2. Aislamiento térmico.

Anuncio
Aislamiento térmico en
cañerías y estanques
Fundamentos teóricos, ejemplos prácticos.
Índice
1.
Fundamentos teóricos transferencia de calor.
1.1. Conducción.
1.2. Convección.
1.3. Radiación.
2.
Aislamiento térmico.
2.1. Que es el aislamiento térmico.
2.2. Clasificación de aislantes.
2.3. Aspectos a considerar a la hora de aislar.
2.4. Espesor de aislante.
3.
Tipos de aislantes.
3.1. Armaflex.
3.2. Lana de vidrio.
3.3. Lana mineral.
3.4. Celular Glass.
3.5. Poliuretano.
3.6. Silicato de calcio.
4.
5.
Ejemplos de cálculo.
Ventajas del aislamiento.
5.1. Pérdidas de calor en ductos no aislados.
5.2. Pérdidas en paredes planas.
5.3. Pérdidas en estanques verticales.
5.4. Pérdidas en estanques horizontales.
5.5. Espesor de aislamiento óptimo económico.
1. Fundamentos teóricos de Transferencia de calor.
1.1.
Conducción.
Es la transmisión de calor a través de la materia, a nivel atómico a
través de cuerpos en contacto.
Dirección de conducción
1. Fundamentos teóricos de Transferencia de calor.
1.1.
Conducción.
Conducción de calor en superficies planas, tales como paredes de hornos,
paredes, etc.
Qconducción =
k ⋅ ∆T kcal
 h − m2 
e
Dirección de conducción
Donde: k : Coeficiente de conductividad térmica, depende de cada
material.[kcal/h-m-ºK]
e : espesor de la placa [m]
∆ T : Diferencia de Temperaturas entre las caras de la placa plana.
1. Fundamentos teóricos de Transferencia de calor.
1.1.
Conducción.
Conducción de calor en superficies cilíndricas, tales como cañerías,
estanques, por unidad de largo
Qconducción = 2 ⋅ π ⋅
k ⋅ ∆T kcal
[ h−m ]
re 

ln 

 ri 
Dirección de conducción
Donde: k : Coeficiente de conductividad térmica, depende de cada
material. [kcal/h-m-ºK]
re; ri : radio exterior ; radio interior [m]
∆ T : Diferencia de Temperaturas entre las caras del cilindro.
1. Fundamentos teóricos de Transferencia de calor.
1.1.
Conducción.
Conducción de calor en superficies esféricas.
Qconducción
re ⋅ ri
= 4 ⋅π ⋅ k
⋅ ∆T [ kcal h ]
re − ri
Dirección de conducción
Donde: k : Coeficiente de conductividad térmica, depende de cada
material. [kcal/h-m-ºK]
re; ri : radio exterior ; radio interior [m]
∆ T : Diferencia de Temperaturas entre las caras de la esfera.
1. Fundamentos teóricos de Transferencia de calor.
1.2.
Convección.
Esta forma de transmisión de calor se relaciona directamente con el
movimiento de fluidos. Existen dos tipos de convección.
- Convección natural
- Convección Forzada
1. Fundamentos teóricos de Transferencia de calor.
1.2.
Convección.
Qconvección = A ⋅ h ⋅ ∆T [ kcal h ]
Donde
A : Área superficie.[m2Dirección
]
de conducción
h : Coeficiente de transferencia de calor por convección.[kcal/h-m^2]
∆ T : Diferencia de Temperaturas entre las caras de la placa plana.
Si se tiene convección natural o convección forzada determina la forma de
cálculo del coeficiente de transferencia de calor, en función de los números
adimensionales estudiados, Nusselt, Prandtl, Reynolds y Grashof.
1. Fundamentos teóricos de Transferencia de calor.
1.3.
Radiación.
Corresponde a la transferencia de calor a través de ondas
electromagnéticas, no tienen la necesidad de un medio de
transferencia, un claro ejemplo es la radiación solar.
Q radiativ o =
Donde
ε · Ae · σ · ( T pared
4
– T corriente;aire
4
)
ε: Emisividad del acero al carbono.
