2 Números reales ACTIVIDADES INICIALES 2.I. En los medios de comunicación americanos se habla del billonario Bill Gates. Según algunas estimaciones, su fortuna personal ronda los 5,9·1010 dólares. ¿Es correcto llamarle billonario? Bill Gates tiene 59 000 millones, luego para un español no sería billonario. 2.II. La revista Forbes publica la lista de las personas más ricas del mundo y su fortuna en dólares. En marzo de 2011, el hombre más rico del mundo era el mexicano Carlos Slim, con 71 billions. El español Amancio Ortega figuraba entre los primeros del ranking, con 31 000 millones. Florentino Pérez, constructor, tenía unos 1900 millones. El Real Madrid, equipo que preside, tiene un presupuesto de unos 0,65 millardos de dólares. Calcula la proporción entre esas tres fortunas y el presupuesto del Real Madrid. 10 10 10 En notación científica, Slim tiene 7,1 · 10 dólares, Ortega tiene 3,1 · 10 dólares y Pérez, 1,9 · 10 8 dólares. El presupuesto del Real Madrid equivale a 6,5 · 10 dólares. Por tanto, tomando como referencia este presupuesto, la fortuna de Slim es 109 veces mayor; la de Ortega, 48 veces, y la de Pérez, 29 veces. 2.III. El 70 % de la población mundial vive en Asia o África. 97 de cada 100 personas nacen en países pobres. En 2025 llegaremos a los 8000 millones de habitantes. ¿Es sostenible este crecimiento? ¿Qué opinas? Comparte tus opiniones con tus compañeros. Respuesta abierta. ACTIVIDADES PROPUESTAS 2.1. Actividad resuelta. 2.2. Clasifica los siguientes números en naturales, enteros, racionales o reales. 4,323232… d) b) 7,122133144155… e) 1+ 9 f) 5,566666… c) a) b) π 4,323232… = 4,32 Es un número decimal periódico y, por tanto, racional y real. 7,122133144155… Es un número con infinitas cifras decimales no periódicas y, por tanto, real e irracional. c) π es real (irracional). d) 81 − 121 =− 9 11 = −2 Es un número entero, racional y real. e) f) 18 81 − 121 a) 1 + 9 =1 + 3 = 4 Es un número natural, entero, racional y real. 5,5666666 … = 5,56 Es un número decimal periódico mixto. Por tanto racional y real. Unidad 2 | Números reales 2.3. Di si son verdaderas o falsas las siguientes afirmaciones, justificando la respuesta. a) Todos los números naturales son enteros. b) Todos los números racionales son enteros. c) Todos los números racionales son reales. a) Verdadera. El conjunto de los números naturales está incluido en el de los enteros. b) Falsa. Por ejemplo c) Verdadera. El conjunto de los números racionales está incluido en el de los reales. 2 es racional y no entero. 3 2.4. Actividad resuelta. 2.5. Para x = –3, compara los siguientes valores. a) A =( x + 1)( x − 1) y B = x + 1 ⋅ x − 1 b) = A 2.6. B x 2 + 2 x y= x 2 + 2x a) A = ( −3 + 1)( −3 − 1) = ( −2 ) ⋅ ( −4 ) = 8 B = −3 + 1 ⋅ −3 − 1 = −2 ⋅ −4 = 2 ⋅ 4 = 8 b) A = ( −3 ) + 2( −3) = 9 − 6 =3 B= 2 ( −3 ) 2 + 2( −3) = 9 + −6 = 15 A=B A<B Representa en la recta real los números irracionales. a) 17 c) b) 20 d) a) El número irracional El número irracional 3+ 2 17 es la diagonal de un rectángulo de lados 4 y 1 ya que = 17 b) 2 3 42 + 12 20 es la diagonal de un rectángulo de lados 4 y 2 ya que = 20 4 2 + 22 2 y altura 1. c) El número 2 3 es el doble de la diagonal de un rectángiulo de base d) El número 3 + 2 es la suma de la diagonal del rectángulo de base diagonal del cuadrado de lado 1. 2 y altura 1 más la Números reales | Unidad 2 19 2.7. Actividad resuelta. 2.8. Da la expresión aproximada que se indica en cada uno de los siguientes casos. 2.9. a) 2,43003 con dos cifras por exceso b) 2,43003 con tres cifras por defecto c) –2,43003 con dos cifras por exceso d) –2,43003 con tres cifras por defecto a) 2,44 b) 2,430 c) –2,43 d) –2,431 d) –1,235 Redondea a tres cifras decimales los siguientes números reales. a) 2,689123… c) 0,35 b) 5,5555556 a) 2,689 d) b) 5,556 –1,23456… c) 0.356 2.10. (TIC) ¿Qué errores, absoluto y relativo, se cometen cuando aproximas El error absoluto es Ea = V − A = 3 por 1,732? 3 − 1,732 = 5,08075 ⋅ 10 −5 E 5,08075... ⋅ 10 −5 =2,93338... ⋅ 10 −5 < 3 ⋅ 10 −5 =0,003 %. Er = a = V 3 2.11. La población de Lisboa es de 545 245 personas. Calcula los errores que se cometen al aproximar dicha población por 550 000. El error absoluto es Ea = V − A = 545 245 − 550 000 = 4755 E = r Ea 4 755 = = 0,0087 = 0,87 % 545 245 V 2.12. (TIC) Con la calculadora, halla aproximaciones, por defecto y por exceso, con dos y tres cifras decimales, para los números 11 y 7 2 , así como para su diferencia. Aproximaciones por defecto 11 7 2 11 − 2 7 Aproximaciones por exceso 1,57 1,571 1,58 1,572 1,41 1,414 1,42. 1,415 0,15 0,157 0,16 0,158 2.13. Con una regla graduada en milímetros se quiere medir la altura de un vaso. Si la altura real de este es de 9,34 cm, ¿qué errores, absoluto y relativo, se cometerán al medirlo con dicha regla? Al medir el vaso con la regla obtendremos un valor de 9,3 cm. El error absoluto es Ea = V − A = 9,34 − 9,3 = 0,04 E = r 20 Ea 0,04 = = 0,00428 = 0,428 % 9,34 V Unidad 2 | Números reales 2.14. Determina mediante intervalos los conjuntos A, B y C de la figura. A B A = [-4, -2) C C = (5, ∞) B = [1, 3] 2.15. Escribe y representa las semirrectas o intervalos siguientes. a) a) x≥3 [3, ∞ ) b) –2 < x ≤ 5 c) 0<x<5 b) ( −2, 5] c) (0, 5) 2.16. ¿Qué intervalo se puede representar mediante la desigualdad x − 3 ≤ 2 ? Es aquel que comprende los números que del 3 distan 2 o menos de 2, es decir, entre el 3 – 2 = 1 y el 3 + 2 = 5. Es el intervalo [1, 5]. 