Relations fondamentales Formules d’addition des angles cos(a + b) = cos a cos b − sin a sin b sin2 t + cos2 t = 1, ∀t ∈ R tan t = 1 sin t ; 1 + tan2 t = , ∀t 6= cos t cos2 t (2k+1)π , 2 cos(a − b) = cos a cos b + sin a sin b k∈Z sin(a + b) = sin a cos b + cos a sin b sin(a − b) = sin a cos b − cos a sin b Lignes trigonométriques des angles remarquables t 0 cos t 1 sin t 0 tan t 0 π/6 √ 3/2 1/2 √ 3/3 π/4 √ 2/2 √ 2/2 1 π/3 π/2 1/2 √ 3/2 √ 3 0 tan(a + b) = tan a + tan b 1 − tan a tan b tan a − tan b tan(a − b) = 1 + tan a tan b 1 ∞ p+q p−q cos 2 2 p−q p+q sin cos p − cos q = −2 sin 2 2 p−q p+q cos sin p + sin q = 2 sin 2 2 p−q p+q sin sin p − sin q = 2 cos 2 2 Symétries et périodicités cos p + cos q = 2 cos sin(−t) = − sin t cos(−t) = cos t tan(−t) = − tan t sin(t + 2π) = sin t cos(t + 2π) = cos t tan(t + π) = tan t sin(π − t) = sin t cos(π − t) = − cos t tan(π − t) = − tan t sin(t + π) = − sin t π sin t + = cos t 2 π − t = cos t sin 2 cos(t + π) = − cos t π cos t + = − sin t 2 π − t = sin t cos 2 tan(t + π) = tan t π 1 tan t + =− 2 tan t 1 π −t = tan 2 tan t Formules de multiplication des angles sin 2a = 2 sin a cos a, tan 2a = cos 2a = cos2 a − sin2 a 2 tan a 1 − tan2 a = 2 cos2 a − 1 ⇒ cos2 a = 1 + cos 2a 2 1 − cos 2a = 1 − 2 sin a ⇒ sin a = 2 2 2 Cercle trigonométrique et angles remarquables π/2 2π/3 1 3π/4 O -1 0 0 C M B sin(t) 1 π/3 π/4 π/6 5π/6 tan(t) t cos(t) P(1,0) A1 π -π -1 0 0 0 1 -π/6 -5π/6 -π/4 -3π/4 -1 -2π/3 -1 -π/2 -π/3