Channel State InFormation and Вoint Transmitter-Receiver

Anuncio
 ! " #
$ % #
&' ( )**+
! " # # ! ! $% $% &
' ! ( '
$% ( #
#
$% & ! (
& # )*+ ,
( - (& " . ! & " (
$% , ( '
. ( ( ( $%
! / ) ( ) & ( & " $%
( ) '
& ' )*+ . , " " # (& %0+ & ! ' ( , %)$ %0+ (& ( %)$
* 1
2
2
3 # ! # ! 2 2
2
2
! 2
* # 1
# ! 2
! * &
2
1
2 2
'
( 3 ! 2
# 2
2 2
2
# # % & 2
2
2
* 1
( 2
2
*
# &2
# 2
( * 2
( !
2
&2
2
$ 2
2
4 2
! 1
2
(
3 2
2
(2
4 1
% 2
'
2 2
(2
2
4 2
( 2
2
1
2
* # 2
! *( ( 2
/ ) ( * ) 2
4 # &
2
2
4 2
1
( & &
! 2
2
! % # 1
) 2
'
2 ! & 2
1
" !
(& 2
1
%0+ & 2
' 1
( 2 2
2
! 3 2
1
2
2
! (& %0+ 2
1
( ! # ! 2
2
! . " 2
& !
2 ! 2
4 !2
! 2
* ! .
3 . 2
&
"& 2
2
2
* 2
#
* # !
! 2
2
2
! ! . & ! !
2
1
. ! ! 2
&
% 2
! 2 2
4
! ! ! 2
5 6 3 7 ! 8 ! 2
! 1
9 ! 1
* 1
:;;< / 6 % 3 5 $ $ $ ' .# + . 0 6
3 2
$ 72
7 6 + $ + 5 6 ) +2
6 2
!2
! 2
2
= 6 > 7 ' + > = + * ! ) ! 1
2
4 2
4 $ 2
! #
., $2
. 2
( # * $ 2
! 2
4
! 2
/ 5 * ) 5 2
> 3 . ! 8 " ! 2
1
$$ ! ! 2
1
6 3 7 ! + ) 2
5
7 6 $ > 6 '
(
(
% " # # 2
* 2
2
2
. ) ?@@A
2
4 ;;
;
;?
B
;B
+ $ :
?;
% $ %
??
$% / . % .
?B
;;
;A
??;
0 $% ;C
???
$% ?@
??B
$% ?B
?<
?B;
$( &
?<
?B?
$( % $( ' ?<
?BB
" $( ?D
?BA
EE, $
B;
?B:
% $( BB
! " #
$
B;
B:
B?
$ % B<
B?;
B<
'
(
(
BB
B??
$
B?B
+ )
. %
A@
AB
A:
BB;
5*/ (& 5 %0+
A:
BB?
=.+/ (& = %0+ A<
BBB
.>0/ (& %0+
AD
BBA
% . + :?
BA
% +
:?
B:
$ % $ C;
B.
.(/ . (& 5 %0+ CB
B)
.(/ . (& = %0+ CA
% ! " #
&'
A;
C<
A?
/ % . . <@
A?;
% %. . <@
A??
%. . $ <?
A?B
*( %. . $ % %
<:
<C
<C
<F
AA
. % . & F@
A:
%
FC
AB
*( % 9 $
AB;
'
9 % % AB?
%9 + + %0+
!
A:;
5 % .
FC
A:?
. - (& . F<
AC
% +
FD
A<
$ % $ D?
A.
.(/ 5 *G * DA
$ (
) # *+ ,'
:;
D<
:?
% $%
DF
DD
:?;
$ * *
:B
:A
:??
* ' , * ;@@
:?B
H& *
;@?
:?A
' , *
;@?
'
%9 % * $% ;@B
:B;
/ *I* % ( ;@B
:B?
%0+ '
%9 % ;@A
:BB
% +
;;@
;;?
;;A
+ %
:A;
::
(
% *( ) ;;:
::;
)*+ . %%'
$ ;;C
::?
'+ ' % '! % $ ;?B
:C
$ % $ ;B@
:.
.(/ *( + %0+ ;B?
:)
.(/ *! $( :<B
;B:
:$
.(/ . $ ) + .
:
.(/ $' *( :*
.(/ $' *( %* '
-
;B<
;BD
& *+ " #
;A@
%
C;
;AB
C?
% ' ;AB
CB
% ( ;AC
CB;
% ;AC
CB?
+ %" $( CBB
3 CA
C:
;A<
;:?
$( 9 + ;:B
CA;
* 5 0
;:B
CA?
H& *
;::
CAB
$ * H& *
CAA
9 +
;::
;:C
. $' % % 9 + ;:F
(
CC
. *( ;C;
CC;
$
;C?
CC?
. . ( )*+ $ ;C?
CCB
*( % ;CB
CCA
*( '
;CA
C<
% +
;C:
CF
$ % $ ;<@
' #
! ./
<;
$
<?
' J,
+()
'
;<B
;<:
) ( -
-
-
- -
K
-0
-0
-0
-0
(
(
-
-
$( # = (
( (
$( # (
L
-
- M K
-
L ( ( " (
" (
0 " (
0 " (
" (
" (
.
( ( % "
(
( (
(
7/ -
-
-
(
-
( * /
-
M
/
% (
-
M
-
0& ! ; ( -
'
-
(
? (
-
-
-
-
" (
M ( @ ( " (
(
- -
- -
- -
/
M
/
M
/
M - M - - (
- -
$ (
-
-
- -
-
-
= ! " (
-
/
-
- -
M
K L
(
#
#
+ 5 #
$ 3 E, +
+ H. *! #
(
$( 5 (
(
" .( !
% " 5 (
(
= ( ( (
5 = 3
( *(
0 ) N ) " ,
(
1
.2
3*
45
16
##
#
#1
#
!3
5
16
4
1
7 5
8
35
!
!
!!5
!*
. - (&
. . . . J 5 0
) * +
)3 3 %
) % E
) %
$$ $ .
