD\VHREWLHQHHOPLVPRUHVXOWDGRTXHVLDVX PLWDGVHOHUHVWD N (QXQWULiQJXORLVyVFHOHVGHFPGHSHUtPHWURHOODGRGHVLJXDOHVODPLWDG GHORVODGRVLJXDOHV¢4XpORQJLWXGWLHQHFDGDODGRGHOWULiQJXOR" O 6LDOFXiGUXSORGHXQQ~PHURVHOHVXPDVHREWLHQHODGLIHUHQFLDHQWUHVX PLWDG\¢&XiOHVHOQ~PHUR" P 8QSDQDGHURGHEHDFRPRGDUVXVIDFWXUDVHQEDQGHMDVGHPRGRTXHHQOD SULPHURSRQJDHOGREOHTXHHQODVHJXQGD\HQODWHUFHUDIDFWXUDVPiVTXHHQ ODVHJXQGD¢&XiQWDVIDFWXUDVGHEHFRORFDUHQFDGDEDQGHMD" Q (QXQUHFWiQJXORGHFPGHSHUtPHWURODEDVHHVFPPD\RUTXHODDOWXUD ¢&XiOHVODORQJLWXGGHODDOWXUD" R /DVXPDGHGRVQ~PHURVFRQVHFXWLYRVHV¢&XiOHVVRQHVRVQ~PHURV" S (QXQWULiQJXORLVyVFHOHVGHPGHSHUtPHWURHOODGRGHVLJXDOHVODPLWDG GHORVODGRVLJXDOHV¢4XpORQJLWXGWLHQHFDGDODGRGHOWULiQJXOR" T8QSDQDGHURGHEHDFRPRGDUVXVIDFWXUDVHQEDQGHMDVGHPRGRTXHHQOD SULPHUDSRQJDHOGREOHTXHHQODVHJXQGD\HQODWHUFHUDEDQGHMDIDFWXUDV PiVTXHHQODSULPHUD¢&XiQWDVIDFWXUDVGHEHFRORFDUHQFDGDEDQGHMD" U0HOL8UL\+HUQiQFRPSUDURQXQUHJDORHQWUHORVWUHV0HOLSXVRPiVTXH 8UL\+HUQiQSXVRHOWULSOHGHORTXHSXVR8UL6LHQWUHORVWUHVMXQWDURQ ¢&XiQWRGLQHURSXVRFDGDXQRSDUDFRPSUDUHOUHJDOR" V6HGLVWULEX\HQOLEURVHQWUHVHVWDQWHVGHXQDELEOLRWHFD(QHOSULPHURVH FRORFDHOGREOHTXHHQHOVHJXQGR\HQHOWHUFHURVHFRORFDHOWULSOHTXHHQHO VHJXQGR¢&XiQWRVOLEURVVHFRORFDQHQFDGDHVWDQWH" W /XLVDWLHQHXQELOOHWHGH(QODOLEUHUtDFRPSUyWUHVSURGXFWRVXQRGHHOORV DRWURGHHOORVD6LOHGLHURQGHYXHOWR¢FXiQWRSDJy SRUHOWHUFHUSURGXFWR" 5HVROYpODVVLJXLHQWHVHFXDFLRQHV a) 2 x + 1 = 8 − 6 : 2 c) 2.(3.x + 2 ) − 15 = 37 e) 2 . (x − 1) − 2 = 12 1 5 1 g ) 2 x − . = 2 3 2 i ) 3 x + 4 : 2 = 32 : (3 − 1) k) x + 5 1 = 3x − 2 5 2 = 12 3 d ) 3 + 2x = 7 f ) 2 x + 3 x − 5 − x = 2 + 10 : 2 b) 0,5 x − h) (1,2 + 3x ) : 0,1 = 105 j) 2 + 4x + 3 = 7 x + 2 l) 2 + 1 x=x 2