EL TELESCOPIO VICTOR HUGO GONZÁLEZ SÁNCHEZ FANNY SANTIAGO TORRES GERMAN ALFREDO GUTIERREZ LIBERATO JESSICA LORENA TORRES MORENO COLEGIO DE BOYACÁ SECCIÓN FRANCISCO DE PAULA SANTANDER TUNJA 2009 EL TELESCOPIO VICTOR HUGO GONZÁLEZ SÁNCHEZ FANNY SANTIAGO TORRES GERMAN ALFREDO GUTIERREZ LIBERATO JESSICA LORENA TORRES MORENO 1105 PRESENTADO A: Lic. MARTHA ROSAURA REYES ROMERO COLEGIO DE BOYACÁ SECCIÓN FRANCISCO DE PAULA SANTANDER TUNJA 2009 2 TABLA DE CONTENIDO Pág. 0. INTRODUCCIÓN 4 1. DEFINICIÓN 5 2. HISTORIA 6 3. CARACTERÍSTICAS 7 4. TIPOS DE TELESCOPIOS 9 5. PROPIEDADES Y FÓRMULAS 13 6. TELESCOPIOS FAMOSOS 19 7. CONCLUSIONES 20 8. BIBLIOGRAFÍA 21 9. ANEXOS 22 3 INTRODUCCIÓN Desde que el primer hombre que salió de su caverna, vio al cielo y se percató de la vastedad que lo rodeaba, se ha preguntado cómo funciona el mundo que lo rodea, fruto de esto vemos el astrolabio, la esfera armilar y el sextante, y asimismo, teorizando por la imposibilidad de ver más allá, como fue el caso de Aristóteles y Ptolomeo. Pero de vez en cuando, la humanidad da un gran salto, y se las ingenia para saber a ciencia cierta lo que no alcanza a percibir con sus limitados sentidos, uno de esos saltos es el telescopio, que notoriamente mejoró nuestra forma de comprender el cosmos, pudo corroborar algunas de nuestras más locas ideas, como el universo copernicano, la expansión del universo, y la curvatura del espacio-tiempo de la relatividad general, todas aberraciones antes de ser puestas a prueba bajo un par de lentes, e igualmente nos hizo comprender el pequeño papel que desempeñamos en esta pequeña roca de tercer puesto con respecto al sol. El telescopio nos quitó del centro del universo, en comparación con el resto, nos hizo pequeños, pero a la vez nos hizo enormes, gigantes en una mejor comprensión de cómo estamos ubicados en el espacio y que es lo que realmente vinimos a hacer. 4 El telescopio 1. DEFINICIÓN Un telescopio es básicamente un instrumento óptico que recoge cierta cantidad de luz y la concentra en un punto. La cantidad de luz colectada por el instrumento depende fundamentalmente de la apertura del mismo (el diámetro del objetivo). Para visualizar las imágenes se utilizan los oculares, los cuales se disponen en el punto donde la luz es concentrada por el objetivo, el plano focal. Son los oculares los que proporcionan los aumentos al telescopio: al intercambiar oculares se obtienen diferentes aumentos con el mismo instrumento. La idea principal en un telescopio astronómico es la captación de la mayor cantidad de luz posible, necesaria para poder observar objetos de bajo brillo, así como para obtener imágenes nítidas y definidas, necesarias por ejemplo para observar detalles finos en planetas y separar estrellas dobles cerradas. 1.1 Definición etimológica: Se denomina telescopio (del griego τῆλε "lejos" y σκοπέω "ver") al instrumento óptico que permite ver objetos lejanos con mucho más detalle que a simple vista. Es herramienta fundamental de la astronomía, y cada desarrollo o perfeccionamiento del telescopio ha sido seguido de avances en nuestra comprensión del Universo. 5 2. HISTORIA Generalmente, se atribuye su invención a Hans Lippershey, un fabricante de lentes alemán, pero recientes investigaciones del informático Nick Pelling divulgadas en la revista británica History Today,[1] atribuyen la autoría a un gerundés llamado Juan Roget en 1590, cuyo invento habría sido copiado (según esta investigación) por Zacharias Janssen, quien el día 17 de octubre (dos semanas después de que lo patentara Lippershey) intentó patentarlo. Poco antes, el día 14, Jacob Metius también había intentado patentarlo. Fueron estos hechos los que despertaron las suspicacias de Nick Pelling quien, basándose en las pesquisas de José María