$ "(
$ % ' , *!&
G % E
% 3
% % 7 )
* % '! (
'! .
' ' ' +
((
((
2
2
#
333
!!5
888
*
665
64
4
#
##
4
43
3
*#
3
5
!
5 #
(
19:
1;
16
<
<
<16
*!
*4#
*-
5 %
5 % $ .
* * *
' ' " +
% EE,
E 3
3 %!
. $
. $ $ .
%
( 3,
( 3, %! *
%! *
( + $ %! *
'! (
% % ), $
%
% E
H . H %
H % E
+ '!
+ 3, $
!
+
((
*
*
*
;1
5 #
55#
7
5
5
5
5"5
8
.
.4
8888
=!
% .
% .
%
% +
%%
% (
% 0 +
% 0 +
% % ), $
% $
% 7 . )
(
.
9 %
J
J 3 . 0,
N '
((
J " ( ( ! !
! . G , /
! ( Æ I ( O P & ;
?
( ! (
% ( ' ;; 5% )% %
' ;? %% ) ! ! $% ( , $% , & ! 0 ( ( & B
TRANSMITTER
RECEIVER
#1
#1
Wireless
MIMO
channel
# nR
# nT
$% " , # # , " ! ! $% & $% $ ; , Q $ ? # $% .
( & & $ B '
" $% A
Chapter 1:
"Introduction"
Chapter 2:
"An Overview of Design
Strategies in Multi-Antenna
Systems"
Chapter 3:
"Joint Beamforming Design
in MIMO-OFDM SingleUser Communications"
Chapter 4:
"Joint Beamforming Design
in MIMO-OFDM MultiUser Communications"
Chapter 5:
"Sources of Imperfections
in the CSI and Robustness
Strategies"
Chapter 6:
"Robust Maximin Design of
MIMO Single-User
Communications"
Chapter 7:
"Conclusions and Future
Work"
Preceding block is required
Preceding block is recommended
:
$ A ( , . '
$% & # H% ( %. " $ : $% ' "
R & . $% $ B G
) ( $% ' (
) $ C R # ( " ( & ( ! '
$ B " (& . !
' $ < ' ;B G
! ! !
!
$% #)( '
$% # /
K@AL . . 2
& 0 . 3 =2
& O !
C
. % ( % 0 + '
%P
B B F@FF?@
?@@A
K@;L . . 3 =2
& . 2
& 0 O%
. %9 * $P
!"#$
B
;;<D;;F? % ?@@;
K@;L . . 2
& 0 . 3 =2
& O ) $ . =*+3.0I? '
P
%
& ' !"#$
BF % ?@@;
K@?
L . . 2
& 0 . 3 =2
& O6 )
(
(!")$
% '
%P
B ?FA:?FAF ?@@?
K@?L . . 2
& 0 . 3 =2
&
O . ! 6 ) '
$P
*+!")$
; BFBBFC % ?@@?
#)( %
'
$% # /
K@AL . . 2
& 0 . 3 =2
& O. .
&
*,( -
./
0
6 ) '
%P
?@@A
K@?L . . 2
& 0 . 3 =2
& O%
. ! 6 + 9 .
'
$P
%
& ' !")$
B?:B?D 6 ?@@?
K@?L
1
. . 2
& 0 . 3 =2
&
O6 & J '
$ ) % .P
*+!")$
? A?;A?A % ?@@?
<
#)( $
# $% ( ) /
K@AL . . 2
& 0 . 3 =2
& O . % ( % 0 + '
%P
B B F@FF?@
?@@A
K@BL . . 2
& 0 . 3 =2
& O*(
% '! % % ' , $
(
(!"2$
P
A F:FF . ?@@B
K@B
L . . 3 =2
& . 2
& 0 O+ . )*+ %%'
%P
!"2$
? ;?CB;?C< ?@@B
K@BL . . 2
& 0 . 3 =2
& O
'
% $ % P
%
& ' !"2$
? BDCA@@ 6 ?@@B
K@BL
1
. . 3 =2
& . 2
& 0
O
1
$ % $ 2
$P
.
*3
345 ,
*,!"2$
% ?@@B
#)( &
( , # /
K@:L . 6 $Æ . 3 =2
&
O$( & . 6 + $P . ) 5 0 % %%+ $
6 J - % ?@@:
!
F
K@A L . . 2
& 0 . 3 =2
&
O. + ( . $ $ % ) $( &P
& % ?@@A
K@AL . . 2
& 0 . 3 =2
& O. (
. + / $ %)$ ) (
(!"6$
+!P
? ;A ?@@A
K@AL . 2
. 2
& 0 . 3 =2
&
O+ . (& % $ %)$ )P
!"6$
%
& ' 6 ?@@A
) + ( ) % /
K@;
L . . 2
& 0 . 3 =2
& O
. * % 3& P
0
!"#$
:?F:B; . ?@@;
. '+ " /
K@;L . 3 =2
& . . 2
&
0 O 6 + % +
(
(!"#$
'P
:?;:?A . ?@@;
. ! '+ " '
/
K)@?L )2
. 2
& 0 . O) % (
(!")$
% '
%P
B ?<CD?<<? ?@@?
D
! ) K@?L . 0 . . . 2
& 0 O. . , 0,P
./
0 0
7
& (8
% ?@@?
. /
K)@BL )2
. . 2
& 0 O% %
(
(!"2$
. J %P
A ;F:;FF . ?@@B
% /
K)@B
L )2
. . 2
& 0 + O' ', ' = . . .
J3.0P
%
& ' !"2$
; ;: 6 ?@@B
K=@AL $ =
+ )2
. . 2
& 0
O %
+ '
%/ %
$(P
!"6$
%
& ' 6 ?@@A
. $.
%)$
/
K3@BL 6 3 . . 3 =2
& O) % !"6$
%)$ % 9 $. 0 0,P
?@@B
# /
K@AL . . . 2
& 0 O'&& + )P
& *,( ?@@A
!