2.17. Escribe el intervalo formado por los números x que verifican simultáneamente: a) b) x está en el entorno de centro 4 y radio 2. x −1 ≤ 3 Por la condición a), x debe estar comprendido entre 2 y 6. Por la condición b), x debe estar comprendido entre 1 + 3 = 4 y 1 – 3 = –2. El intervalo es (2, 4]. En el enunciado no se aclara si el entorno es abierto o cerrado. Aquí se ha tomado abierto. 2.18. Calcula y simplifica. 229 ⋅ 45 810 a) 3 –2 – ( –3 ) + ( –3 ) – 30 b) 3 4 ⋅ 4 3 −2 4 3 a) 3 –2 – ( –3 ) + ( –3 ) – 30 = b) 3 4 4 4 −4 + 2 + 2 0 ⋅ ⋅ 4 3 3 4 4 = 3 = 1 = = −2 −2 3 3 4 4 3 3 c) 229 ⋅ 45 229 ⋅ 210 9 512 = = 229 +10 −30 = 2= 810 230 3 4 (2 ) c) 2 (2 ) 2 −1 d) 3 4 2 2 −4 1 ⋅ 2 2 4 −3 1 316 + 27 + 9 − 1 = 9 9 2 2 1 ⋅ −2 −2 2 = 2 ⋅ 2 = 2−2 − 2 += 6 2 2= 4 4−3 2−6 2 −1 d) 2 Números reales | Unidad 2 21 2.19. (TIC) Realiza las siguientes operaciones expresando el resultado en notación científica. 4 3 4 a) 4,36 ∙ 10 · [1,23 ∙ 10 – 2,5 ∙ 10 ] b) 0,02 ∙ 10 c) 0,2 + 0,22 + 0,022 a) 4,36 ⋅ 104 × 1,23 ⋅ 103 − 2,5 ⋅ 10 4 = 4,36 ⋅ 10 4 × ( −23 770) ≈ −1,036 ⋅ 109 b) 0,02 ⋅ 1041 × 1,25 ⋅ 10−33 : 4,35 ⋅ 10 −22 ≈ 5,74 ⋅ 1027 c) 0,2 + 0,22 + 0,022 = 0,442 = 4,42 ⋅ 10 −1 41 · 1,25 ∙ 10 –33 : 4,35 ∙ 10 – 22 2.20. Actividad interactiva. 2.21. Actividad resuelta. 2.22. Escribe las siguientes expresiones utilizando: 3 2 1 a) Radicales: 7 5 , ( 23 ) 5 , ( 3 + x ) 2 y 3 + x 2 b) Potencias: a) 7 5 = 73 b) 37 = 3 2 37 , 3 3 1 ( 2 x )5 y 3 2 x 5 6 2 5 5 2= ( 23 )= 5 7 3 ( 2 x )5 5 6 2= 5 1 (3 + x ) 2 64 1 = 3+x 3 + x 2 =3 + x 1 5 = (2 x ) 3 3 2 x 5 = (2 x 5 ) 3 2.23. Calcula. 1 1 3 16 2 + 9 2 a) 42 a) 2 4= b) 16 2 + 9 2 = 16 + 93 =4 + 27 =31 c) 1 − − 61 3 27 = 27 = b) c) 1 1 = 4 2 3 2 3 −1 27 = 1 1 = 27 3 3 2.24. Compara el valor de los radicales = 8 5 22 = 85 10 10 32 768 180 < 8 Unidad 2 | Números reales 8 y 5 = 180 5 180 . = 1802 10 10 32 400 − 61 27 2 2.25. Ordena de mayor a menor los radicales. 3 3 = 20 = 20 4 12 12 = 8 160 000 20, 8 y = 86 12 12 4 55 4 = 55 262144 = 553 12 12 166 375 8 > 4 55 > 3 20 Por tanto, 2.26. ¿Qué figura tiene más área: un rectángulo de lados 2 y 72 + 3 6 , o un cuadrado de lado 3+ 3 ? 2 ( ) 72 + 3 6 = 2 (3 + 3 ) 2 ) ( ( ) 23 ⋅ 32 + 3 2 ⋅ 3 = 2 2 ⋅ 3 2 + 3 2 ⋅ 3 = 12 + 6 3 = 9 + 2 ⋅ 3 3 + 3 = 12 + 6 3 Tienen la misma área. 2.27. Extrae factores y simplifica al máximo. a) 3072 a) 3072= 210 ⋅ 3= 32 3 3 b) b) 3 13 932 = c) 4 256 = 4 3 c) 13 932 4 256 22 ⋅ 34 ⋅ 43 = 3 22 ⋅ 3 ⋅ 43 = 3 3 516 3 8 2 2= 2= 4 2.28. Opera y simplifica. a) 3 2⋅33⋅34 d) 3 b) 3 2⋅ 3⋅34 e) 4 3 c) ( ) 3 24 f) 3 3 2⋅33⋅3 4 = 24 b) 3 2 ⋅ 3 ⋅ 3 4= d) e) f) ( 2 )= 3 3 6 4 9: 4 3 ( ( 2+ 8 ) 2 6 a) c) 9: 3 6 22 ⋅ 3 3 ⋅ 4 2 = 6 2 2 2 26 ⋅ 3 3 = 2 3 3 = 2 3 6 8 224= 2= 256 ) 2+ 8 = 3 9 2 +2 2 = 3 9 3 2 = 1 6 34 = 3 23 6 34 = 3 ⋅ 23 6 6 1 = 3 ⋅ 23 2 6 1 72 2 = 24 2 2 2 2= 8 24 ⋅ 22 ⋅ 2= 8 27= 8 128 Números reales | Unidad 2 23 2.29. Halla el resultado y simplifícalo al máximo. a) 2+ 1 2 2 d) b) 2+ 2 8 3 e) c) 3 + 2 3 24 − 3 81 3 f) a) 2+ 1 3 2= 2 2 2 b) 2+ 2 4 7 8 =2 + 2= 2 3 3 3 3 20 − 2 80 + 3 75 2+ ( 3 1 8− 18 2 4 3 − 12 3 3 + 2 3 24 − 3 81 =3 3 + 4 3 3 − 3 3 3 =2 3 3 c) 3 d) 3 20 − 2 80 + 3 75 = 6 5 − 8 5 + 15 3 = −2 5 + 15 3 2+ e) f) ) ( 3 1 6 3 13 8− 18 = 2 + 2− 2= 2 2 4 2 4 4 3 − 12 ) =− ( 3 2 3) = (− 3 ) 3 3 3 = −3 3 2.30. Actividad interactiva. 2.31. Actividad resuelta. 2.32. (TIC) Racionaliza. a) b) a) 5 5 5 3 5 = 5 = b) 3 5 5 ⋅ 52 = 3 3 5 ⋅ 52 3 d)= 3− 7 27 3 2 2− 7 2 f) 3− 7 2+ 2 3 3 3 ⋅ 7 34 = 7 33 ⋅ 7 3 4 ( ( 25 7 81 ) ( ) 3⋅ 3+ 7 3⋅ 3+ 7 9+3 7 = = − 9 7 2 3− 7 ⋅ 3+ 7 2+ 7 = 2 2− 7 )( ) ( 2 + 7 )( 2 2 + 7 )= ( 2 2 − 7 )( 2 2 + 7 ) ( 4 + 14 + 2 14 + 7 = 11 + 3 14 8−7 ) ( ) 2 2+ 2 ⋅ 2− 2 2 2+ 2 ⋅ 2− 2 2 2 2+ 2 f) = = = = 4−2 2+ 2 2+ 2 2− 2 2+ 2 ( 24 2+ 7 e) 5 3 = c) 7 27 e) 7 d) 5 5 3 c) Unidad 2 | Números reales )( ) ( 2+ 2 ⋅ 2− 2 ) 2.33. Racionaliza. x a) x − y x+y + x−y b) x+y − x−y x a) x = x− y x− y x+ y ⋅ x+ y = x ( x+ y x−y x+y + x−y) (= ) = x+ xy x−y 2 x+y + x−y b) = x+y − x−y 2y 60 2.34. Racionaliza y simplifica 60 4 200 4 60 = 4 ⋅ 23 ⋅ 52 4 2x + 2 x + y x − y x + x2 − y 2 = 2y y 2 ⋅ 52 2 ⋅ 52 4 = 200 . 60 4 2 ⋅ 52 = 6 4 50 10 2.35. (TIC) Calcula. 6 a) 3 b) a) b) 72 10 − 5 1− 2 3 + 375 3 1+ 2 10 6 3 ⋅ 53 − 10 23 ⋅ 32 30 3 3 − 20 32 33 3 −23 9 − = = = 3 30 30 3 72 3 375 3 6 5 1− 2 + 3 3 ( 8+2 2 = = − 8+2 2 −1 1+ 2 3 ) 2.36. Simplifica todo lo que puedas y racionaliza. 3 2+ 8 3 3 2+ 8 3 2 = 3 2 +2 2 = 3 2 5 2 = 3 2 2 6 5 23 6 2 2 = 5 6 2= 6 56 ⋅ 2= 12 56 ⋅ 2 Números reales | Unidad 2 25 EJERCICIOS Números reales 2.37. Di si son verdaderas o falsas estas afirmaciones. a) La raíz cuadrada de un número negativo no existe. b) Todo número decimal es racional. c) Todos los números irracionales son reales. d) El número a) Verdadera b) Falsa c) Verdadera d) Verdadera 12 pertenece a N, Z, Q y R. 3 2.38. En la siguiente cadena de contenidos: N⊂ Z⊂Q ⊂R Encuentra un número que pertenezca a cada conjunto, pero no a los anteriores. 1 ∈ N; − 1 ∈ Z; 1 ∈ Q; 2 2 ∈R 2.39. Copia y completa la tabla escribiendo estos números en todos los conjuntos numéricos a los que pertenecen. 