Simón de Guilleuma (1886-1965), sugiere que el legítimo inventor fue Juan Roget. En varios países se ha difundido la idea errónea de que el inventor fue el holandés Christian Huygens, quien nació mucho tiempo después. Galileo, al recibir noticias de este invento, decidió diseñar y construir uno. En 1609 mostró el primer telescopio astronómico registrado. Gracias al telescopio, hizo grandes descubrimientos en astronomía, entre los que destaca la observación, el 7 de enero de 1610, de cuatro de las lunas de Júpiter girando en torno a ese planeta. Conocido hasta entonces como la lente espía, el nombre "telescopio" fue propuesto primero por el matemático griego Giovanni Demisiani el 14 de abril de 1611 durante una cena en Roma en honor de Galileo, cena en la que los asistentes pudieron observar las lunas de Jupiter por medio del telescopio que Galileo había traído consigo. 6 3. CARACTERÍSTICAS El parámetro más importante de un telescopio es el diámetro de su "lente objetivo". Un telescopio de aficionado generalmente tiene entre 76 y 150 mm de diámetro y permite observar algunos detalles planetarios y muchísimos objetos del cielo profundo (cúmulos, nebulosas y algunas galaxias). Los telescopios que superan los 200 mm de diámetro permiten ver detalles lunares finos, detalles planetarios importantes y una gran cantidad de cúmulos, nebulosas y galaxias brillantes. Para caracterizar un telescopio y utilizarlo se emplean una serie de parámetros y accesorios: Distancia Focal: es la longitud focal del telescopio, que se define como la distancia desde el espejo o la lente principal hasta el foco o punto donde se sitúa el ocular. Diámetro del objetivo: diámetro del espejo o lente primaria del telescopio. Ocular: accesorio pequeño que colocado en el foco del telescopio permite magnificar la imagen de los objetos. Lente de Barlow: lente que generalmente duplica o triplica los aumentos del ocular cuando se observan los astros. Filtro: pequeño accesorio que generalmente opaca la imagen del astro pero que dependiendo de su color y material permite mejorar la observación. Se ubica delante del ocular, y los más usados son el lunar (verde-azulado, mejora el contraste en la observación de nuestro satélite), y el solar, con gran poder de absorción de la luz del Sol para no lesionar la retina del ojo. Razón Focal: es el cociente entre la distancia focal (mm) y el diámetro (mm). (f/ratio) Magnitud límite: es la magnitud máxima que teóricamente puede observarse con un telescopio dado, en condiciones de observación ideales. La fórmula para su cálculo es: m(límite) = 6,8 + 5log(D) (siendo D el diámetro en centímetros de la lente o el espejo del telescopio). Aumentos: La cantidad de veces que un instrumento multiplica el diámetro aparente de los objetos observados. Equivale a la relación entre la longitud focal del telescopio y la longitud focal del ocular (DF/df). Por ejemplo, un telescopio de 1000 mm de distancia focal, con un ocular de 10mm de df. proporcionará un aumento de 100 (se expresa también como 100X). 7 Trípode: conjunto de tres patas generalmente metálicas que le dan soporte y estabilidad al telescopio. Porta ocular: orificio donde se colocan el ocular, reductores o multiplicadores de focal (p.ej lentes de Barlow) o fotográficas. 