;@
K@AL . . 3 =2
& . 2
& 0 O+ $ % % '! % $P
( % 0
(%!"6$
6 ?@@A
( , '
$ 5% KD?L 9% K=@?L J3.0Q ) K)@;L
=3.0I? K*%@@L *** F@?;; K**DDL )*+
H% E ! ! !
! " O P " 0 G G G !
KD:L , , ( . , , ;;
" ## "#
;?
) , Æ , . 1
/
! / # S H% O P G , ! ! 1
, .$ +3$ # G J , , & J "/ ( S ! .
( / ( ( ( )*+ (
" " ( OP OP . G , J
! " , I ) ! $ % % & "#
;B
J " /
+ +$ 1
%+ %+$ 1
%+ %+$ 1
%%+ %%+$ 1
. ! , ! = , %
. ! . '
.
$
.
I G , S G Æ ( =8 ,
.$ +3$ , Æ # G % , K.=@?L
# , # ! # , # Q
$% # %' $ ;A
= ) !
! G $ ( ( , , '
, &0 ( ' ( ' ( ( , , ( , &
. G ! $% ' $% $% " & $% , ( ! . ( # &
" ;D<@ ( K$FCL KD:L ! , # (& %0+ # G " N' ! %
$ % % & "#
ROBUST
DESIGNS
SPACE-TIME
CODES
;:
LINEAR PRE- AND
POST-FILTERS
no CSI
partial or
imperfect CSI
perfect CSI
! ( % , & I . ! ! ( , " OP $%
. !
) $% , G
! ! $% "/
#>
, *(/ 1
#>
, # %' $ ;C
*(/ " & 1 (
#>
, , *(/ !& ' ?; # (
# . $% " , K%DBL
! ! G & $% , KJD<L " " ' =
) , ! ) & ! % KDFL + R %$ , $% 3 KDDL G $% )*+
) 7 , $% %$ ( 3 $ % % & "#
;<
I . KDD L %$ , G , 3 S ( , %$ 3 G ( &
0 %)$ K.DFL " ,
, R 3 $%
(
K5@;L K5@?L KDDL .Q , & %)$ ( ( 9 3 OP S
$% , , K5@?L $% K6@;L !
, ( 3 ( K%@?L
%)$ O P (& %0+ R , , $% ( K'@@L )*+ & +$ ? .Q K%@;L $%
,
+$ ! # %' $ ;F
.Q %0+ )*+ +$ .Q ! %0+ ' , $% $% $% , +
R KDDL , # " (& K%AFL ' I %0+ " $% $% ! G K=@@L , 3 " $% $% OP 3 , 3 OP ! ) B ) %0+ ) G & K=@@ L ' K=@@L 9
( %E ! 3 $% , ! " , G , ( %
G $ "
. K@@L K=@@L " G ( .Q %E G
$ % % & "#
Channel encoder
S/P
Channel encoder
M
1
2
···
M
"2"
M-1
M
1
···
M-1
"M"
M
1
M-1
M
...
...
S/P
"1"
...
Channel encoder
;D
Channel encoder
(a)
···
(b)
" #$" %& '#$" % & #$"
, 3 , ! + ( G K5@?
L " "
G K=@?L G " ( $ ! . G $% ! Æ ) G ! G ' , ( ! $% % " (
)3.%
)3 K'DCL , % ! 7)3.% 7)3.% )3.% )3.%
( )3.% ) ! (
( 7)3.% K3&@?L , ! )3.% ( 3 # %' $ ?@
! K'DCL
% ' ?? )3.% $% $% ( ! & $% G , G & ! , ( ( # KD<L $% % % K%F:L ! G
G " %* (
K8DA
L ( (
" ! & !
G O P
. %* & , ! , I & K8DAL K=D?L " '* " # & %*
! & , Æ # '+ " 9 K+DFL $ % % & "#
?;
G %* , # (& " K%AFL
! G ! $% /5
K$D;L/ ( K%@?L , ! # ( . ( ) # G /
%* & %* ( (& %0+, ( # ( . &
(
G K%@?L ( K%DDL K%DD
L ! %%
, ! ( %* (
%0+ # ( N' K%@;L # %* & ( , (
H% %* ! K
@?L & )*+
, & "( # / ( N' & )*+ & %* & (
. J3.0Q =3.0I? K*%@@L
*** F@?;; K**DDL & '
K)D@
0DF J@@L , KJ@;L '
# '
! # %' $ ??
K@BL K@AL ( & :
&
&
. %
. ) K+'DF
L ,
R )% Q " )% )% Q & # H% %0+ , " & K)@;L & , . Q $% , & 0 ! ( " P ! O ,
K+'DF
L " . & ( K)@@L Æ O P ( , K)@;L
, $% )% K+'DFL & , , K$@?L ( K+'DF
L , R Q )% & G " & , %0+
"( (& %0+ # G #
& ( K)@@L G J
( ( $ % % & "#
?B
G , & ( K$@?L , K6DFL K3,@@L & K$@?L , G
K6DFL &
& , . ! & %* # K3,@@L
$$
. KJ@@L G G & . ! # & , %0+
"( . ( " (
3 ! K)F?L
/ $% $% ! $% (
& $% & G /
, ( . , # %' $ ?A
! $%
$% ??; :B *+ ) (
# ) 5
K0DFL + R # (&
%0+ ) , G , / 5
!& $% , G / ' (& %0+ (& ( ! . , K6T
@?L R %)$
( , ( , # & $G
) 3 $% . ! $% $% K+@?L K+@?
%)$
L K+@BL '
, $% # & %* ) ,
) KEDBL ,
$ % % & "#
?:
% , /
& & ! KEF:L K7@BL K@B
L H% ! . , ' , ( ! $% . :A
( ) 4* !+
/ ) *
K%@?L , ! 0, KD;L , , %% # " '
& )*+ . K7@;L % R , ( ( 5 Æ
" (& , ( !