3 ; − 2; 2; 1,2525...; 2,010010001...; − 4; 0,16 5 Naturales (N) 2 Enteros (Z) 2, -4 Racionales (Q) 3 2; − 4; ; 1,2525...; 0,16 5 Reales (R) 3 2; − 4; ; − 2; 1,2525...; 2,010010001...; 0,16 5 2.40. ¿Qué diferencia existe entre la parte decimal de un número racional y la de un número irracional? Indica si los siguientes números son racionales o irracionales. a) 5,3727272… c) 0,127202002000… b) 3,5454454445… d) 8,666126712671267… La parte decimal de los números racionales, o bien es finita, o bien tiene infinitos decimales periódicos, mientras que los irracionales tienen infinitas cifras que no siguen ningún periodo. 26 a) Racional b) Irracional c) Irracional d) Racional Unidad 2 | Números reales 2.41. ¿Qué tipo de número obtendrás al sumar dos números en cada uno de los siguientes casos? Pon ejemplos. a) Dos racionales b) Dos irracionales c) Uno racional y otro irracional a) Un número racional b) Depende, puede ser racional o irracional (Ej: 0,121122111222... + 0,212211222111... = 0,3 ) c) Un número irracional Aproximaciones. Errores 2.42. Copia en tu cuaderno y rellena los recuadros vacíos con los signos de desigualdad < o > según sea necesario en cada caso. a) 1 6 b) 1,732051 a) 1 < 0,166667 6 c) b) 1,732051 > 3 d) 0,166667 3 c) 1,333334 d) 3 5 4 3 1,709976 1,333334 > 3 4 3 5 < 1,709976 2.43. ¿Cuántos números reales existen comprendidos entre 5,187246 y 5,187247? Escribe tres de ellos. Existen infinitos números reales entre ambos, por ejemplo: 5,1872461; 5,1872462; 5,1872463. 2.44. (TIC)¿Qué errores absoluto y relativo se cometen cuando se aproxima 4,1592 por 4,16? Ea= 4,1592 − 4,16= 0,0008 = Er 0,0008 = 0,0002 4,16 2.45. (TIC) Calcula las aproximaciones por defecto y por exceso del número 2 + 1 , con un error menor que una décima, una centésima y una milésima. Aproximaciones por defecto 2 +1 2,4 2,41 2.46. (TIC) Calcula las aproximaciones de 2,414 Aproximaciones por exceso 2,5 2,42 2,415 6 − 1 , con un error menor que una décima, una centésima y una milésima. Aproximaciones por defecto 6 −1 1,4 1,44 1,449 Aproximaciones por exceso 1,5 1,45 1,450 Números reales | Unidad 2 27 π = 3,1415926… es la relación entre la longitud de una circunferencia y su diámetro. Halla las aproximaciones por defecto, exceso y redondeo de π hasta la milésima. 2.47. (TIC) El número irracional Calcula también los errores absoluto y relativo que se cometen en el redondeo. Aproximación por defecto: π ≈ 3,141 Aproximación por exceso: π ≈ 3,142 Aproximación por redondeo: π ≈ 3,142 Ea 3,142= − π 0,000407... Error absoluto:= Error relativo: = Er 0,000407... = 0,000129... < 1,3 = ⋅ 10 −4 0,013 % π 2.48. Un salón rectangular tiene 6 metros de largo y 4 de ancho. ¿Entre qué dos aproximaciones decimales se encuentra su diagonal? Por el teorema de Pitágoras: d= 62 + 42 = 36 + 16= 52= 7,21110... ⇒ 7,2 < d < 7,3 2.49. Da un ejemplo de los catetos de un triángulo rectángulo en el que la hipotenusa sea un número irracional. Halla los intervalos necesarios para aproximar la hipotenusa con un error inferior a la centésima. Para que la hipotenusa sea un número irracional, debe ser una raíz cuadrada no exacta. Por ejemplo, si los catetos miden 2 y 3 cm, por el teorema de Pitágoras tenemos que: 22 + 3 2 = x 2 ⇒ 4 + 9 = x 2 ⇒ x = 13 cm Finalmente hallamos los intervalos encajados para aproximar 3,6 < 13 < 3,7 ⇒ Los intervalos buscados son: = I0 3,60 < 13 < 3,61 13 a la centésima: 3 < 13 < 4 I1 ( 3,6; 3,7 ) ; = I2 ( 3,60; 3,61) ( 3, 4 ) ;= 3 2.50. (TIC) Redondeando π hasta la milésima, el volumen de una esfera es de 14,139 cm . Averigua su radio. V= 28 4 3 πr = 14,139 ⇒ r = 1,5 cm con π= 3,142 3 Unidad 2 | Números reales La recta real 2.51. Calcula el valor de A = 3 x − 5 + x + 3 para los casos x = –5, x = 0 y x = 5. A(–5) = –18 A(0) = –2 A(5) = 18 2.52. Calcula la distancia que separa los siguientes pares de números. a) –2 y 5 c) –3 y –4 b) 5y 11 2 d) –3 y a) d ( −2, 5) = 5 − ( −2) = 5 + 2 = 7 b) 11 d 5, = 2 c) d ( −3, − 4) = −4 − ( −3) = −4 + 3 = −1 =1 d) 4 d −3, = 3 11 −5 = 2 4 3 11 10 1 − = 2 2 2 4 − ( −3) = 3 4 + 3= 3 4 9 13 + = 3 3 3 2.53. Ordena de menor a mayor y representa gráficamente los siguientes números reales. −π; 2 5; 2 223 ; ; − 3,15; 0,67 3 50 Necesitamos tener la aproximación decimal de cada uno de los números: −π = −3,14159...; 2 5 = 4,4721...; −3,15 < −π < 2 223 = 0,666...; = 4,46; − 3,15; 0,67 3 50 2 < 223 < 2 5 < 0,67 3 50 Utilizando la aproximación anterior representamos gráficamente los números: 2.54. (TIC) En el siglo XII, el matemático indio Bhaskara aseguraba en su famosa obra Vija-Ganita que: 8+ 2= 18 Explica razonadamente si Bhaskara tenía o no razón. Para ello, dibuja un segmento de longitud 8 + 2 y otro de longitud 18 , y compara. Son iguales. Números reales | Unidad 2 29 Intervalos 2.55. Expresa mediante desigualdades y gráficamente en la recta real los siguientes intervalos y semirrectas. a) [ – 1, + ∞ ) c) ( −∞, 3 ) b) ( –2, 0] d) [ 4, 8] a) [– 1, +∞) b) (– 2, 0] → c) (– ∞, 3) → x<3 → d) [4, 8] → x ≥ −1 → −2 < x ≤ 0 → → 4≤x≤8 → 2.56. Señala si las siguientes igualdades son verdaderas o no. a) E(1, 2) = (–1, 3) c) E(–2, 3) = (–5, 0) b) E(0, 1) = (–1, 1) d) E(4, 2) = (2, 6] a) Verdadera b) Verdadera c) Falsa porque E(–2, 3) = (–5, 1) d) Falsa porque E(4, 2) = (2, 6) ≠ (2, 6] 2.57. Relaciona mediante flechas las diferentes formas de representar los siguientes intervalos y semirrectas. 2.58. ¿Qué números enteros están a la vez en las semirrectas (– ∞, – 2] y (–6, + ∞ ) ? –5, –4, –3 y –2. 