8 4. TIPOS DE TELESCOPIOS Existen varios tipos de telescopio: refractores, que utilizan lentes; reflectores, que tienen un espejo cóncavo en lugar de la lente del objetivo, y catadióptricos, que poseen un espejo cóncavo y una lente correctora. El telescopio reflector fue inventado por Isaac Newton en 1688 y constituyó un importante avance sobre los telescopios de su época al corregir fácilmente la aberración cromática característica de los telescopios refractores 4.1 Telescopios Refractores: Un telescopio refractor es un telescopio óptico que refleja imágenes de objetos lejanos utilizando un sistema de lentes convergentes en los que la luz se refracta (Ver anexo 1). La refracción de la luz en la lente del objetivo hace que los rayos paralelos, procedentes de un objeto muy alejado (en el infinito), converjan sobre un punto del plano focal. Esto permite mostrar los objetos lejanos mayores y más brillantes. Su funcionamiento es muy similar al de un microscopio. Un refractor típico tiene dos lentes, una en el objetivo y otra en el ocular. Las curvaturas de las lentes y el material utilizado se diseñan para limitar al máximo el grado de aberración esférica y aberración cromática del instrumento. Este tipo de telescopios son muy comunes en la astronomía para aficionados y en algunos telescopios solares. Sin embargo existen importantes dificultades técnicas que impiden realizar telescopios refractores de gran tamaño y de gran apertura ya que resulta difícil elaborar lentes útiles de gran tamaño y suficientemente ligeras para el objetivo. Por otro lado hay problemas de calidad de la imagen debido a pequeñas burbujas de aire atrapadas en el cristal de la lente principal y además el material de la lente resulta opaco a determinadas longitudes de onda por lo que se pierde sensibilidad en algunas partes del espectro lumínico. La mayoría de estos problemas se resuelven utilizando un telescopio reflector. El problema de las aberraciones cromáticas se corrige parcialmente con lentes apocromáticas, aunque este tipo de telescopio tiene un elevado precio. 9 4.2 Telescopios Reflectores: Un telescopio reflector es un telescopio óptico que utiliza espejos en lugar de lentes para enfocar la luz y formar imágenes(Ver Anexo 5). No se sabe con certeza cuál es el primer telescopio reflector, pero la idea de la utilización de espejos cóncavos y convexos colocados en ángulos indicados para observar grandes regiones a grandes distancias, se le atribuye a Leonard Digges en su libro Pantometría. El libro póstumo fue completado y publicado por su hijo Thomas Digges en 1571. En 1636, Marín Mersenne, un religioso de la orden de los Mínimos, ideó un telescopio reflector que consistía en un espejo parabólico con un pequeño orificio frente a otro de menor tamaño de modo que la luz se reflejase hacia el ojo a través del orificio. En 1663 James Gregory tomó la idea de Mersenne y perfeccionó el telescopio agregando un pequeño espejo secundario cóncavo y elipsoidal que reflejase la luz procedente del espejo primario al segundo plano focal de la elipse, situado en el centro del agujero de éste, y de ahí al ocular. Sir Isaac Newton perfeccionó el telescopio reflector alrededor de 1670. Los telescopios reflectores evitan el problema de la aberración cromática, una degradación notable de las imágenes en los telescopios refractores de la época (posteriormente este problema se resolvió utilizando lentes acromáticas). El reflector clásico formado por dos espejos y un ocular se conoce como reflector Newtoniano. El reflector Newtoniano se utiliza comúnmente en el mundo de la astronomía amateur. Los observatorios profesionales utilizan un diseño algo más complejo con un foco Cassegrain. En el año 2001 existían al menos 49 reflectores con espejos primarios con un diámetro superior a 2 m. Los más grandes consisten de espejos primarios modulares y pueden tener aberturas de hasta 9-10 m. Los telescopios reflectores o Newtonianos utilizan 2 espejos, un en el extremo del tubo (espejo primario), que refleja la luz y la envía al espejo secundario y este la envía al ocular. 