ة وا رض# م ا و%& ' م ھ12 ي ا )ك% ت ىا+ ت ذ ﻣ دة ا ا أ ذ ا:ز و ا ي ﻣ ا.ﻣ :% 5 درس ا وال ا3 ﻣ f ( x) = − (x (x 2 2 − 1)′ − 1) 0 f ( x) = − 2 (5 x ( x −1) 2 *ا وال ا 2 k ∈ ℝ , - F ( x) = 1 + k اذن 2 f ( x) = x −1 1 f ( x ) = 2 2x + 1 = ( 2 x + 1)′ ( 2x + 1) 2 (6 k ∈ℝ, - F ( x) = 1 1 +1 2 ( 2x +1) 1 +1 2 +k 1 x اذن ) 2x + 1 + k 70 3 (x f ( x) = 3 ( x 2 − 1) 2 x x +1 2 = (x 2 + 1)′ x2 + 1 :, : *ن k ∈ℝ دا 1 1 F ( x) = 5 × x5 + 3 × x2 + 1x + k اذن 5 2 f ( x) = (8 1 7 +cos x +sin x −1(2 اذن k ∈ℝ f ( x) = sin x + x cos x = x′sin x + x( sin x)′ (3 k ∈ ℝ , - F ( x) = x × sin x + k اذن 0 f ( x ) = cos xe sin x = ( sin x )′ e sin x (9 I f ا 6 Iل د . - دا , : ن, I f +g ا 1 3 ( 2 x − 1)′ ( 2 x − 1) (4 2 k ∈ ℝ , - F ( x) = 1 × 1 ( 2x −1)3+1 + k اذن 2 3 +1 k ∈ ℝ , - F ( x) = 1 ( 2x −1)4 + k 70 و 8 f ( x ) = ( 2 x − 1) = 3 F ( x ) = e sin x + k 70 و *ا وال ا ℝ y0 و I x F ( x ) = 2 x + sin x − cos x − x + k اذن x4 + 2 > 0 1 x 3 (8 x +2 4 f ( x) = 5x4 + 3x +1 (1: %) :أ k ∈ ℝ , - F ( x) = x2 + 1 + k اذن k ∈ℝ داf :1 % 5 7 ,I ا دا أF و, I ل ھ ا والI f ا *ا وال ا , x ֏ F ( x) + k : " I ا f ( x ) = cos xe sin x (9 2 x +1 ′ 4 x3 1 ( x + 2) 0 = x4 + 2 4 x4 + 2 - F ( x ) = 1 ln x 4 + 2 + k : 4 1 F ( x ) = ln ( x 4 + 2 ) + k : 4 :8 92 Iل , I f ا دا أ f $ % و, I " ! ق# F دا ( ∀x ∈ I ) ; F ′ ( x ) = f ( x ) أي, ھ (7 f ( x ) = 2 2 x + 1 (6 I = ℝ; f ( x ) = (7 kf . :% د F % 5 ا وال ا f %ا ا − a sin ( ax + b ) cos ( ax + b ) a cos ( ax + b ) e sin ( ax + b ) l n x +k 1 x u ′ + v′ ln u ( x ) + k u′ ( x ) 1 x r +1 + k r +1 eu + k x r ; r ∈ ℚ∗ −{−1} u ′ × v + u × v′ 1 +k u u +k v u′ u2 u ′ × v − u × v′ v2 u n ×u ′ 1 n +1 u +k n +1 f %ا ا e +k u ×v + k − F % 5 ا وال ا x u +v + k :ذ ا داf د و 2 f ( x) = د وال ا (5 f ( x ) = ( 2 x − 1)3 (4 x k ∈ℝ f ( x) = ت5 7 و8 ر92 :% 5 ا وال ا :% أﻣ 4 +cosx+sinx−1 (2 f ( x) =5x +3x+1(1 f ( x) = k ∈ ℝ , - F ( x) = 2 ( 2x + 1) + k 70 و 3 2 2 ( 2x +1) 2 = 3 3 د: f ( x) = sin x + x cos x (3 3 2 F ( x) = 1 x . - دk,د داf :2 % 5 7 I ا/0 x0 وI ل . 1 دا أ5 6 داf 2 إذا G ة-و دا أ916 G ( x0 ) = y0 :, :" / دا:3 % 5 7 .I دا أ داg وf :4 % 5 7 k و, I ل دا أG وF 2 إذا g وf ا ا1 ا دا أF + G ا ا .I ا دا أkF ا ا وال ا% 5 ول دوال أ: F % 5 ا وال ا ax + k ; k ∈ ℝ 2 x + k 2 f %ا ا a; ( a ∈ ℝ ) x 1 n+1 x +k n +1 xn ; n ∈ ℕ∗ − {1} u ′eu 1 +k x 2 x +k − cos x + k sin x sin x + k 1 x2 1 x cos x 2 u +k u′ u tan x + k ( u ( x) ) − 1 + tan2 x = 1 cos2 x http:// xyzmaths.e-monsite.com