∗ ! "# $%#& '( %##&)& "&( *%## +(! ,!--+++####- . ! ! ! ! " # $ % & ' " ( ! " # % $ ) * ( ! + , - , . / 0 1 % ,.)22324565,2728,)+ ! "#$%&'"(# ! " # $ ! % $ & % ' ( ! $ & 15 % ( ) ! # ( ! $ * ! $ ! & ! % ! # ! ! ( ) # $ ! +, ( $ ( ( $ # - . & / & 0 - ( - 1 + ) *++*, ( ! ! ! ! ) $ & ! % $ ! (! ! * $ ( % ( 2 $ * ! % , 3 ( ! ! ! ! ! ) $ ! # $ (& ! ) ( ! * ( ! ( & ! ! ! - &$"(# & ,%.*, ) # , ! / # 0 ( $ ( ( , # 4 3 ( ! 3 (& ( ( ( % % 3 ( # % 5 ( 3 ( ( % 3 % ( ! 6 74 * ( 5 % ( ( % ( ( ( # $ ( % ! ( z z ( % ( $ % ( 5 % ! ( ! % 6 74 % +74 % / *&"*"(# ,%+* ! # $ / # (0 & # $ " ) * % * $ . 8 9! - :+; # ' < / ! 0 1 ,23 1 % Io 4=> (W/m2) &% ' ) # & Go = Io /0 = 1 + 0,03344 cos(j − 0,048869) j ( j = 2πj 365,25 /+0 j * # 4=? $ Boc (W/m2) Boc = Go exp{−0,8662TLK mδR (m)} /40 $ % −0,8662TLK $ @ # @# $ $ ( m /A B CDC0 − m = (p/po )/ sin href + 0,050572(href o o + 6,07995) 1,636 /<0 href o % ∆href o ∆href = 0,061359(0,1594 + 1,123ho + 0,065656h2o )/(1 + 28,9344ho + 277,397h2o ) o /?0 href = ∆href + ho o o /=0 p/po * z p/po = exp(−z/8434,35) />0 $ ( δR (m) # # m # A/CC=0 m ≤ 20 δR (m) = 1/(6,6296 + 1,7513m − 0,1202m2 + 0,0065m3 − 0,00013m4 ) ? /D0 m > 20 δR (m) = 1/(10,4 + 0,718) /C0 ! # Bhc /60 ho ( ! ( ! Bic Bic = Boc sin δexp /0 δexp ( ! 9 ! # ho # Ao ( # $ /A # CC68 CC+0 sin ho = C31 cos T + C33 /+0 cos Ao = (C11 cos T + C13 )/((C22 sin T )2 + (C11 cos T + C13 )2 )1/2 /40 C11 = sin ϕ cos δC13 = − cos varphi sin δ C22 = cos δ C31 = cos ϕ cos δ C33 = sin ϕ sin δ $ ( # T / 0 # t & # +< # " T = 0,261799(t − 12) /<0 5 ( ( ! ! $ # AN ( /( # $0 # # ( $ / x 0 $ ( γN ( # $ ( δexp ! ( 3 ( ! # ! Dhc (W/m2 ) & Dhc = Go Tn (TLK )Fd (ho ) /?0 Dhc Tn TLK Fd * Bhc = Boc sin ho = ho Tn (TLK ) ! # $ 2 Tn (TLK ) = −0,015843 + 0,030543TLK + 0,0003797TLK /=0 # Fd (ho ) = A1 + A2 sin ho + A3 sin2 ho />0 , ! A1 A2 A3 TLK ! & A1 A1 A1 A2 A3 = = = = = 0,26463 − 0,061581TLK + 0,0031408TLK 0,0022/Tn (TLK ) A1Tn(TLK ) < 0,0022 A1 A1 Tn(TLK ) ≥ 0,0022 2 2,04020 + 0,018945TLK − 0,011161TLK 2 −1,3025 + 0,039231TLK + 0,0085079TLK /D0 $ ! Dic(W/m2 ) ! ! /. CC60 ho ≥ 0,1 sin δexp Dic = Dhc F (γN )(1 − Kb ) + Kb sin ho /C0 Dic = Dhc (F (γN )(1 − Kb ) + Kb sin γN cos AL /(0,1 − 0,008ho)) /+60 ho < 0,1 A∗LN = Ao − AN −pi ≤ A∗LN ≤ pi ALN = A∗LN A∗LN > pi ALN = A∗LN − 2pi A∗LN < −pi ALN = A∗LN + 2pi ) ! δexp < 0 ho ≥ 0 /+0 # Dic = Dhc F (γN ) F (γN ) F (γN ) = ri (γN ) + (sin γN − γN cos γN − π sin2 (γN /2))N > /++0 ri(γN ) ! " ri (γN ) = (1 + cos γN )/2 /+40 $ N ! 