σ: Constante de Boltzman [W/m^2-K^4]
Ae: Área del manto exterior del ducto.[m2]
Tcorriente aire y Tagua: Son temperaturas absolutas del aire como
del agua, en grados Kelvin.
2. Aislamiento térmico.
2.1. ¿Que es el aislamiento térmico?
Es el evitar la transferencia de calor no deseada desde
un cuerpo al ambiente o viceversa.
2. Aislamiento térmico.
2.2. Clasificación de aislante.
Los aislantes se clasifican en función de la forma de transferencia de calor
y en función de la temperatura de utilización.
– Según la forma de transferencia de calor:
• En masa
• Reflectantes
– En función de la temperatura:
• Se considera alta temperatura generalmente por sobre de los 100
[ºC], pudiendo ser a menores temperaturas, dependiendo de la
aplicación.
• Para temperaturas mayores a 1.250 [ºC] deben utilizarse materiales
refractarios.
2. Aislamiento térmico.
2.2. Clasificación de aislante.
Aislantes masa
• Pequeñas bolsas de aire en su interior.
• Imponen una alta resistencia a la conducción del calor.
(kaire a 0ºC= 0,02 [kcal/h-m-ºC], kaire a 200 ºC=0,03[kcal/h-m-ºC]).
• No es posible que ocurra convección en su interior.
2. Aislamiento térmico.
2.2. Clasificación de aislante.
Aislantes reflectantes.
• Se caracterizan por tener una alta reflexividad y baja emisividad.
• Refleja gran parte del calor recibido y no alcanza altas temperaturas
superficiales.
• Usualmente se utilizan como última capa de los aislantes en masa
(capa exterior).
2. Aislamiento térmico.
2.3. Aspectos a considerar a la hora de aislar.
–
–
–
–
–
–
–
–
–
–
Tipo de aislante necesario, en masa o reflectante.
Conductividad térmica del aislante en masa.
Emisividad del aislante reflectante.
Campo de temperaturas de trabajo.
Densidad del aislante en masa.
Resistencia a la impregnación de humedad.
Resistencia a la combustión.
Facilidad de colocación.
Resistencia al daño y deterioro.
Resistencia a la deformación.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Variables que definen el espesor de aislamiento.
•
•
•
•
Radio de la tubería.
Radio del aislante.
Conductividad térmica del aislante.
Resistencia térmica deseada.
JHG1
2. Aislamiento térmico.
2.4. Espesor del aislante.
Espesor Crítico de Aislamiento
Es una relación entre la conductividad del “aislante” y el
coeficiente convectivo del “ambiente” que rodea el ducto, se
relaciona de la siguiente manera:
kaislante
rC =
hambiente
Diapositiva 16
JHG1
Incluir tablas de k comunes y h comunes
JHG Ingeniería Ltda.; 01/06/2007
2. Aislamiento térmico.
2.4. Espesor del aislante.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Espesor crítico de aislamiento.
Si el valor de rC es mayor al radio exterior del ducto, la
transferencia de calor “aumentará” al colocar el aislante.
En este caso conviene evaluar el re con un nuevo aislante, ya
que el “h” depende de las condiciones externas al ducto y por lo
tanto poco probable de modificar.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Espesor crítico de aislamiento.
Si el valor de rC es menor al radio exterior del ducto, la
transferencia de calor “disminuirá” al colocar el aislante.
En este caso conviene instalar el aislante y corresponde
determinar el espesor de este.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Qsin_ aislamiento = h ⋅ 2 ⋅ π ⋅ r ⋅ (Ti − Te )
= 3 ⋅ 2 ⋅ π ⋅ 0.025 ⋅ ( 200 − 20 ) = 84, 4 [W m ]
Espesor crítico de aislamiento.