& ( K@?L K%@?L &
, K7@;L ) K,@;L , # %' $ ?C
& $ , % R & , ' , & ! & , . R K$@?L & ! ( ( ,
O P
G , , ( ! , !
K$@?L & '
% ! $
.
+.E* , ! R ( ( , , . &
! , ' K3@?L K.,@BL # %)$
, R % " ( (
(
" " , .
,
, ' "( $ % % & "#
?<
, ! ' K.,@BL (
%)$ ( , G G ) G K.,@BL
;
, "
;
( & & ( & K+<; )@AL , & , EE ( ( &
Æ $ ( , , (
!"
% " " & . ( ( U ;
K@ ;L
?;
# (#
?F
x2
x1
x1
x2
(a)
(b)
%& % & (x1,f(x1))
(x2,f(x2))
(x2,f(x2))
(x1,f(x1))
(a)
(b)
%& % & % ' ?B ( ( ( (
( ( ( ( % K)@AL ( ( . ( ! /
U ;
U ;
K@ ;L
??
( ( Æ M
U
! ?? ! % K)@AL
( ( .
" ( ! "/
U ;
U ;
K@ ;L
?B
$ % % & "#
! ?D
( 0 " ( % ' ?A ( ( ( /
G ?A
( (
(
" & U
" ?:
G (
( 0 = ( " # $
;
&
( &
# @
;
M @
;
M @
&
M ; @ @
&: M ; $ ;
M @ ?<
/
" " ?C
# "
?F
& ?< . @
M ; M @
&
M ; ?< ( & "
&
# (#
B@
?< " /
!
. @
M U
M
M ; !
M @
M ; ?D
?< M
( . M ?
/
?
@
M ; . ?
M @
@ M ; ? ?;@
( . ?< ! Æ M
U
;
&
( ! . ! " & ( ( . ( ( . (
& K)@AL
% ( ( & M @ M ; ÆS # ( ! ! ! Æ # ! (
! ! Æ & ( &
% K)@AL , ( "
. (& Æ M ; # !
( ! ;
&
( ! ( &
# & # $ % % & "#
%
"& '"('"(") 5 & ?< M
&
S
M
U
U
?;;
< < /
S
?;?
?< J 3 !
, ( K)@AL . &
@
M ; M
U
%
U
M ?
U
?
S
/
U
?;B
?
S
?;A
?;C
/
?;<
& (&
# !
?<
&
? ?;:
?< ' " Æ #
" 3 ) 3 <
" B;
<$ &
@
M ; /
?;F
?;D
# (#
B?
/0 ( M
??@
;
% = ?< ( 5
! @ M ; . ( ( (
9 & ( /
M
M
U
U
U
U
??;
???
??B
??A
' ! ! " !
. /
"
M @
0 M @
&
M ; ??:
! @ 9 ( S
" G /
U
U
EE M ; ??C
@
M ; ??<
@
M ; ??F
M
@
M ; ??D
@
M
M
0
?B@
$ % % & "#
& & G BB
# EE . ( EE Æ EE & *
EE $
. # ( G EE Æ = ! " & 0 ! $ ( Æ , ( ( G & . Æ " 0 0, K0DAL
" ! 0Q K)DD )@AL ( 3 ! * & G K5DD )@AL ! # , ! , . BA
# (#
! "
#
. ( ( I G , ! ! ! $% , , "( #
%0+ (&
K3DDL , $$ , . ! & K8DA
L K8DAL " ! , %* 7) .) J3.0Q =3.0I? K*%@@L *** F@?;; K**DDL '
B:
BC
K)D@ 0DF J@@L %3 , ! ! R ! ( '
( '' '' !& , '
KJ@;L '
$% %0+
(& = Æ '
$% #
(& %0+ '
! ,
& ( & K+<; )@AL #& K<DL K@BL K@AL & # H% & % B? '
" & B?; . '
( B?? #
(& %0+ B?B
& % BB % BA ' % B:
@?L
K@A @; @; @? ) *##% % &+ %&, ##
B<
$ . , , '
" # # '
( !+ + "
'
( ( % K)D@ 0DF J@@L %% (
3 '
( H. M @ ; %I 3
H. '
'
& & ! M
U
M
!
U
!
M
M
' B;
!
$ $ 9 %Q ! '
M ;
* '
/ $ ! !
'
## "#
BF
P samples (duration Ts)
D samples (duration TCP)
N samples (duration T)
cyclic prefix (CP)
n = -D,...,-1
xT(m,0)
xT(m,1)
xT(m,N-D-1)
xT(m,N-D)
xT(m,N-1)
D samples
( ) !* ! ! M
M @ ;
"
;
( "
$ @
M
!
!U
'
'
( ! " ! B;
@ ' B;
0 B; '' '' ; ! ! ; . ;
B; ' ' B? , '
$! " '
M @ !
B?
! ; 3
; M
# #
U
( M
U
BB
$
!
! ; !&
H. ( " . ' BB
'' 3 " $ $ ;
U
" BA
) *##% % &+ %&, ##
BD
exp(j2 f0t)
s0(m)
s(n)
S/P
+
exp(j2 fN-1t)
CP
addition
xT(n)
CP
addition
xT(n)
sN-1(m)
sampling frequency: fs
(a)
s0(m)
s(n)
IFFT
S/P
P/S
sN-1(m)
(b)
+ ( %& ( + ) ,$ ) -* % & * ( ) (("
$ '
'' 9 !