6+?++> ! % N N = 0,00263 − 0,712Kb − 0,6883Kb2 /+<0 Kb / & ! # 0 Kb = Bhc /Goh /+?0 , Goh Goh = Go sin ho /+=0 ) * ! (Ri ) $ # Ghc ρg ! rg (γN ) /. CC>0 Ri = ρg Ghc rg (γN ) /+>0 rg (γN ) = (1−cos γN )/2 ! # Ghc(W/m2 ) Ghc = Bhc + Dhc /+D0 / ) 1 ,23 7 ) 7 ! # Gh kc Gh = Ghc kc /+C0 $ kc % & ) D Ghs Ghc kc = Ghs /Ghc /460 3 kc % kc ) ( Bh Dh & Dh = Dhc kcd /40 b Bh = Bhc kc /4+0 $ Dh /Gh $ $ 64 Dhs /Ghs # & N k= kn n=1 d2 N 1n n=1 d2n N kn n=1 |∆hn | 1 n=1 |∆hn | + (1 − ) N /440 $ kn N * dn # n # |∆hn | n ( 6 3 −→ 1 # $ & ( , ( −→ 0 # $ & $ ( (! ( ( 3 Dh = Gh Dhs /Ghs /4<0 Bh = Gh − Dh /4?0 kcd = Dh /Dhc /4=0 b kc = Bh /Bhc /4>0 s Bhs Dhs Bh Dh ! ( " C 4 5"#$%, #6"%, $ E 3 ! # ρg = 0,17 6 3.118 x 10 1000 3.117 900 3.116 800 3.115 700 3.114 600 3.113 500 3.112 400 3.111 300 3.11 200 3.109 100 3.108 4.28 4.3 4.32 4.34 4.36 4.38 4.4 4.42 4.44 4.46 4.48 0 5 x 10 ! " ) + +66> D # # $ # ! ! + # /! 40 /! <0 /! ?0 ! 1 ! ! = ) ,# * ( 6 # $% " 6 3.118 x 10 3.117 1000 3.116 800 3.115 3.114 600 3.113 3.112 400 3.111 3.11 200 3.109 3.108 4.28 4.3 4.32 4.34 4.36 4.38 4.4 4.42 4.44 4.46 4.48 5 x 10 & $% % ' $" 0 6 3.118 x 10 300 3.117 250 3.116 3.115 200 3.114 150 3.113 3.112 100 3.111 3.11 50 3.109 3.108 4.28 4.3 4.32 4.34 4.36 4.38 4.4 4.42 4.44 4.46 4.48 5 x 10 ( $% % ' $" 6 3.118 x 10 3.117 8 3.116 7 3.115 6 3.114 5 3.113 4 3.112 3 3.111 2 3.11 1 3.109 3.108 4.28 4.3 4.32 4.34 4.36 4.38 4.4 4.42 4.44 4.46 4.48 5 x 10 ) $% % ' *+" + 0 6 3.118 x 10 1400 3.117 1200 3.116 3.115 1000 3.114 800 3.113 600 3.112 3.111 400 3.11 200 3.109 3.108 4.28 4.3 4.32 4.34 4.36 4.38 4.4 4.42 4.44 4.46 4.48 5 x 10 , $% % ' - " 7 %#+',"%#, # ! # # ! * # # #"*, :; E . . 8. $ $ FE ( F 1 + - 9 , / + G 5: + +>H<< /+6640 :+; . 8 9! - IJ E2 . # F ; .+<8 + >?HC6/+66<0 :4; . E . 8. $ $ ! 4, # & #F 9 * < , G 52 ?>H>= /+66+0 4 :<; . E . 8. $ $ 8. E(B F@ # # & F ) 9 , < G 7: 44?H4<< /+66+0 :?; . 8 9! - F@# K E2" F, ; +55=57 < 22 :=; .8 F, # # -&# %# %F. "> 33 73=7? #5::$ :>; 1A F@# - # # #-F< 3 56@=5@: #5::4$ :D; 1 A @ B & F' A @ 367?=367@ #5:@:$ :C; 8A # F. -( L ( %FBC #5::2$ :6; @. F $ FB < 1 ; 55 5?7=547 #5::2$ :; @ . F ,# . $ $M , NFA( ' #5::6$ :+; E . . 8. $ ' 7 - D 0 ' 8 O $ 2 G 9/:97 +<CP= /CCD0 :4; A # 8 E F@# $ G + " , & J F/+6660 <