Aire T = 20 [ºC]
Vidrio celular k = 0,17 [W/mºC]
Lana mineral k = 0,035
hambiente = 3 [W/m2ºC]
Qaislado
Vapor T = 220 [ºC]
Tubería acero De = 0,10 [m]
2 ⋅ π ⋅ (Ti − Te )
Qaislado =
r
r
 1
ln  C _ aislado e _ ducto
+

kaislante 
( rC _ asilante ) ⋅ hexterno

2 ⋅ π ⋅ ( 200 − 20 )
=
= 105, 7 [W m ]
ln 0, 0567 0, 025
+ 1
0,17
(0, 0567) ⋅ 3
(
)
re =
kaislante
hambiente
re =
0,17
= 0, 0567[m] > rexterno _ ducto = 0, 05[m]
3
T pared = 200 [ºC]
2 ⋅ π ⋅ (Ti − Te )
Qaislado =
Qaislado
r
r
 1
ln  C _ aislado e _ ducto
+

k
kaislante 
(rC _ asilante ) ⋅ hexterno

re = aislante
hambiente
2 ⋅ π ⋅ ( 200 − 20 )
=
= 50,9 [W m ]
0, 035
ln 0, 0117 0, 025
+ 1
r
=
= 0, 0117[m] < rexterno _ ducto = 0, 05[ m]
e
0, 035
(0, 0117) ⋅ 3
3
(
)
2. Aislamiento térmico.
2.4. Espesor del aislante.
Cálculo espesor
– Tablas.
– Algoritmos de cálculo.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Cálculo espesor: Tablas.
Útil para decidir el aislamiento o no de instalaciones pequeñas.
Basado mayoritariamente en criterios económicos.
Ejemplo de utilización
2. Aislamiento térmico.
2.4. Espesor del aislante.
Cálculo pérdidas en ducto
Temperatura Impuesta
pared: 45 [ºC]
Procedimiento de cálculo coeficientes de convección
T ambiente 20 [º C]; V aire: 10 [m/s]; he:33,65 [kcal/h-m^2-K]
Agua a 60 [º C]; V agua: 1 [m/s]; h : 3 338 [kcal/h-m^2-K]
Cañería acero al carbono: De: 114,3 [mm] ; Di: 80,06 [mm]; L: 50[m]
Q = 8 250 [kcal/h]
Q =165 [kcal/h] por metro lineal
Equivalente a:
En un año (8000 horas) = 5.2 [MMBTU/año-m]
Considerando un 85 % de eficiencia
de la caldera
Combustible utilizado Gas Natural
12,5 [US$/MMBTU]
Pérdida de dinero en combustible producto de las pérdidas
del ducto 76,9 [US$/año] => por metro de tubería.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Cálculo perdidas en ducto
Temperatura Impuesta
pared: 45 [ºC]
Pérdidas aprox: 110 [kcal/h x m lineal]
Diferencia de Temperatura : 40 [ºC]
Diámetro 114 [mm]
2. Aislamiento térmico.
2.4. Espesor del aislante.
Espesor de aislante
2. Aislamiento térmico.
2.4. Espesor del aislante.
Cálculo espesor
Algoritmo de cálculo.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Cálculo espesor
Algoritmo de cálculo.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Cálculo espesor
Algoritmo de cálculo.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Cálculo espesor
Algoritmo de cálculo.
Resultados.
⇒ Con un aislante (lana
mineral) de 18 [mm] de
espesor se obtiene:
⇒133,13 [kcal/h] de ahorro
⇒ 1.065.040 [kcal/año]
⇒ 4,23 [MMBTU/año]
⇒ 52,88 [US$/año]
⇒ Estos son US$ ahorrados
por cada metro de tubería.
2. Aislamiento térmico.
2.4. Espesor del aislante.
Cálculo espesor
Disminución calor en función del aumento del espesor
400
350
300
Q [W]
250
200
150
100
50
0
0
5
10
15
20
25
30
Espesor aislante [m m ]
35
40
45
3. Tipo de aislantes.
3.1. Armaflex.
3.2. Lana de vidrio.
3.3. Lana mineral.
3.3. Cellular Glass.
3.4. Poliuretano.
3.5. Silicato de calcio.
3. Tipo de aislantes.
3.1. Armaflex.
La espuma elastomérica es un aislamiento térmico a
base de caucho sintético y con estructura celular
cerrada.
3. Tipo de aislantes.
3.1. Armaflex.
Características técnicas
3. Tipo de aislantes.
3.2. Lana de vidrio.
La lana de vidrio es tanto un aislante térmico como
acústico , importantes ventajas son su bajo peso y alta
resilencia, lo que implica ahorros en el transporte.