$ % M
; $ % U B:
' /
% " ;
$! B: U
" BC
! R ! ! % ## "#
A@
n(n)
xT(n)
y0(m)
Channel
h(n)
CP
removal
S/P
FFT
s(n)
QAM
demodulator
P/S
yN-1(m)
+ ( ) ((" !* ( ) ++ # , '
$% ' BA H. '
#
M
& & ! . + ''
' B:
3
& ! % " B<
. $ ! ; & , ) *##% % &+ %&, ##
pre-beamforming
N
N
IFFT (OFDM
modulator)
N
s(n)
P/S
CP addition
#1
P/S
CP addition
# nT
CP removal
S/P
#1
CP removal
S/P
# nR
A;
b0
S/P
aN-1
s(m)
N
N
IFFT (OFDM
modulator)
(a)
post-beamforming
N
N
FFT (OFDM
demodulator)
N
a0
P/S
aN-1
N
N
FFT (OFDM
demodulator)
(b)
( ) %& " % & . G /
M
U
BF
, B: '' $
& M
U
( % U BD
" . $
$
9 BD 9 + M
U
B;@
## "#
A?
bp(0)
s0(m)
bp(1)
s1(m)
IFFT
modulation
+ P/S +
CP addition
s(m)
xT(p)(m,n)
bp(N-1)
sN-1(m)
(a)
a1*(k)
xR(1)(mP+n)
yk(1)(m)
CP removal
+ S/P +
FFT demodulation
a2*(k)
xR(2)(mP+n)
xR
(nR )
(mP+n)
yk(2)(m)
CP removal
+ S/P +
FFT demodulation
rk(m)
+
yk
CP removal
+ S/P +
FFT demodulation
( nR )(m)
dec{·}
QAM
demodulator
sk(n)
a n *(k)
R
(b)
%& ( % &
. 9 % % % % B;;
!
) *##% % &+ %&, ##
'' Æ AB
9 ' BA B: /
' ' $
M
9 + M
U
B;?
" ' ' B;B
" , -
! %0+ '
%0+ ( %0+
M
9 + * 9 + * M
B;A
( * . %0+ %0+
+
M
B;:
$%& !
* 9
' B;C * +
9 + + 9 * 9 + * B;A /
B;C
(& %0+ ! $%& ! M
* 9 + B;<
" J " KD: J@;L G %0+ ( & ! " ! ! #$%& '%()*
## "#
AA
9 +
! J 9 +
M ; B;? + , + + +
M
# (& %0+ " B;< ( %0+
M
+ 9 * 9 + + # M
B;F
( 9
KJ@;L = (
K5DCL
@
M * 9 9 * 9 " @ " M
B;D
( M
9 * 9 M
"
M
( & 9 * 9 M
3 +
M ( ( ( + M " 9 ( + +
%0+ %0+
M
+ 9
M " "
( M
M M
* 9 + M " " @ " " ,
( M
B?@
(& B?; ( M @
M
( B?;
# B?@ ( @
M & ; ( +
9
* 9
M
9 * 9 B??
( %0+ %0+
M
B?B
) *##% % &+ %&, ##
" %0+ #
A:
%% "!
9 $% * ! ( M
B?A
& " " %0+ & " ! ! ! ./+0 + . + ,
" %0+ %0+
" %0+
%0+
M
( @
B?:
! @ (& B?A # EE ?B ( & .( B. EE ($ %
AC
/
%0+ M
B?C
%0+
M
B?<
! ! ! (
(& K%AFL 9
* 9
! K+DFL
( " )
@ )
M (
K+DFL
;
B?F
B?A " 0
)
M @ $! ! G , 5 K%AFL .J50 "( " B?F @ ( G
G @ )
M
U
;
)
;
#
B?D
) *##% % &+ %&, ##
A<
. ! 5*
$. !/
M ;
BB@
! ! 12,+0 + 1 + ,
. G %0+ %0+
(& " %0+
/.
M
BB;
. .( B) , ( & EE ?B & .( B)
( ( @/
M
;
BB?
%0+ %0+
M
' BB? BBB
!
I & !
= ( ' BC Q ( G U
B@
;:
" . K*%DFL & =3.0I? ($ %
AF
Cumulative Density Function of the Maximum Eigenvalues. As=30º (TX), 15º (RX). channel A.
1
0.9
0.8
Cumulative Density Function
0.7
0.6
0.5
0.4
0.3
0.2
1+1 antennas
2+2 antennas
3+4 antennas
5+5 antennas
0.1
0
0
5
10
15
Maximum eigenvalue
20
25
!0 12Ó 34Ó 5 ) 6 $5 K*%@@L ? ' " ! . K@;L ! N' %* *
" M
& ' M
BBA
9 + * ;
U
# ! ; 9 +
BB:
!
M ;
=.+ ! %* ! %* KD:L K8DA
( L = & " ) *##% % &+ %&, ##
AD
/
+
)
M
M
(
@
)
M
9 * 9 ;
; U
BBC
BB<
* 9 + + 9 * 9 +
M
BBF
B?A '
BB< M ;
) )
M @ 5* =.+ J G @ ! )
M
U
) BBD
. ! =.+ %* /
M ;
BA@
%* =.+
" $. " $. # ! %* $. !
+23+0 + +" ,
'
, %0+ 3 #
(
5 ( %0+ #
($ %
:@
%0+ #
#$ #
M
%0+ %0+ #
#
" B?A
# #
M
'
%0+ /
%0+
M %0+
M
"
+,"
M
M
+,"
BA;
. .>0 ! ( /
M
;
BA?
! %0+ %0+
M
! BAB
' BA? . =.+ ! .>0 ! I ( 5* ( ! ! . 5 & $G 3 " G /
;
BAA
5 %
( ( %0+ BA:
! + ! ! + !
) *##% % &+ %&, ##
%
M
,
"
:;
KD:L )%E
M ; M ?
& G BAA B?A Æ #
Æ
.
( K)@A @BL & $G /
% "
& ( " BAC
# B?A , K@BL *
G /
)
M
(
?
@ U
)
BA<
B?A . $. %* & $G G M @ )
, =.+ .>0 G @ )
M
9 ( )
BAF
" /
M ;
BAD
!
5 * & !
, Q Æ
- # :?
) 7
) )
23 ( 8
M
#1 ( 8
9* ( 8
M
%
M
M (
M
M ;
M ;
(
@
31 ( 8
@ )
3 ( 8
- ( 8
M (
(
(
M ;
"& 2& ,
B; ! ! # %
% =3.0I? *
J3.0 K*%@@L " CA '
:? A & $ ! ! )%E M ?@ =& M B?
