Negative Angle Identities sin(- ! ) = - sinθ cos(- ! ) = cosθ tan(- ! ) = - tanθ csc(- ! ) = - cscθ sec(- ! ) = secθ cot(- ! ) = - cotθ Addition and Subtraction Identities Co-function Identities If A + B = π2 sin A = cos B sec A = csc B tan A = cot B Quotient Identities 1 sin ! 1 secθ = cos ! sin (A + B) = sin A cos B + cos A sin B cos (A + B) = cos A cos B – sin A sin B tan (A + B) = tan A + tan B 1 – tan A tan B Pythagorean Identities sin (A – B) = sin A cos B – cos A sin B sin θ + cos θ = 1 cos (A – B) = cos A cos B + sin A sin B 1 + tan θ = sec θ tan A – tan B 1 + tan A tan B tan (A – B) = Double Angle Identities cscθ = 2 tanθ = cotθ = 2 2 1 + cot θ = csc2θ Half-Angle Identities = ± 1 – cos ! 2 2 cos ! 2 = ± 1 + cos ! 2 = 2cos θ -- 1 tan ! 2 = ± 1 – cos ! 1 + cos ! cos 2θ = cos θ -- sin ! 2 2 cos ! sin ! 2 ! 2 = 2sinθ cosθ = 2 sin sin 2 θ 1 tan ! = 1 – 2sin2θ tan 2 ! = 2tan ! 2 1 – tan ! Product Identities sinAcosB = cosAsinB = cosAcosB = sinAsinB = ( sin (A + B) + sin (A – B) ) 1 ( sin (A + B) – sin (A – B) ) 2 1 ( cos (A + B) + cos (A – B) ) 2 1 ( cos (A – B) – cos (A + B) ) 2 1 2 Sum Identities sinA + sinB sinA – sinB cosA + cosB cosA – cosB ( A +2 B A+B = 2cos( 2 A+B = 2cos( 2 A+B = - 2sin( 2 = 2sin )cos( A 2– B )sin( A 2– B )cos( A 2– B )sin( A 2– B ) ) ) ) THE UNIT CIRCLE (0,1) ! ( , 1 2 ( , 2 2 ( , ) 1 2 3 2 (- 1,0) ( , 3 2 2 2 ) 3 2 3! 4 2 ) ! 2! 3 ( , 1 2 3 ! 3 2 ) ( , ) 2 2 4 5! 6 ( , ) ! 3 2 6 1 2 0 (1,0) ! 1 2 2 2 ) 7! 6 ( , ) 2 2 2 2 11! 6 5! 4 ( , 1 2 7! 4 4! 3 3 2 ) 5! 3 ( , 1 2 3! 2 3 2 ( , ) 3 2 1 2 ( , ) 2 2 2 2 ) (0,- 1) sin ! = TRIGONOMETRIC DEFINITIONS SPECIAL ANGLE TRIANGLES opposite y = r hypotenuse 2 adjacent x cos ! = = r hypotenuse tan ! = y opposite = x adjacent θ x 1 30° 1 3 or if it is the unit circle, r=1 so 45° 60° 1 2 2 1 2 30° 45° y 60° 2 1 45° 1 r 45° 2 2 3 2