Su principal uso es en aislasión de techos
3. Tipo de aislantes.
3.2. Lana de Vidrio.
Características técnicas
– Conductividad térmica desde 0,033 a 0,045 [W/m|C] a 20 [|C].
– Incombustibilidad.
– Durabilidad y estabilidad dimensional.
– Fácil instalación y manipulación.
– No es tóxico.
– Resistente a la putrefacción.
3. Tipo de aislantes.
3.3. Lana mineral.
La lana mineral tiene una densidad 200 veces mayor a
la lana de vidrio.
El coeficiente de conductividad térmica de la lana
mineral es de 0,030 a 0,040 [W/°C m]
3. Tipo de aislantes.
3.3. Lana mineral.
Características técnicas
– Alta capacidad de aislación y absorción acústica.
– Incombustibilidad.
– Fácil manipulación e instalación.
3. Tipo de aislantes.
3.4. Cellular Glass, espuma celulósica.
Material constituido por células de celulosa, cubiertas
por una pared de vidrio.
3. Tipo de aislantes.
3.4. Cellular Glass.
Características técnicas
–
–
–
–
–
–
Formato: Placas, bloques, Medias Cañas, curvas.
Espesores: 1” hasta 4”.
Diámetros interiores: ½” hasta 18”.
Densidad: 120 [kg/m3].
Conductividad térmica: 0,039 [W/m K]
Usos: En protecciones industriales con temperatura de trabajo entre 268 °C a 482 °C.
– Ventajas: Estanqueidad total y definitiva al vapor de agua, al agua y
gas, incompresible, incombustible, protege de la corrosión.
3. Tipo de aislantes.
3.5. Poliuretano.
Este material es aplicable in situ en forma de spray
presenta estructura ligera, rígida y de celdas cerradas.
3. Tipo de aislantes.
3.5. Poliuretano.
Características técnicas.
–
–
–
–
–
–
–
–
–
Formato: Spray, Placas y medias cañas.
Espesores: Desde 25 [mm] hasta 100 [mm].
Diámetros interiores: Desde ½ “ hasta 24”.
Densidad: 35 a 40 [kg/m3].
Conductividad Térmica: 0,020 – 0,025 [W/mK]
Temperaturas de utilización: -200 a 110 [ºC]
Usos: Parades, ductos, cañerías.
Aplicaciones: In situ en forma de Spray, vertido o colado
Ventajas: Se moldea de acuerdo a la superficie, resistente a la
compresión, autoextingible.
3. Tipo de aislantes.
3.6. Silicato de calcio.
Es una aislación moldeada a altas temperaturas
compuesta de silicato de calcio.
3. Tipo de aislantes.
3.6. Silicato de calcio.
Características técnicas.
–
–
–
–
–
–
–
Formato: Placas y medias cañas.
Espesores: Desde 1” hasta 4”.
Diámetros interiores: Desde ½ “ hasta 38”.
Densidad: 232 [kg/m3].
Conductividad térmica: 0,07 – 0,09 [W/mK]
Usos: Cañerías y equipos industriales sometidos a alta temperatura.
Ventajas: Durable y resistente, temperatura de trabajo de – 40 [°C] a
659 [°C], resistente al fuego, bajo contenido de cloro y libre de
asbestos.
4. Ventajas del aislamiento.
•
Conservación de la energía por la reducción de las pérdidas o ganancias
de calor en cañerías, ductos, estanques, equipos, paredes y estructuras.
•
Control de las temperaturas superficiales de equipos y estructuras
permitiendo seguridad y confort para las personas.
•
Ayudar al control de temperatura en un proceso químico, una pieza de
equipamiento, o una estructura.
•
Prevenir condensación del vapor sobre las superficies en ambientes con
temperatura bajo el punto de rocío.
•
Reducir las fluctuaciones de temperatura en los espacios cerrados
cuando el calentamiento o enfriamiento no es necesario o no esté
disponible.
•
Proveer protección contra el fuego.