30 Unidad 2 | Números reales 2.59. Marca en una recta numérica el conjunto de puntos cuya distancia al punto 2 sea: a) Mayor que 2 d) No mayor que 3 b) Menor que 1 e) No menor que 2 c) Igual a 3 f) Mayor que 2 y menor que 5 2.60. Dibuja los siguientes entornos en la recta real e indica mediante desigualdades los intervalos que determinan, así como su centro y su radio. a) E(2, 4) c) E(3, 1) b) E(1, 3) d) E(– 2, 5) a) E(2, 4): −2 < x < 6 ; Centro = 2 y Radio = 4 → b) E(1, 3): −2 < x < 4 ; Centro = 1 y Radio = 3 → c) E(3, 1): 2 < x < 4 ; Centro = 3 y Radio = 1 d) E(– 2, 5): −7 < x < 3 ; Centro = –2 y Radio = 5 → → 2.61. Representa en la recta real el intervalo A = [–2, 5] y la semirrecta B = (3, + ∞). ¿Existe algún intervalo de puntos común a ambos conjuntos? En caso afirmativo, hállalo. Sí existe un intervalo común a ambos conjuntos, que es el intervalo (3, 5] . 2.62. *¿Qué intervalo se puede expresar mediante la desigualdad x + 1 ≤ 2 ? Es aquel que comprende los números que del 1 distan 2 o menos de 2, es decir, entre el 1 – 2 = –1 y el 1 + 2 = 3. Se trata del intervalo [–1, 3]. Números reales | Unidad 2 31 2.63. Representa gráficamente los siguientes conjuntos de puntos de la recta real. a) x +3 <2 c) x +2 ≤3 b) x +1 > 3 d) x −2 ≥ 3 a) x + 3 < 2 ⇒ −2 < x + 3 < 2 ⇒ −5 < x < −1 b) x + 1 > 3 ⇒ x + 1 < −3 ó x + 1 > 3 ⇒ c) x + 2 ≤ 3 ⇒ −3 ≤ x + 2 ≤ 3 ⇒ −5 ≤ x ≤ 1 d) x − 2 ≥ 3 ⇒ x − 2 ≤ −3 ó x − 2 ≥ 3 ⇒ x < −4 x>2 x ≤ −1 x≥5 2.64. Expresa mediante un intervalo los siguientes conjuntos de números reales. a) x −3 < 5 x − 2 ≤ 0,25 a) x − 3 < 5 ⇒ −5 < x − 3 < 5 ⇒ −2 < x < 8 ⇒ ( −2, 8 ) b) x − 2 ≤ 0,25 ⇒ − b) 1 1 7 9 7 9 ≤ x −2≤ ⇒ ≤ x ≤ ⇒ , = [1,75; 2,25] 4 4 4 4 4 4 Notación científica 2.65. Escribe en notación científica los siguientes números. a) 5 182 000 000 000 c) 835 000 000 000 000 b) 0,000000000369 d) 0,00000000000351 ¿Cuál de ellos tiene el mayor orden de magnitud? ¿Y cuál el menor? a) 5182000000000 = 5,182 ⋅ 1012 b) 0,000000000369 = 3,69 ⋅ 10 −10 c) 835 000000000000 = 8,35 ⋅ 1014 d) = 3,51⋅ 10 −12 0,00000000000351 Ya que el orden de magnitud nos lo indica el exponente de la potencia en base diez, el número de mayor orden es el c), y el d) el de menor. 2.66. (TIC) Realiza las siguientes operaciones expresando el resultado en notación científica. 32 a) 2,85 ⋅ 1010 + 3,16 ⋅ 108 − 4,28 ⋅ 109 b) 3,01 ⋅ 10−5 ⋅ 8,24 ⋅ 104 ⋅ 7,15 ⋅ 108 c) (1,0225 · 105) : (2,05 · 10 ) a) 2,85 ⋅ 1010 + 3,16 ⋅ 108 − 4,28 ⋅ 109 = (285 + 3,16 − 42,8) ⋅ 108 = 245,36 ⋅ 108 = 2,4536 ⋅ 1010 b) 3,01⋅ 10 −5 ⋅ 8,24 ⋅ 10 4 ⋅ 7,15 ⋅ 108 = (3,01⋅ 8,24 ⋅ 7,15) ⋅ 10 −5 + 4 + 8 = 177,33716 ⋅ 107 = 1,7733716 ⋅ 109 c) (1,025 : 2,05) ⋅ 10 (1,025 ⋅ 10 ) : ( 2,05 ⋅ 10 ) = 8 5 Unidad 2 | Números reales −6 5 −( −6) 0,5 ⋅ 1011 =⋅ 5 1010 = 2.67. (TIC) Opera y expresa el resultado en notación científica. a) 4,75 ⋅ 10−6 ⋅ ( 3,56 ⋅ 109 + 9,87 ⋅ 107 − 2,046 ⋅ 106 ) b) 7,35 ⋅ 106 ⋅ ( 1,49 ⋅ 103 + 4,02 ⋅ 105 ) : ( 9,95 ⋅ 10−3 ) a) 4,75 ⋅ 10−6 ⋅ ( 3,56 ⋅ 109 + 9,87 ⋅ 107 − 2,046 ⋅ 106 ) ≈ 1,737 ⋅ 104 b) 7,35 ⋅ 106 ⋅ (1,49 ⋅ 103 + 4,02 ⋅ 105 ) : ( 9,95 ⋅ 10−3 ) ≈ 2,98 ⋅ 1014 2.68. Halla el valor de a y b para que se cumpla la siguiente igualdad: ( 98 700 000 000 000 000 000 ) 4 = a ⋅ 10b −5 ( 0,0000000000000234 ) Donde a es un número racional entre 1 y 9, redondeado hasta dos cifras decimales. ( 98 700 000 000 000 000 000 )4 ( 0,0000000000000234 )−5 ( 9,87 ⋅ 10 ) ( 2,34 ⋅ 10 ) 19 4 = −14 −5 = ( 9,87 )4 19⋅4 −(( −14)⋅( −5)) ⋅ 10 = ( 2,34 )−5 6,66 ⋅ 105 ⋅ 106 = 6,66 ⋅ 1011 Por tanto, a = 6,66 y b = 11 Potencias de exponente fraccionario y radicales 2.69. (TIC) Calcula el valor de las siguientes potencias. 3 a) 25 2 b) 343 3 a) 25 2 = 125 b) 343 3 = 49 c) 160,25 = 2 d) 270,333... = 3 c) 160,25 d) 270,333... 2 3 2 2.70. Ordena de mayor a menor estos radicales. a) a) 3, 10, 3 26 10 > 3 > 3 26 2, 4 5 , 5 12 b) b) 5 12 > 4 5 > 2 Números reales | Unidad 2 33 2.71. Realiza las siguientes operaciones. a) 4 5⋅63 c) b) 3 9 : 12 d) a) 4 5⋅63= b) 3 = 9 : 12 3⋅43 : c) d) 12 53 ⋅ 12 32 = 6 12 53 ⋅ 3 2 = 2 9= : 123 3 ( 3) 3 2 3 50 + 2 72 − 4 8 − 200 1125 = 92 : 123 6 ( 3) 12 3⋅43: 6 6 3 64 12 6 12 3 12 6 12 = 3 ⋅ 3 : 12 ( 32 ) = 3 ⋅ 33 : 38 = 3 2 4 3 50 + 2 72 − 4 8 − 200 = 15 2 + 12 2 − 8 2 − 10 2 = 9 2 2.72. Efectúa las siguientes operaciones. a) 8 ⋅ 27 e) 1 4 ⋅ 8:34 2 b) 3 512 : 3 200 f) 12 : 3 32 ⋅ 6 2 c) 3 4 ⋅ 5 392 g) 3 d) 4 2187 : 108 h) 3 64 ) 2 8 ⋅ 27 = 63 = 216 = 6 6 a) b) 3 = 512 : 3 200 c) 3 4 ⋅ 5 392= d) 4 = 2187 : 108 15 3 1 4 ⋅ 8:34 = 2 f) 12 : 3 32 ⋅ 6 2= ( 3 ) 2 64 = 26 = 52 26 = : 52 4 43 5 = 3 2 5 5 3 219 ⋅ 76 = 215 24 ⋅ 76 e) g) ( 8 3 = 24 4 4 12 3 2 29 = 26 ⋅ 28 6 12 2−5 123 : 210 ⋅ 2= 6 33 ⋅ 2−3= 3 2 = 212 4 6 2.73. Introduce los factores en el radical y opera. 