10 4.2.1 Consideraciones técnicas El espejo primario es el elemento óptico principal de un telescopio reflector. La distancia entre el espejo y el plano en el que se forma la imagen se llama focal. En el plano focal se puede situar un instrumento científico como una CCD o un espectrógrafo o un ocular para la observación visual directa. Los telescopios reflectores eliminan la aberración cromática pero poseen otros tipos de aberraciones ópticas. Algunos telescopios disponen de diseños más complejos para corregir algunas de estas aberraciones. Aberración esférica (el plano imagen es curvado si el espejo se desvía de la forma ideal parabólica). Coma. Distorsión del campo de visión. Las principales ventajas de los reflectores con respecto a los refractores son: En una lente el porte completo de la lente ha de estar libre de imperfecciones mientras que en un espejo basta con asegurar la perfección de su superficie. La luz de diferentes longitudes de onda atraviesa la lente medio a diferentes velocidades causando una aberración cromática. La creación de lentes acromáticas de gran tamaño que corrijan este defecto es un proceso muy costoso. Este problema es inexistente en un espejo. Existen problemas estructurales importantes para manipular lentes de gran apertura. Las lentes solo pueden ser sujetas por sus extremos y si son de gran tamaño la distorsión producida por la gravedad puede distorsionar la imagen. Un espejo puede ser sujeto por toda su superficie evitando este problema. 4.2.2 Tipos de telescopios reflectores Newtoniano. Desarrollado por Newton, poco después de la muerte de su madre (Ver anexo 2). Cassegrain. Desarrollado poco después que los telescopios newtonianos en el Siglo XVII (Ver Anexo 3). 11 Ritchey-Chretien. La más utilizada en los telescopios profesionales. Gregory. Gracias a un espejo secundario cóncavo permiten obtener una imagen no invertida apta para la observación terrestre. No son muy populares en la actualidad. Schmidt-Cassegrain. El espejo primario parabólico se sustituye por un espejo esférico y la aberración esférica se corrige con una placa de Schmidt en el espejo secundario. Permite combinar buenas características de reflectores y refractores y se suelen utilizar para obtener imágenes de amplio campo (Ver Anexo 4). También son populares entre los amateurs. Maksutov Schmidt. Utilizado para fotografías de gran campo, como en la astronomía. 12 5. Propiedades y Fórmulas Cálculos Distancia Focal La distancia focal es distancia comprendida entre el objetivo del telescopio (sea un reflector o refractor) y el plano focal del mismo. Esta medida varia según el diámetro del objetivo y del diseño del mismo (la curvatura del espejo, por ejemplo) Este dato esta siempre presente en los telescopios, incluso impreso sobre los mismos dado que es fundamental para determinar muchas características adicionales del equipo. La medida se suele dar en milímetros y sirve para calcular cosas como el aumento, la razón focal, etc. Razón Focal La razón focal (o F/D) es el índice de cuan luminoso es el telescopio. Esta medida esta relacionada con la focal y el diámetro del objetivo. Cuanto mas corta es la distancia focal y mayor el objetivo, mas luminoso será el telescopio. Esta característica es aplicable en astrofotografía y no en la observación visual. Visualmente, si trabajamos con el mismo diámetro y los mismos aumentos, la imagen será igual de luminosa sin importar la razón focal del sistema óptico. Para calcular el F/D de un telescopio solo hay que dividir la distancia focal por el diámetro del objetivo, todo en las mismas unidades: F/D = F [mm] / D [mm] Así, un telescopio de 910 mm de focal (F), con 114 mm de diámetro (D) posee una razón focal de 8. Este valor sin unidades representa cuan luminoso es el telescopio para astrofotografía. Muchas veces es llamada la "velocidad" del telescopio: se dice que es un telescopio rápido cuando su razón focal es baja (no tiene relación con las características mecánicas del mismo, sino la velocidad de recolección de luz). Como es de esperar, esto es especialmente importante en la astrofotografía, donde se pueden reducir sustancialmente los tiempos de exposición si se utilizan sistemas de F/D bajos. 