5. Ventajas del aislamiento.
5.1. Pérdidas de calor en ductos no aislados y accesorios..
Insertar tablas de manual de EE
Escanear
5. Ventajas de aislamiento.
5.2. Pérdidas de calor en superficies planas
5. Ventajas del aislamiento.
5.3. Pérdidas en estanques verticales.
5. Ventajas del aislamiento.
5.4. Pérdidas en estanques, en estanques horizontales.
5. Ventajas del aislamiento.
5.5. Espesor de aislamiento óptimo económico
Muchas Gracias
JHG Ingeniería.
www.jhg.cl
Convección natural
Cálculo Coeficiente de Transferencia de Calor por Convección para el aire.
Convección Natural
he ⋅ d
= Nusselt
k
Donde
k
: Conductividad térmica del aire [W/m].
Nusselt
: Número adimensional
d
: Diámetro exterior del ducto [m].
Convección natural
Cálculo Coeficiente de Transferencia de Calor por Convección natural para el
aire.
Cálculo de Nusselt.
m =
Nusselt =
C · GrPr
m
C =
Donde
0,25
0,48
Gr
: Número adimensional de Grashoft.
Pr
: Número adimensional de Prandt.
C
y
m
son
coeficientes
experimentales, parametrizados a
partir del valor de “GrPr”.
Convección natural
Cálculo Coeficiente de Transferencia de Calor por Convección para el aire.
Cálculo del Número de Grashoft.
Gr =
9,81 · β · ( T pared – T corriente ) ·
d
ν
Donde
2
B
: Coeficiente de dilatación = 1 / Tpelícula [1 / K]
d
: Diámetro exterior del ducto [m].
v
: Viscosidad dinámica del aire [m/s^2].
Cálculo del Número de Prandtl.
Pr =
Donde
3
µ ⋅c
k
u
: viscosidad dinámica del aire [kg/m-s].
k
: Conductividad térmica del aire [W/m].
c
: Calor específico del aire [J/kg-K].
Convección natural
Valores Obtenidos para determinar he:
Gr
: 4,04 E 6
Pr
: 0,7296
Nusselt
: 19,89
Nu = 0.48 ⋅ ( Gr ⋅ Pr )
0.25
Nusselt ⋅ k
he =
d
he = 4,437
[W/m^2-K]
he = 3,815
[kCal/h-m^2-K]
he = 15,14
[BTU/h-m^2-K]
Convección forzada
Cálculo de he para corriente en convección forzada.
Vcorriente aire=10 [m/s]
Tº corriente aire= 5 [ºC]
Debemos calcular he al despejarlo de la siguiente ecuación:
Nusselt =
he ⋅ d
kaire
Pero para el cálculo de Nusselt se determina la ecuación a utilizar en función del Número de Reynolds, por lo cual:
Numero de Reynold
Donde
Re =
ρ · Vaire ·
ρ : Densidad del aire [kg/m3].
d
Vaire: Velocidad de la corriente exterior de aire [m/s]
µ
d: Diámetro exterior del ducto [m]
µ: Viscosidad dinámica del aire [kg / m – s].
Convección forzada
Cálculo de he para corriente en convección forzada.
Numero de Nusselt
Nusselt =
0,3 +
0,62 · Re
1 +
Donde
(
0,4
· Pr (
0,5
2 /
3
1 /
) (
3
1 /
)
4
Pr
Re : Número de Reynolds.
Pr : Número de Prandtl
Número de Prandtl
Pr =
Donde
µ ⋅c
k
µ: Viscosidad cinemática [kg/m-s]
c: Calor específico [J/kg-K]
k: Conductividad térmica del aire [W/m-K]
)
·
1 +
Re
282000
(
5 /
8
) (
4 /
5
)
Convección forzada
Cálculo de he para corriente en convección forzada.