34 a) 2 ⋅ 5 ⋅ 3 50 c) 3 ⋅ 53 ⋅ 5 15 b) 32 ⋅ 2 ⋅ 4 12 d) 5 ⋅ 10 a) 2 ⋅ 5 ⋅ 3 50= c) 3 ⋅ 53 ⋅ 5 15= b) 32 ⋅ 2 ⋅ 4 12= d) 5 ⋅ 10 = Unidad 2 | Números reales 3 23 ⋅ 53 ⋅ 2 ⋅ 52= 4 38 ⋅ 24 ⋅ 22 ⋅ 3= 3 24 ⋅ 55 4 26 ⋅ 3 9 5 35 ⋅ 515 ⋅ 3 ⋅ 5= 52 ⋅ 2 ⋅ 5 = 2 ⋅ 53 5 36 ⋅ 516 2.74. Extrae todos los factores posibles de los siguientes radicales y opera. a) 2 ⋅ 3 2160 c) 7 ⋅ 4 9072 b) 3 ⋅ 5 ⋅ 4320 d) 2 ⋅ 3 ⋅ 216 a) 2 ⋅ 3 2160 = 2 ⋅ 24 ⋅ 33 ⋅ 5 = 22 ⋅ 3 3 2 ⋅ 5 = 12 3 10 b) 3 ⋅ 5 ⋅ 4320 = 3 ⋅ 5 ⋅ 25 ⋅ 33 ⋅ 5 = 22 ⋅ 32 ⋅ 5 2 ⋅ 3 ⋅ 5 = 180 30 c) 7 ⋅ 4 9072 = 7 ⋅ 4 24 ⋅ 34 ⋅ 7 = 2 ⋅ 3 ⋅ 7 4 7 = 42 4 7 d) 2 ⋅ 3 ⋅ 216 = 2 ⋅ 3 ⋅ 23 ⋅ 33 = 22 ⋅ 32 2 ⋅ 3 = 36 6 3 2.75. Opera y simplifica. a) 2 50 + 3 45 − 80 b) 4 ⋅ 3 16 + 5 ⋅ 3 54 − 2 ⋅ 3 250 c) d) 3 27 2 6 5 − 75 3 − 24 4 + 12 1 + 54 a) 2 50 + 3 45 − 80 = 10 2 + 9 5 − 4 5 = 10 2 + 5 5 b) 4 ⋅ 3 16 + 5 ⋅ 3 54 − 2 ⋅ 3 250 = 8 3 2 + 15 3 2 − 10 3 2 = 13 3 2 c) d) 3 27 2 6 5 − 75 3 − 24 4 + + 12 1 54 = = 3 − 3 3 2 6 − 5 5 3 3 2 6 + + 4 2 3 = 1 3 − 1 3 + 2 3 = 2 3 = 2 3 3 12 − 9 + 2 5 5 6 = = = 36 3 6 6 6 6 6 1 2.76. Opera y simplifica a) 2 x + 5 25 x − 3 36 x − 4 9 x 3 b) 4 25 ⋅ 23 5 26 a) 2 x + 5 25 x − 3 36 x − 4 9 x =+ 2 x 25 x − 18 x − 12 x = −3 x 3 4 + − 25 ⋅ 23 6 2 = 2 5 3= 5 3 4 5 b) 18 + 40 − 25 30 33 11 30 20 10 = 2= 26 Números reales | Unidad 2 35 2.77. Racionaliza las siguientes expresiones. 4 a) b) 2 3 3 f) a) 3 5 j) 10 1+ 2 2− 2 l) 2 4 = 2 3 b) = 3 3 4 2 = 2 2 2 1− 7 3+ 2 5 1− 2 3 +1 2+ 3 c) 3 = 3 d) 5 5 10 = = 10 10 3 3 3 = 3 2− 3 4+ 5 2− 5 25 g)= 5 5 3 3 32 = 3 5 2 k) 1− 2 4 5 i) 3 d) e) h) 3 c) 25 g) 1− 2 = j) 3 +1 10 2 (1 + 2 ) =−3 − 2 = 2 (1 − 2 )(1 + 2 ) 2 (2 − 2 ) 8 = = 8− 2 f) 2− 4 2 k) 4 4 2 4 2 2+ 3 l) 2− 3 ) 3 + 2) 5 (= 3+ 2 i)= 5 3 1+ 2 1− ( 2 1+ 7 − 2 − 14 = 1− 7 6 2 h)= 1− 7 9 2 e) 5 25 5 4 = 5 5 625 5 5 1 − 2 )( 3 − 1) (= 3 − 1− 6 + 2 2 3 −1 ( = ( 2+ 3 2−3 )( ) 15 + 10 5 2 =−2 − 3 − 2 6 =−5 − 2 6 ) 4+ 5 2+ 5 = = −13 − 6 5 4−5 2− 5 4+ 5 2.78. Calcula a, b, c y d en esta igualdad: 104 ⋅ 146 ⋅ 8112 = 2a ⋅ 3b ⋅ 5c ⋅ 7d 104 ⋅ 146 ⋅ 8112 = 24 ⋅ 54 ⋅ 26 ⋅ 76 ⋅ 3 48 = 210 ⋅ 348 ⋅ 54 ⋅ 76 = 25 ⋅ 324 ⋅ 52 ⋅ 73 = 2a ⋅ 3b ⋅ 5c ⋅ 7d Por tanto se tiene que: a = 5; 36 Unidad 2 | Números reales b = 24; c = 2; d=3 PROBLEMAS 2.79. Las longitudes x, y, z, ¿pueden escribirse como cocientes de números enteros? ¿Por qué? x= 22 + 22 = 8 y = 2 ⋅ π ⋅ 3 = 6π z= 22 + 12 = 5 Ninguna de ellos se puede escribir como cociente de enteros al tratarse de números irracionales. 2.80. (TIC) Para solar la entrada de una nueva sala de exposiciones se utilizan baldosas de 20 × 30 cm. Si la entrada es un recinto circular de 6 m de radio, ¿cuántas baldosas se necesitan como mínimo, suponiendo que se puedan aprovechar todos los recortes? Acírculo = πr 2 = 36π m2 Abaldosa = 20 ⋅ 30 = 600 cm2 = 0,06 m2 = N El número de baldosas, llamémosle N, será el cociente: Acírculo 36π = = 1884,95 Abaldosa 0,06 Por tanto, como mínimo necesitaremos 1885 baldosas. 2.81. (TIC) La longitud aproximada de una circunferencia de 7 cm de radio es de 43,988 cm. ¿Cuál y de qué tipo es la aproximación de π que se ha utilizado? 43,988 = 2πr = 14π ⇒ π = 3,142 . Luego se ha utilizado una aproximación por exceso a la milésima. 2.82. (TIC) ¿Qué aproximación está más cerca del valor de la hipotenusa del triángulo de la figura, 5,385 o 5,386 cm? ¿Cuánto más cerca? h= 22 + 5 2 = 29 = 5,3852 La aproximación 5,385 se encuentra más cerca del valor de la hipotenusa. Está aproximadamente 6 diezmilésimas más cerca que 5,386. Números reales | Unidad 2 37 2.83. *(TIC) Con dos aparatos de medición distintos, se ajusta la longitud de la hipotenusa del triángulo de catetos 2 y 7. Con el aparato A se obtiene 182 36 , y con el B, . 25 5 ¿Qué aparato tiene mayor precisión y qué errores absolutos se han cometido en cada uno de ellos? Por el Teorema de Pitágoras: h = Aparato A: 36 = 7,2 5 22 + 7 2 = 53 = 7,280109... Aparato B: 182 = 7,28 25 El aparato B es más preciso, ya que tiene orden 2 (número de cifras que coinciden con el número exacto). EaA = 7,2 − 7,28109... = 0,080109... EaA = 7,28 − 7,28109... = 0,000109... 2.84. Teniendo en cuenta que la masa del electrón es de 9,11 ⋅ 10 −31 kg y que la masa de un elefante africano es, aproximadamente, de 7500 kg, ¿cuántas veces es más pesado el elefante que el electrón? 7500 7,5 ⋅ 103 7,5 3 + 31 = = 10 = 0,823 ⋅ 1034 = 8,23 ⋅ 1033 −31 −31 9,11 9,11⋅ 10 9,11⋅ 10 Luego el elefante es 8,23 ⋅ 1033 veces más pesado que el electrón. 2.85. (TIC) En el año 2003, la distancia entre la Tierra y Marte era de 56 millones de km (la distancia más corta de los últimos 60 000 años). Calcula cuánto tiempo habría tardado en llegar a Marte una nave espacial que hubiese llevado una velocidad de 1,4 ⋅ 104 metros por segundo. 56 000 000 km = 5,6 ⋅ 107 ⋅ 103 m = 5,6 ⋅ 1010 m t= s 5,6 ⋅ 1010 ⇒t = = 4 ⋅ 106 seg 46 días v 1,4 ⋅ 104 2.86. *Un alumno piensa en un número entero. El compañero A solicita como pista para adivinarlo si el número pensado está en el entorno E(–14, 10), y el compañero B, si se encuentra en E(–1, 9). El alumno les contesta que no está en ninguno de esos entornos y que, para encontrarlo, deberían buscar en un entorno que tuviera como centro el punto medio de los centros de los dos entornos citados, y como radio, la suma de los dos radios. ¿Qué entorno les está indicando? ¿Qué posibilidades existen para el número pensado? Calculamos el centro y el radio del entorno pedido: Centro: CA + CB −14 − 1 −15 = = 2 2 2 Radio: rA + rB = 10 + 9 = 19 −15 53 23 ,19 = Les está indicando el entorno E ( −26,5; 11,5 ) − , = 2 2 2 Compañero A: E ( −14, 10 ) = ( −24, − 4 ) Compañero B: E ( −1, 9 ) = ( −10, 8 ) Si el número pertenece al intervalo ( −26,5; 11,5 ) ( −10, 8 ) , entonces el número entero puede ser: 38 Unidad 2 | Números reales y no pertenece a los intervalos −26, − 25, 9, 10 y 11 . ( −24, − 4 ) y 2.87. Si tenemos una caja con forma de ortoedro de dimensiones 22, 9 y 6 cm, respectivamente, ¿cuál será la longitud máxima que podrá tener un bastón para que lo podamos guardar en la caja? La longitud máxima será la hipotenusa del triángulo rectángulo cuyos catetos son la altura del ortoedro y la diagonal de la base. = d Diagonal de la base: Longitud máxima: l = 222 + 92 62 + ( 222 + 92 ) 2 = 62 + 222 + 92 = 601 = 24,515 cm 2.88. (TIC) En una fábrica de latas de refrescos han decidido aproximar el número π como 157 . 