)
M A
!
)
M ;C
S )*+ " BAA & &
M ;
&
" *% K*%DFL
" ( %0+ ' B< (
& BUA " " . K*%DFL :@
B@
;: ? . .J50 ' B< F :: ) *##% % &+ %&, ##
:B
Maximum eigenvalues vs frequency
22
20
18
Maximum eigenvalues
16
14
12
10
8
6
4
2
0
0
10
20
30
Subcarrier index (k)
40
50
60
½ %& 8 19: $
' BF BD B;@ %0+
! 5*$. =.+%* .>0* / M ; J M ;@@ J $. %*
* ' BF BD B;@ ! . ( 5* " %0+ ( ' BF ' =.+ .>0 ! ! ' BD B;@ G $. %* *
.>0 !&
%0+ %0+ (&
M ;@@ J 5* ! G %* * ! $ $. 5* ! ' BF - # :A
Power allocation − GEOM − low P0
SNR − GEOM − low P0
1
0.04
0.8
SNR
power Pk
0.05
0.03
0.6
0.02
0.4
0.01
0.2
0
0
20
40
Subcarrier index (k)
0
60
0
Power allocation − CAP − low P0
0.04
0.8
SNR
power Pk
1
0.03
0.6
0.02
0.4
0.01
0.2
0
20
40
Subcarrier index (k)
60
SNR − CAP − low P0
0.05
0
20
40
Subcarrier index (k)
0
60
0
20
40
Subcarrier index (k)
60
Power allocation − GEOM − high P0
SNR − GEOM − high P0
30
2
25
power Pk
2.5
SNR
1.5
20
15
1
10
0.5
0
5
0
20
40
Subcarrier index (k)
0
60
0
Power allocation − CAP − high P
60
SNR − CAP − high P
0
0
2.5
30
2
25
power Pk
20
40
Subcarrier index (k)
SNR
1.5
20
15
1
10
0.5
0
5
0
20
40
Subcarrier index (k)
0
60
0
20
40
Subcarrier index (k)
60
* /. !$*
7
%& # %¼ ; 3 <& % & = %¼ ; 322 <&
) *##% % &+ %&, ##
Power allocation − HARM − low P0
SNR − HARM − low P0
1
0.04
0.8
SNR
power Pk
0.05
0.03
0.6
0.02
0.4
0.01
0.2
0
0
20
40
Subcarrier index (k)
0
60
0
Power allocation − MMSE − low P0
0.04
0.8
SNR
power Pk
1
0.03
0.4
0.01
0.2
20
40
Subcarrier index (k)
60
0.6
0.02
0
20
40
Subcarrier index (k)
SNR − MMSE − low P0
0.05
0
::
0
60
0
20
40
Subcarrier index (k)
60
Power allocation − HARM − high P0
SNR − HARM − high P0
30
2
25
power Pk
2.5
SNR
1.5
20
15
1
10
0.5
0
5
0
20
40
Subcarrier index (k)
0
60
0
Power allocation − MMSE − high P
60
SNR − MMSE − high P
0
0
2.5
30
2
25
power Pk
20
40
Subcarrier index (k)
SNR
1.5
20
15
1
10
0.5
0
5
0
20
40
Subcarrier index (k)
0
60
0
20
40
Subcarrier index (k)
60
* /. =$. 7
%& # %¼ ; 3 <& % & = %¼ ; 322 <&
- # :C
Power allocation − MAXMIN − low P0
SNR − MAXMIN − low P0
1
0.04
0.8
SNR
power Pk
0.05
0.03
0.6
0.02
0.4
0.01
0.2
0
0
20
40
Subcarrier index (k)
0
60
0
Power allocation − MEP − low P0
0.04
0.8
SNR
power Pk
1
0.03
0.6
0.02
0.4
0.01
0.2
0
20
40
Subcarrier index (k)
60
SNR − MEP − low P0
0.05
0
20
40
Subcarrier index (k)
0
60
0
20
40
Subcarrier index (k)
60
Power allocation − MAXMIN − high P0
SNR − MAXMIN − high P0
30
2
25
power Pk
2.5
SNR
1.5
20
15
1
10
0.5
0
5
0
20
40
Subcarrier index (k)
0
60
0
Power allocation − MEP − high P
60
SNR − MEP − high P
0
0
2.5
30
2
25
power Pk
20
40
Subcarrier index (k)
SNR
1.5
20
15
1
10
0.5
0
5
0
20
40
Subcarrier index (k)
0
60
0
20
40
Subcarrier index (k)
60
* /. $>/ *
7
%& # %¼ ; 3 <& % & = %¼ ; 322 <&
) *##% % &+ %&, ##
:<
3+4 antennas. BPSK. GEOM, CAP techniques. channel E. 2 interferences.
−1
uncoded effective BER
10
−2
10
CAP − SNR=5 dB − As=30º(TX), 15º(RX)
CAP − SNR=5 dB − As=40º(TX), 60º(RX)
GEOM − SNR=5 dB − As=30º(TX), 15º(RX)
GEOM − SNR=5 dB − As=40º(TX), 60º(RX)
CAP − SNR=10 dB − As=30º(TX), 15º(RX)
GEOM − SNR=10 dB − As=30º(TX), 15º(RX)
CAP − SNR=10 dB − As=40º(TX), 60º(RX)
GEOM − SNR=10 dB − As=40º(TX), 60º(RX)
−3
10
−15
−10
−5
0
SIR (dB)
5
10
15
! !$* 7
. . /. ? 4 32 5 1 : " ) 6 " ? 12Ó 34Ó 5 :2Ó @2Ó " A
7
( BB; ! =.+%* .>0*
BB? ' BD B;@ BBB " ! )*+ " %0+ %+ " / %0+ M
-
%+ M
-
.J50 '
' B;; 5* $. )*+ BUA " * ! ?:@ %+ ? ! %0+ / : ;@ ) G
B@
C@
;:
A@
' " 5* $. , 5* - # :F
2+2 antennas. BPSK. HARM, MMSE techniques. channel E.