Evaluando tenemos
Re = 68.955
Nusselt =
0,3 +
Pr = 0,7267
0,62 · Re
1 +
0,4
0,5
(
· Pr (
2 /
3
Pr
Nusselt = 170.2
he =
Nusselt ⋅ kaire
d
he= 39,13 [W/m^2-K]
he= 33,65 [kCal/h-m^2-K]
he= 133,65 [BTU/h-m^2-K]
1 /
) (
3
1 /
)
4
)
·
1 +
Re
282000
(
5 /
8
) (
4 /
5
)
Convección forzada
Al reemplazar los resultados obtenidos en la siguiente ecuación se obtiene:
1
U =
1
h i · Ai
ln
+
re
ri
2 · π · k acero · L
+
U = 683,6
[W/m^2-K]
U = 587.8
[kCal/h-m^2-K]
1
h e · Ae
Por lo tanto el calor cedido por el agua es de:
Q total =
U · Ai · ( T corriente
Q total = 8.252
– T agua )
[kCal/h]
Cálculo del coeficiente de transferencia de calor por convección para el agua
Convección Forzada
Nusseltagua =
Donde
hi ⋅ di
kagua
hi
: Coeficiente de transferencia de calor por convección para el agua.
kagua
: Conductividad térmica del agua.
Nusseltagua : Número adimensional de Nusselt para el agua.
di
: Diámetro interior del ducto.
Cálculo del coeficiente de transferencia de calor por convección forzada para
el agua
Numero de Nusselt para el agua:
Nusselt agua
Donde
=
0,023 · Re agua
Re
: Número adimensional de Reynolds.
Pragua
: Numero adimensional de Prandtl.
0,8
· Pr agua
0,3
Nusseltagua : Número adimensional de Nusselt para el agua.
: Diámetro interior del ducto.
di
Número de Reynolds
Re =
Donde
Número de Prandtl
V ⋅d
Pr =
ν
V: Velocidad del agua
Donde
µ ⋅c
k
u: Viscosidad dinámica del agua
d: Diámetro interior del ducto
c: Calor específico del agua
v: Viscosidad cinemática del agua
k: Conductividad térmica del agua
Cálculo coeficiente de transferencia de calor por convección forzada para el aire
Valores Obtenidos para determinar hi:
Re
: 167.198
Pr
: 3,052
Nusselt
: 484.9
hi =
k agua ·
Nusselt agua
=
0,023 · Re agua
Nusselt agua
di
hi = 3.882
[W/m^2-K]
hi = 3.338
[kCal/h-m^2-K]
hi = 13.246
[BTU/h-m^2-K]
0,8
· Pr agua
0,3
Cálculo coeficiente de transferencia de calor por convección forzada para el aire
Cálculo de he para corriente en convección forzada.
Vcorriente aire=10 [m/s]
Tº corriente aire= 5 [ºC]
Debemos calcular he al despejarlo de la siguiente ecuación:
Nusselt =
he ⋅ d
kaire
Pero para el cálculo de Nusselt se determina la ecuación a utilizar en función del Número de Reynolds, por lo cual:
Numero de Reynold
Donde
Re =
ρ · Vaire ·
ρ : Densidad del aire [kg/m3].
d
Vaire: Velocidad de la corriente exterior de aire [m/s]
µ
d: Diámetro exterior del ducto [m]
µ: Viscosidad dinámica del aire [kg / m – s].
Cálculo coeficiente de transferencia de calor por convección forzada para el aire
Cálculo de he para corriente en convección forzada.
Numero de Nusselt
Nusselt =
0,3 +
0,62 · Re
1 +
Donde
(
0,4
· Pr (
0,5
2 /
3
1 /
) (
3
1 /
)
4
Pr
Re : Número de Reynolds.
Pr : Número de Prandtl
Número de Prandtl
Pr =
Donde
µ ⋅c
k
µ: Viscosidad cinemática [kg/m-s]
c: Calor específico [J/kg-K]
k: Conductividad térmica del aire [W/m-K]
)
·
1 +
Re
282000
(
5 /
8
) (
4 /
5
)
Cálculo coeficiente de transferencia de calor por convección forzada para el aire
Cálculo de he para corriente en convección forzada.
Evaluando tenemos
Re = 68.955
Nusselt =
0,3 +
Pr = 0,7267
0,62 · Re
1 +
0,4
0,5
(
· Pr (
2 /
3
Pr
Nusselt = 170.2
he =
Nusselt ⋅ kaire
d
he= 39,13 [W/m^2-K]
he= 33,65 [kCal/h-m^2-K]
he= 133,65 [BTU/h-m^2-K]
1 /
) (
3
1 /
)
4
)
·
1 +
Re
282000
(
5 /
8
) (
4 /
5
)
Descargar