50 ¿Cuánto se ahorran de área de aluminio y de volumen de líquido por lata? Las latas son de forma cilíndrica y tienen 3 centímetros de radio y 11 de altura. Área de la lata: A =2πr 2 + 2πrh =π ( 2r 2 + 2rh ) 157 157 2 Diferencia de área: A − Aaprox = π − 2r + 2rh = π − (18 + 66 ) = 0,134 50 50 ( ) Volumen de la lata: V = πr 2 h 157 2 157 Diferencia de volumen: V − Vaprox = π − r h = π − ⋅ 99 = 0,158 50 50 2 3 Ahorran 0,134 cm en el área y 0,158 cm en el volumen de la lata. 2.89. Un país invierte el 0,17 % del PIB en ayuda al desarrollo del Tercer Mundo y las ONG piden cumplir la recomendación de la ONU, que consiste en dedicar el 0,7 %. Si el PIB del país asciende a 2 billones de euros al año, ¿cuánto dinero deja de destinar a ayuda al desarrollo según las indicaciones de la ONU? (Realiza todas las operaciones en notación científica). 2 billones= 2 billones= 2 ⋅ 1012 € Dinero invertido: 17 ⋅ 2 ⋅ 1012 = 34 ⋅ 108 = 3,4 ⋅ 109 € 10 000 Dinero recomendado: 7 ⋅ 2 ⋅ 1012 = 14 ⋅ 109 = 1,4 ⋅ 1010 € 1000 Dinero no destinado: 1,4 ⋅ 1010 − 3,4 ⋅ 109 = 10,6 ⋅ 109 = 1,06 ⋅ 1010 € Números reales | Unidad 2 39 AMPLIACIÓN 2.90. Al ordenar de menor a mayor los números 0,99, a) 0,99 < 0,99 < 3 0,99 b) 3 c) 0,99 < 3 0,99 < 0,99 d) 3 0,99 y 3 0,99 resulta: 0,99 < 0,99 < 0,99 0,99 < 0,99 < 0,99 Al ser 0,99 < 1 se sigue que sus raíces n-ésimas son todas mayores que él y mayores cuanto mayor es n. a) 2.91. (3 a) (3 d) 0,99 < 0,99 < 3 0,99 18 − 50 ) 2 es igual a: 4 b) 18 − 50 c) ) = (9 2 − 5 2 ) = (4 2 ) 2 2 2 = 42 ⋅ 2 8 d) 32 3 d) 1+ 2 . 1 2 d) –12 2 32 2.92. El producto de 3 a) 1+ 2 y b) 1+ 2 ⋅ b) 112 2 −= 1 ( 2 − 1 es igual a: 1 c) )( 2 +1 ⋅ ) 2 −= 1 1 1 2.93. Si 1 ≤ x ≤ 4, podemos asegurar 2 a) x≤2 c) –x ≥ –2 b) x≥1 d) 1 ≤ |x| ≤ 2 x se deduce que Como + x 2 = d) 1 ≤ |x| ≤ 2 2 2 2.94. Si (a + b) = 7 y (a – b) = 5, ab es igual a: a) 2 ( a + b )2 − ( a − b )2 c) 40 1 2 Unidad 2 | Números reales b) 12 = 7 − 5 ⇒ 4ab = 2 ⇒ ab = c) 2 4 AUTOEVALUACIÓN 2.1. Sean los números A = 1,7864… y B = 2,3879… Calcula A + B y A – B, con una aproximación hasta la milésima. 1,7864 … + 2,3879 = … 4,1743... ≈ 4.174 1,7864 … − 2,3879 … = −0,6015... ≈ −0,602 2.2. Representa en la recta real el número 10 . a) ¿Qué tipo de número es? b) ¿Qué teorema has aplicado para la representación? c) Halla la sucesión de intervalos que lo aproximen hasta la milésima. a) Es un número irracional, ya que es una raíz cuadrada no exacta. b) Teorema de Pitágoras: 32 + 12 =10 c) 3 < 10 < 4 ⇒ 3,1 < 10 < 3,2 ⇒ 3,16 < 10 < 3,17 ⇒ 3,162 < 10 < 3,163 ( ) 2 Por tanto, los intervalos encajados buscados son: = I0 2.3. 3; 4 ) ; I1 ( 3,1; = 3,2 ) ; I2 ( 3,16; 3,17 = (= ) ; I3 ( 3,162; 3,163 ) Un conjunto de números reales x cumple que |x – 2| < 3. Describe este conjunto utilizando intervalos y desigualdades, y represéntalo gráficamente. x − 2 < 3 ⇔ −1 < x < 5 ⇔ x ∈ ( −1, 5 ) ⇔ 2.4. Realiza las siguientes operaciones expresando el resultado en notación científica. 5 7 a) 3,28 ∙ 10 + 2,35 ∙ 10 b) (0,26 ∙ 10 ) ∙ (8,53 ∙ 10 ) c) (2,5 ∙ 10 ) ∙ (6,2 ∙ 10 – 31,4 ∙ 10 ) ∙ (10,7 ∙ 10 ) a) 7 3,28 ⋅ 105 + 2,35 ⋅ 10= 2,3828 ⋅ 107 b) ( 0,26 ⋅ 10 ) ⋅ ( 8,53 ⋅ 10 ) c) ( 2,5 ⋅ 10 ) ⋅ ( 6,2 ⋅ 10 –4 9 2 3 2 9 2 4 3 4 2 2 ≈ 1,89 ⋅ 1023 − 31,4 ⋅ 10 4 ) ⋅ (10,7 ⋅ 102 ) = −8,3829 ⋅ 1011 Números reales | Unidad 2 41 2.5. Realiza las siguientes operaciones. a) 811,25 b) 83 a) 243 c) 91,5 d) 125 3 2 2.6. 4 4 c) b) 8 2 a) 27 d) b) c) b) 3 c) 4 12 4 108 2 c) 3⋅42 d) 3 75 − 2 12 + 3 27 2:53 e) 3 50 + 200 − 8 8 ( 2) f) 3 b) c) 4 3 4 3⋅42 = 18 a) 3 5 2 := 3 ( ) 3 4 2 15 25 ⋅ 3−3 =34 3 10 1 7+ 3 7− 3 4 − 5 40 + 2 90 d) 3 75 − 2 12 + 3 27 = 20 3 e) 3 50 + 200 − 8 8 = 9 2 f) 3 10 − 5 40 + 2 7 10 = 60 90 Ordena de mayor a menor y representa gráficamente los siguientes números reales. 2 3 0,3; ; 3 2 3 2 > > 0,3 2 3 42 625 Realiza las siguientes operaciones con radicales. a) 2.8. b) Racionaliza las siguientes expresiones. a) 2.7. 4 Unidad 2 | Números reales 2.9. Di si son ciertas o no estas afirmaciones. a) Toda raíz cuadrada no exacta es irracional. b) La suma de un número racional y otro irracional es racional. c) Los radicales d) 3+ 5 = 8 6 25 y 3 5 son equivalentes. e) En el intervalo (3, 4) no hay números enteros, pero sí racionales. a) Verdadero b) Falso c) Verdadero d) Falso e) Verdadero Números reales | Unidad 2 43 PON A PRUEBA TUS COMPETENCIAS Busca equivalencias > Viaje a las estrellas En la primera película de La Guerra de las Galaxias, Luke Skywalker y Obi Wan Kenobi están buscando una nave espacial, y encuentran en una cantina a un piloto, Han Solo, que presume así de su nave, el Halcón Milenario: “Es la nave que hizo la carrera Kessel en menos de doce pársecs”. Pero… ¿qué es un pársec? ¿Es realmente tan rápida la nave? Realmente, un pársec no es una unidad de velocidad, sino de longitud. Parece que George Lucas tuvo un pequeño despiste al utilizarlo en su película para indicar la velocidad. Años más tarde, Lucas intentó explicarlo diciendo que en realidad se refería a la potencia de la computadora, que era capaz de encontrar una ruta más corta de lo habitual en esa carrera. El parsec, como la unidad astronómica (UA), no es una unidad que tenga que ver con la velocidad de la luz, a diferencia del año luz. La definición del parsec es algo compleja, y utiliza cálculos trigonométricos, que verás a lo largo del curso. Al estudiar el universo es necesario utilizar unidades de distancia muy grandes, y la notación científica resulta de gran ayuda. 