−1
10
−2
uncoded effective BER
10
−3
10
MMSE − 1 interf. SIR=−5 dB − As=30º(TX), 15º(RX)
HARM − 1 interf. SIR=−5 dB − As=30º(TX), 15º(RX)
MMSE − 1 interf. SIR=−5 dB − As=40º(TX), 60º(RX)
HARM − 1 interf. SIR=−5 dB − As=40º(TX), 60º(RX)
MMSE − 0 interf. − As=30º(TX), 15º(RX)
HARM − 0 interf. − As=30º(TX), 15º(RX)
MMSE − 0 interf. − As=40º(TX), 60º(RX)
HARM − 0 interf. − As=40º(TX), 60º(RX)
−4
10
0
2
4
6
8
10
12
14
SNR (dB)
! =$. 7
. /. ? 3 ( . ; 4 5 A A " ) 6 " ? 12Ó 34Ó 5 :2Ó @2Ó . )*+ =.+ %* ! ' B;? ?U?
)*+ %0+ / %+ ! : ) " " " =.+ ! %0+ ) %* BB? =.+ %* =.+ '
%*
+ )*+
' B;B .>0 * )*+ . ( * & $G )*+ ) *##% % &+ %&, ##
:D
2+2 antennas. BPSK. MAXMIN, MEP techniques. channel E.
−1
10
−2
uncoded effective BER
10
−3
10
MAXMIN − 1 interf. SIR=−5 dB − As=30º(TX), 15º(RX)
MEP − 1 interf. SIR=−5 dB − As=30º(TX), 15º(RX)
MAXMIN − 1 interf. SIR=−5 dB − As=40º(TX), 60º(RX)
MEP − 1 interf. SIR=−5 dB − As=40º(TX), 60º(RX)
MAXMIN − 0 interf. − As=30º(TX), 15º(RX)
MEP − 0 interf. − As=30º(TX), 15º(RX)
MAXMIN − 0 interf. − As=40º(TX), 60º(RX)
MEP − 0 interf. − As=40º(TX), 60º(RX)
−4
10
0
2
4
6
8
10
12
14
SNR (dB)
! $>/ * 7
. /. ? 3 ( . ; 4 5 A A " ) 6 " ? 12Ó 34Ó 5 :2Ó @2Ó .>0 0 ( G
! ; ) %0+ .>0 * ' * ! ( .>0 . )*+ ' B;A B;: 5* %* =.+ .>0 ?U? ! B@
;:
/
%+ ! : ) ' B;A " . ! :@ ' B;: $ ! ;:@ '
"
! 5*
! .>0 =.+
! 0 %0+ - # C@
2+2 antennas. BPSK. As=30º (TX), 15º (RX). channel A.
−1
10
−2
uncoded effective BER
10
−3
10
GEOM − 1 interf. SIR=−5 dB
MAXMIN − 1 interf. SIR=−5 dB
MMSE − 1 interf. SIR=−5 dB
HARM − 1 interf. SIR=−5 dB
GEOM − 0 interf.
MMSE − 0 interf.
HARM − 0 interf.
MAXMIN − 0 interf.
−4
10
0
2
4
6
8
10
12
14
SNR (dB)
! 5 5 =$.5 $>/ 7
. /. ?
3 ( . ; 4 5 A A " ) 6 $ " 12Ó 34Ó .>0 =.+ 5 #"
$G .>0 &
)*+ BBB 0 5 .>0 =.+ %0+ %+ 0 %0+ .>0 )*+ 5* %* .>0 '
!
J ! ' B;A
B;: ' 5* !
.>0 =.+ $. %* *
) *##% % &+ %&, ##
C;
2+2 antennas. BPSK. As=30º (TX), 15º (RX). channel C.
−1
10
−2
uncoded effective BER
10
−3
10
GEOM − 1 interf. SIR=−5 dB
MMSE − 1 interf. SIR=−5 dB
MAXMIN − 1 interf. SIR=−5 dB
HARM − 1 interf. SIR=−5 dB
GEOM − 0 interf.
MMSE − 0 interf.
HARM − 0 interf.
MAXMIN − 0 interf.
−4
10
0
2
4
6
8
10
12
14
SNR (dB)
! 5 5 =$.5 $>/ 7
. /. ?
3 ( . ; 4 5 A A " ) 6 ! " 12Ó 34Ó &
# '
(
, ,
) #
" # (& %0+
. " G / 5* =.+ .>0 / $. %* *
.>0 =.+ ! G $ .>0 (& %0+ . ##" C?
%0+ ! G
( ! !
* & $G )*+ * ' ) *##% % &+ %&, ##
CB
#' "! '( )
*
%0+ %0+
M
M
B:@
( @ ! @ = ( " .
M
.
;
A
M
;
/ ;
M
$
M
#
;
AA
B:?
B:B
= ( "
M
K
L
/ /
!
( , %0+ B:;
. .
/ / + + + .
0
/
M
M
;
9 B:? = ( ;
M
.
( " .
/
"
M
# @
K;
$%&
;L
B:A
!
+
M
(& ( & B:@ * /' ($ /#0% 1# CA
(& & /
&
# S
M @ ;
B::
M @
@
3 U
B:C
EE /
.
S
M
. ;
M
. U
! @
BC; M @ @
M @
;
B:<
;
B:F
B:D
M
@
M @ ;
BC@
M
@
M @ ;
BC;
$! @
M @
@ M @ ; ! 9 # B:D /
+
M
#' "!
*
;
%0+
;
M @ ;
BC?
'( ,
%0+ M
BCB
( @ ! @ ) *##% % &+ %&, ##
= ( " Æ .
!
K)@AL ?
M
A
;
M
;
;
$
M
BC:
#
BCC
;
;
AA
BC<
= ( "
0
/
!
?
M
/ / + + + M
K
L
;
;
"
/
# @
BCF
( / M
$%&
/ !
+
M
, %0+ / ?
U
?