13 En telescopios de diseño Schmidt-Cassegrain se suele utilizar, tanto para la observación visual como para la astrofotografía, un reductor de focal, que reduce el F/D de un equipo F/D 10 a solo F/D 6.3, obteniéndose imágenes mas luminosas. Aumentos Los aumentos o ampliación no son la cantidad de veces mas grande que se observa un objeto, como suele creerse, sino que se refiere a como será observado si nos ubicásemos a una distancia "tantas veces" mas cercana al objeto. Por ejemplo: si observamos a la Luna con 36 aumentos (36x, nombrado 36 "por") y sabemos que esta se localiza a unos 384.000 kilómetros de distancia, nos aparecerá tal cual seria observada desde solo 10.666 kilómetros. Esto se calcula fácilmente dividiendo la distancia por la ampliación utilizada. Para saber cuantos aumentos estamos utilizando debe conocerse la distancia focal de nuestro telescopio y la distancia focal del ocular utilizado, dado que son estos últimos los que proveen de la ampliación a cualquier telescopio. A menor distancia focal, mayor será la ampliación utilizada. Para calcular los aumentos implementados debe dividirse la distancia focal del telescopio por la distancia focal del ocular: A = Ft [mm] / Fo [mm] Donde A son los aumentos, Ft la focal del telescopio y Fo la focal del ocular. Por ejemplo: si utilizamos un telescopio de 910 milímetros de focal, con un ocular típico de 25 mm, la ampliación es de 36.4x. Pero claro que existe un límite para los aumentos en un telescopio, el cual está dado por el diámetro del objetivo, a mayor diámetro mayor será la posibilidad de utilizar grandes ampliaciones. Si se sobrepasa el límite recomendado se hace imposible obtener imágenes nítidas y aparece la llamada "mancha de difracción", una aberración óptica producto del exceso de aumentos. Recordemos que a la hora de observar cualquier objeto lo importante no es tener un "primer plano" del mismo sino poder observarlo de la manera más nítida que nos permita el instrumento y las condiciones de observación. 14 Es posible calcular el límite de ampliación teórico (en condiciones óptimas) para cualquier telescopio conociendo simplemente el diámetro del objetivo. Hay varias versiones de la formula, una dice que la máxima ampliación corresponde a 60 veces el diámetro del objetivo en pulgadas: Amax = 60 . D [pulgadas] Donde Amax son los aumentos máximos teóricos, y D es el diámetro del objetivo en pulgadas. Por ejemplo: para un telescopio de 114 mm de diámetro [4.5 pulgadas] la máxima ampliación es de unos 270x (correspondientes a un ocular de 3.3 mm) Otra formula propone multiplicar por 2.3 el diámetro del objetivo en milímetros: Amax = 2.3 . D [mm] Si utilizamos el ejemplo anterior, el resultado se acerca bastante: 262.2x. De todas formas recordemos que es un limite teórico solo aplicable a ópticas perfectas en condiciones ideales. Lo mas importante para recordar es que los aumentos no son importantes, no hay que preocuparse a la hora de adquirir un telescopio la cantidad de aumentos que brinda, dado que en la práctica es mucho mas apreciada la definición y la nitidez de la imagen. Muchos fabricantes menores de equipos proponen aumentos de 600x o 750x. Debe saberse que estas medidas no se corresponden con la realidad de los telescopios, aún cuando ellos lo justifiquen adicionando multiplicadores de focal (barlows), dado que al utilizar las formulas correspondientes se observa que el límite de ampliación es superado ampliamente, brindando imágenes de muy baja luminosidad y