2.1. La equivalencia entre las tres unidades mencionadas viene dad en la tabla: Parsec (pc) 1 Si un año luz equivale a 9,46·10 12 Unidad astronómica (UA) 206 265 Año luz 3,2616 km, ¿podrías expresar las unidades anteriores en metros?. 16 15 1 parsec = 3,2616 años luz = 3,0857 · 10 metros. 1 año luz = 9,4608 · 10 11 1,496·10 metros. (Todas las medidas son aproximadas). 2.2. La distancia del Sol al centro de la Vía Láctea es de unos 8,5 kiloparsecs. Exprésala en las unidades anteriores. 9 8,5 kiloparsecs = 8500 parsecs = 1,75 · 10 UA = 27723,6 años luz = 2,6 · 10 2.3. metros. 1 UA = 17 m. Para distancias “pequeñas”, dentro del Sistema Solar, en lugar de años luz se usan otras unidades, como los minutos luz o los segundos luz. Si la velocidad de la luz es, aproximadamente, 300 000 km/s y la Luna se encuentra a unos 384 000 km de la Tierra, ¿qué unidad sería más adecuada de las tres? La unidad adecuada sería el segundo luz. La Luna está a unos 1,3 segundos luz. 2.4. ¿Crees que una civilización extraterrestre usaría estas mismas unidades? ¿Por qué? Posiblemente no usarían la unidad astronómica, ya que es una medida “local”, basada en la distancia media entre el Sol y la Tierra. 2.5. En un viaje espacial, la comunicación resultaría difícil. Suponiendo que los mensajes se transmitieran a la velocidad de la luz, ¿cuánto tardaría en llegar un mensaje de la Tierra al Sol? ¿Y entre dos naves situadas a un megaparsec de distancia? El sol está a 1 UA = 8,3 minutos luz, aproximadamente. El mensaje tardaría unos 8,3 minutos. 1 megaparsec son un millón de parsecs, por lo que el mensaje tardaría más de 3,26 millones de años en llegar. 44 Unidad 2 | Números reales 2.6. Para medir la distancia a una estrella, se usa una ley física, la ley inversa del cuadrado de la 1 distancia: si alejamos una fuente luminosa una distancia d, la intensidad aparente es 2 de la d inicial. Según esto, si tenemos una bombilla a medio metro de distancia y nos alejamos un metro más, ¿cómo afectará a su brillo aparente? Al estar al triple de distancia, la intensidad aparente es 2.7. 1 de la anterior. 9 Es posible calcular el brillo intrínseco de algunos cuerpos del espacio, como las Cefeidas o las supernovas del tipo Ia, por lo que se suelen utilizar para mediciones. Busca información sobre ambas. Las Cefeidas son estrellas cuya luminosidad varía rítmicamente con un período muy regular. Se denominan así por la estrella Delta Cephei, la cuarta en orden de brillo de la constelación de Cefeo. Las supernovas Ia se producen cuando una enana blanca (el residuo de un astro que consumió su combustible nuclear y perdió gran parte de su masa al convertirse en gigante roja, como le sucederá al Sol) atrae materia de un astro próximo y va incrementando su masa hasta un punto en que explota como supernova. Su brillo es teóricamente predecible. Estima y comprende > ¿Como cuánto? Cuando se habla de números muy grandes es fácil perder la noción de su verdadera cuantía y parece que da igual un cero más o menos. Para poder comprenderlos es importante compararlos con cantidades que sean familiares: habitantes de la Tierra, altura del Everest, personas que caben en un estadio de fútbol, etc. Si oyes que el presupuesto para la construcción de un nuevo hospital es de 50 000 000 euros, seguramente la cifra no te dirá mucho. Una buena forma de comprender grandes cantidades de dinero es pensar en cuántas casas podemos comprar con ellas, ya que la compra de una casa es algo más cercano. 2.1. 2 2 El precio medio de la vivienda en España es de 2300 €/m y el tamaño medio es de 98,6 m . ¿Cuál será el coste medio de una casa? Aproxímalo por una cifra redonda. 2300 · 98,6 = 226 780 ≅ 200 000 euros. 2.2. Ahora calcula el número de casas que podrías comprar con: a) El presupuesto para construir un hospital: 50 000 000 € b) El coste del AVE Madrid-Valencia: 12 410 000 000 € c) El coste para Estados Unidos de la guerra de Irak: 540 000 000 000 € a) Con el presupuesto de un hospital: 50 000 000 : 200 000 = 250 casas b) Con el coste del AVE Madrid-Valencia: 12 410 000 000 : 200 000 = 62 050 casas c) Con el coste de la guerra de Irak: 2 700 000 casas. Números reales | Unidad 2 45 2.3. ¿Cuál de las cifras anteriores te ha resultado más sorprendente? ¿Por qué? Respuesta abierta. 2.4. Del mismo modo que el precio de una casa puede ser una buena unidad para comprender grandes cantidades de dinero, puedes elegir otras unidades personales que te ayuden a interpretar otros datos. Busca una unidad personal que te ayude a comprender la magnitud de estos titulares. a) El terremoto de Haití deja sin hogar a un millón de personas. b) El incendio de Haifa arrasa 3000 hectáreas de bosque. c) Más de 800 millones de litros de petróleo vertidos en el golfo de México. Una unidad podría ser el número de habitantes de su localidad. Aprende a pensar > Publicidad engañosa Un anuncio televisivo de Muchahorro dice: Primero creamos el 3 × 2; después, la segunda unidad a mitad de precio, y ahora Muchahorro anuncia en exclusiva el descuento 20-30, una promoción más flexible para ti que convierte tu compra en ahorro. Las dos primeras ofertas son conocidas y la nueva consiste en que, si compras dos artículos iguales, te hacen un 20 % de descuento en los dos, y si compras tres, te hacen el 30 %. 