poca calidad. Resolución Se llama resolución (o poder separador) a la capacidad de un telescopio de mostrar de forma individual a dos objetos que se encuentran muy juntos, el usualmente llamado "límite de Dawes". Esta medida se da en segundos de arco y esta estrechamente ligada al diámetro del objetivo, dado que a mayor diámetro mayor es el poder separador del instrumento. Cuando se habla de que por ejemplo un telescopio tiene una resolución de 1 segundo de arco se esta refiriendo a que esa es la mínima separación que deben poseer dos objetos puntuales para ser observados de forma 15 individual. Hay que destacar que no depende de la ampliación utilizada, o sea que no se aumenta la resolución por utilizar mayores aumentos, un instrumento posee cierto poder separador intrínseco definido por las características técnicas que lo componen. Para calcular la resolución de un telescopio se utiliza la siguiente fórmula: R ["] = 4.56 / D [pulgadas] En donde R es la resolución en segundos de arco, D es la apertura (diámetro del objetivo) en pulgadas (1 pulgada = 2.54 cm), y 4.56 es una constante. Hay que notar que el resultado del calculo es totalmente teórico, dado que el poder separador de cualquier instrumento instalado sobre la superficie terrestre está severamente influenciado por la atmósfera. Así, un telescopio de 114 mm de diámetro (4.5 pulgadas), posee una resolución teórica de aproximadamente 1 segundo de arco, pero en la practica esta se ve disminuida muchas veces a mas de la mitad. Magnitud Límite La magnitud máxima a la cual aspiramos observar es uno de los factores a la hora de iniciar nuestras observaciones. Esta característica esta íntimamente ligada al diámetro del objetivo, a mayor diámetro mayor será el poder recolector de luz el cual permitirá observar objetos mas débiles. Para calcularla se emplea la siguiente fórmula: MLIMITE = 7,5 + 5 . Log D [cm] Donde MLIMITE es la magnitud límite, y D es el diámetro del objetivo en cm. Para seguir con el ejemplo: en un telescopio de 114 mm de objetivo la magnitud mas baja observable será del orden de 12.78, en condiciones muy favorables, noche sin Luna y una atmósfera estable y transparente. Hay que notar que el dato obtenido esta dado para magnitudes estelares (objetos puntuales) y no para objetos con superficie como galaxias, nebulosas, cúmulos globulares, etc, dado que en los catálogos el dato que aparece como magnitud está referido a la magnitud integrada del objeto, pero como posee superficie esta se distribuye en ella. Por eso, aunque una galaxia posea magnitud 10 probablemente no será observable porque su brillo se distribuye sobre su superficie. El calculo es válido para estrellas, asteroides y ese tipo de objetos puntuales (también con planetas lejanos como Urano y Neptuno) 16 Las condiciones atmosféricas y de polución lumínica así como la agudeza visual del observador cambien sustancialmente la magnitud visual límite observable. Cielos oscuros y experiencia observacional llevan a alcanzar el verdadero límite del telescopio. Campo Visual Se denomina campo visual al tamaño de la porción de cielo observado a través del telescopio con cierto ocular y trabajando bajo cierta ampliación. Para calcularlo se deben conocer los aumentos provistos con el ocular utilizado (ver mas arriba) y el campo visual del ocular (un dato técnico que depende del tipo de ocular y es provisto por el fabricante) Por ejemplo: si utilizamos un ocular Plössl de 25 mm, el cual posee unos 50 grados de campo aparente en un telescopio de 910 mm de focal la ampliación es de unos 36x. Para calcular el campo visual se divide el campo aparente del ocular (50 grados en este caso) por la ampliación utilizada (36x), obteniéndose un campo real de unos 1.38 grados. Así podemos deducir que en esa configuración se podría observar perfectamente la Luna completa (que como promedio solo posee 0.5 grados de diámetro angular) Cr [grados] = Ca [grados] / A Donde Cr es el campo real en grados, Ca el campo aparente del ocular en grados y A es la ampliación que provee ese ocular. La formula es viable siempre y cuando no se estén utilizando multiplicadores de focal como los Barlows. La importancia de saber con cuanto campo cuenta nuestra observación radica mas que nada en la hora de seleccionar el ocular adecuado. Para observar un cúmulo abierto laxo es conveniente utilizar oculares de campo amplio, con pocos aumentos. En observaciones planetarias o lunares sacrificar algo de campo visual para obtener mas ampliación es aceptable, sobre todo por que estos cuerpos son brillantes (recordar que al aumentar la ampliación se pierde algo de luz y algo de campo visual) Resumen de Fórmulas · Razón Focal (f/d): f/d = F [mm] / D [mm] · Aumentos: A = F [mm] / Foc [mm] 17 · Ampliación Máxima: Amax = 2,3 x D · Campo Real: Cr [grados] = Ca [grados] / A · Resolución: R ["] = 4,56 / D [pulgadas] · Magnitud Límite: M = 7,5 + 5 . Log D [cm] donde... f/d: Razón Focal D: Diámetro del objetivo A: Aumentos (Amax: Máximos Aumentos) F: Distancia Focal del telescopio Foc: Distancia Focal del ocular Cr: Campo Real Ca: Campo Aparente (ocular) R: Resolución M: Magnitud 18 6. TELESCOPIOS FAMOSOS El Telescopio Espacial Hubble se encuentra en órbita fuera de la atmósfera terrestre, para evitar que las imágenes sean distorsionadas por la refracción. De este modo el telescopio trabaja siempre al límite de difracción y puede ser usado para observaciones en el infrarrojo y en el ultravioleta. El Very Large Telescope (VLT) es en la actualidad (2004) el más grande en existencia, compuesto por cuatro telescopios cada uno de 8 m de diámetro. Pertenece al ESO y fue construido en el desierto de Atacama, al norte de Chile. Puede funcionar como cuatro telescopios separados o como uno solo, combinando la luz proveniente de los cuatro espejos. El espejo individual más grande es el del Gran Telescopio Canarias, con un diámetro de 10,4 metros. Se compone, a su vez, de 36 segmentos más pequeños. Existen muchos proyectos para fabricar telescopios aún más grandes, por ejemplo el Overwhelmingly Large Telescope (telescopio abrumadoramente grande), comúnmente llamado OWL, con un espejo de 100 metros de diámetro, sustituido por el Telescopio Europeo Extremadamente Grande, de 42 metros. El telescopio Hale construido sobre el Monte Palomar, con un diámetro de 5 metros, ha sido el más grande por mucho tiempo. Tiene un único espejo de silicato de boro (Pyrex (tm)), que fue notoriamente difícil de construir. El telescopio del Monte Wilson, con 2,5 metros, fue usado por Edwin Hubble para probar la existencia de las galaxias y para analizar el desplazamiento al rojo que experimentan. El refractor de 91 cm del Yerkes Observatory en el estado de Wisconsin, Estados Unidos, es el refractor orientable más grande del mundo. El telescopio espacial SOHO es un coronógrafo situado en una órbita entre la Tierra y el Sol observando ininterrumpidamente al Sol. 19 7. CONLUSIONES El telescopio ha sido, es y seguirá siendo el mejor instrumento que tiene la astronomía para la comprobación científica. Mejor que mil páginas de una teoría, es una fotografía de un astrógrafo. Los telescopios, avanzan, como la astronomía, a pasos agigantados, cada vez siendo más complejos, tecnificados, y divertidos. cada vez con más frecuencia, los astrónomos están dejando de ver por los telescopios, como hacía Galileo, y ahora examinan fotografías. 20 8. BIBLIOGRAFÍA Wikipedia.org www.astrosurf.com/astronosur/telescopios.htm 21 9. ANEXOS Anexo 1 Anexo 2 22 Anexo 3 23 24 Anexo 4 25 Anexo 5 26