2.1. Estudia cada una de las ofertas y di cuál es la mejor si quieres comprar 2, 3, 4, 5 o 6 productos iguales. Si quiero comprar dos unidades, con la oferta 3 × 2 no obtengo ningún descuento, con la segunda unidad a mitad de precio me hacen un 25 % de descuento, y con el descuento 20-30, solo un 20 %, así que la mejor es la oferta la segunda unidad a mitad de precio. Si compro tres unidades con la oferta 3 × 2 me hacen un descuento del 33,3 %. Si las compro con la segunda unidad a mitad de precio pagaré dos unidades y media, lo que supone un descuento del 16,6 %, y si las compro con el descuento 20 - 30, solo del 30 %. Así que la mejor es la 3 × 2. Si quiero comprar cuatro unidades, con 3 × 2 tendría que pagar 3 de 4, lo que supone un ahorro del 25 %. Con la segunda unidad a mitad de precio también pagaría 3 de 4, y con descuento 20-30 podría pagar todas con un 20 % de descuento o 3 con un 30 % y la cuarta unidad sin descuento, lo que supone un descuento del 22,5 %, así que las mejores son 3 × 2 y la segunda unidad a mitad de precio. Si quiero comprar cinco unidades, con 3 × 2 tendría que pagar 4 de 5, lo que supone un ahorro del 20 %. Con la segunda unidad a mitad de precio también pagaría 4 de 5, y con descuento 20-30 pagaría dos con un descuento del 20 % y las otras 3 con un descuento del 30 %, lo que supone un descuento del 26 %, así que el descuento 20 - 30 es el mejor. Si quiero comprar seis unidades, con 3 × 2 obtendré un descuento del 33,3 %; con la segunda unidad a mitad de precio, un descuento del 25 %, y con descuento 20 - 30, uno del 30 %, así que 3 × 2 es la mejor. 46 Unidad 2 | Números reales 2.2. La publicidad insinúa que la oferta descuento 20-30 es la mejor. ¿Es eso cierto en todos los casos? ¿Qué ventajas puede tener sobre las otras? No es cierto siempre, pero tiene la ventaja de que me deja elegir entre comprar 2 o 3 artículos iguales. 2.3. ¿Crees que la publicidad era engañosa? ¿En qué sentido? Respuesta abierta. 2.4. La publicidad afirma que la promoción “convierte tu compra en ahorro”. ¿Crees que esto es cierto? Respuesta abierta. 2.5. ¿Te parece que la mayor parte de los consumidores evalúan las ofertas? Si no es así, ¿a qué lo atribuyes? (No conocen las matemáticas suficientes, la información es oscura…). Debate tu opinión en http://matematicas20.aprenderapensar.net. Respuesta abierta. Números reales | Unidad 2 47 Proyecto editorial: Equipo de Educación Secundaria del Grupo SM Autoría: Fernando Alcaide, Antonia Aranda, Rafaela Arévalo, Juan Jesús Donaire, Vanesa Fernández, Joaquín Hernández, Juan Carlos Hervás, Miguel Ángel Ingelmo, Cristóbal Merino, María Moreno, Miguel Nieto, Isabel de los Santos, Esteban Serrano, Yolanda A. Zárate Edición: Oiana García, Inmaculada Fernández, Aurora Bellido Revisión contenidos solucionario: Juan Jesús Donaire Corrección: Javier López Ilustración: Modesto Arregui, Estudio “Haciendo el león”, Jurado y Rivas, Félix Anaya, Juan Francisco Cobos, José Santos, José Manuel Pedrosa Diseño: Pablo Canelas, Alfonso Ruano Maquetación: SAFEKAT S. L. Coordinación de diseño: José Luis Rodríguez Coordinación editorial: Josefina Arévalo Dirección del proyecto: Aída Moya (*) Una pequeña cantidad de ejercicios o apartados han sido marcados porque contienen alguna corrección en su enunciado respecto al que aparece en el libro del alumno. Gestión de las direcciones electrónicas: Debido a la naturaleza dinámica de internet, Ediciones SM no puede responsabilizarse de los cambios o las modificaciones en las direcciones y los contenidos de los sitios web a los que remite este libro. Con el objeto de garantizar la adecuación de las direcciones electrónicas de esta publicación, Ediciones SM emplea un sistema de gestión que redirecciona las URL que con fines educativos aparecen en la misma hacia diversas páginas web. Ediciones SM declina cualquier responsabilidad por los contenidos o la información que pudieran albergar, sin perjuicio de adoptar de forma inmediata las medidas necesarias para evitar el acceso desde las URL de esta publicación a dichas páginas web en cuanto tenga constancia de que pudieran alojar contenidos ilícitos o inapropiados. Para garantizar este sistema de control es recomendable que el profesorado compruebe con antelación las direcciones relacionadas y que comunique a la editorial cualquier incidencia a través del correo electrónico ediciones@grupo-sm.com. Cualquier forma de reproducción, distribución, comunicación pública o transformación de esta obra solo puede ser realizada con la autorización de sus titulares, salvo excepción prevista por la ley. Diríjase a CEDRO (Centro Español de Derechos Reprográficos, www.cedro.org) si necesita fotocopiar o escanear algún fragmento de esta obra, a excepción de las páginas que incluyen la leyenda de “Página fotocopiable”. © Ediciones SM Impreso en España – Printed in Spain