;
;
BCA
= ( M
. .
.
?
M
.
;
;
M
.
.
;
S
M
( " C:
(& ( & (
& BCB & /
&
# 3 ;
BCD
S
M @ M @
@
U
B<@
* /' ($ /#0% 1# CC
EE /
.
S
. . B<: M
M
U
@
M @ @
M @
;
B<;
;
B<?
B<B
M
@
M @ ;
B<A
M
@
M @ ;
B<:
@ ! @ $! M @ M @ ; ; 9
# B<B /
M
;
M @ ;
B<C
! "
%
#
$ B #
'
0 ( ,
!
! , %
. G
!
! H% Q )%Q .Q
( ! , !
! $% # %
. $% , , . C<
# ( &
- CF
, ,
! , ( $
( . ( * J3.0 =3.0I? K*%@@L *** F@?;; K**DDL . B; J3.0Q '
B?; '
#
$ B ( ' BA 9 # , &
& # H%
( )*+ ( Q & Æ & ( . %. ! & " & ( G
, 5% . ! " ( ) , " ! "
, , ,
#
K3,@@L , $$
. ! . & ! H% %0+ ( )*+ ( & 5% !
3 KJ@;L '
& . ! #
"( " & - ) *##% % &+ &, ##
%0+ CD
H% "
, R & K$@?L Q )%Q G &
" & %0+ "( # (& %0+ # " !
(
& , & G K+@AL , )% Q H% K%@AL # & %* # ! " . . , )% Q &
K)@?L & %0+ # , ,
( # & K7DDL & )%Q Q . ( ' K)@?L
)%Q Q . .
! # H% %0+ & ! R & ! '
% A? & %. ! % AB %. % AA !
5%
- (#' # % %#
<@
. % A: % AC '
% A<
%
" $ #
K@A @? @?L
%. K.FD 3F<L %. & & " & ( G ! 5% . " ( %. ;DF@Q 0 0 " G ( &
" &
G ( " G
! G
%
2 2 &
%. ( & ! ( ( !
( Æ Æ , & , O P " - ) *##% % &+ &, ##
, & &
7
; &
&
/
3
1 M
0
M
1 $
;
(
0
0
%
A;
& (
<;
)&
, )& . )& " @ &
! O&P
, %. , " & & ! & # & " ! %.
! , & . %. # " %. &
( . - (#' # % %#
<?
%
2 2 $ $
%. 3 "
3
( %. &
!
' 2
M
OP &
! " K.FD 3F<L "
%. ! . %. ! / * / 3 5 ( M ;
%
(
& A?
' A? ; 0 . & ! G K.FD 3F<L , - ) *##% % &+ &, ##
<B
" Æ "( " $
;
S M
(
! %
AB
& $
M
(
%
AA
0 AB ! A; %. ( %. ! AB @ 3
!
& 3 AB S M 0 ( @ /
(
M (
;
(
A:
( J
@ &
@ "
( ( J
&
!
( ! @ @ ( @ ! /
S M
@
& (
! ! AC
; ! ) - (#' # % %#
<A
Exponential decrease rule for the temperature
1
Value of the temperature T. β=0.99
0.9
Normalized value of the temperature
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
100
200
300
400
Iteration index in the decrease of the temperature
500
600
/8 ; 2BB
. (
' (
(
@DD
A<
' A; " ; ( %. 7 %. " K=@@L
" %. " &
% K=@@L !
' AB AA R %. ! - ) *##% % &+ &, ##
%
<:
/ 2 2 "" "
%. 0 %. &
& ( %. " 3
& & & ?< ?BB
(
/
/
@
M ; M @
, " &
S
OP ( U
U
& M ; AF
" /
AD
" &
, @ " " A? A? " & @ J
, % %. & " & 5 & O P &
(/
& M
U
0 -" A;@
( 5 &
( G ( %. K.FDL & - / "# &, ##
<C
@ K7FAL ( %. ( = ( = ( &
V
K$FA
JF: EFC %&F<L G G
' ( K%&F<L $ KD;L ! %
-' # ./ .
$ ( 3
. , !
B $
'
. I * , %
++(!+ +"(4 & + . $ B , G
#
G G Q .Q )%Q I
. ! G , ' A?
3
,4
4
, ' 4 ' A? ( , ( #
, #
4
$ B '
- ) *##% % &+ &, ##
#1
3
1)=3
#2
1, r(2
t(2)=
1
#5 (5)=
r
2,
)=
t(5
)=4
t(4
)= #4
3,
r(4
)=
2
t(1)=1, r(
1
<<
#3
t(3)=3, r(3)=4
4
;
;;
; ;;
2
term. #4
i
sig nter
na fer
l ( ing
M
AI
)
ed
de
term. #1
al
t(1) = 1
ign
ds
sir
ire
link #1
r(3) = 5
r(2) = 4
des
sig
na
l
r(1) = 4
term. #5
link #2
de
sir
ed
link #3
sig
na
l
t(3) = 3
t(2) = 2
term. #3
term. #2
%& 6
) 5 4 : % & 6
) 1 + " 45 1 "0 A 0
- / "# &, ##
<F
& 4
, $#
%
M
'
9
$#
+
$#
U
A;;
& ( B;@ B;@ A;; 3
M ; $#
#
(
( '
9
$#
,#
' 4
$ B (
# 9
0 M
4 #
+ &
'
$#
& M ;
& ( B
$#
'
4
$#
$#
(
! " , %
'
, ,
" (4 , ," ,
$ B 4
' #
$#
#
'
#
$#
M
A;?
#
9#
$#
+#
#
#
" #
U
%
#
#
'
9
$#
+
#
$#
#
'
U
! %0+ A;B
B?B J
- ) *##% % &+ &, ##
<D
" "/
#
*#
*#
4
*#
9#
$#
+#
%
$#
B 9
$#
+
+
9
$#
#
M
M
U
A;A
A;:
#
( , 4
G Æ
%0+ & ! 0 #
#
9#
$#
+#
M ;
%0+ I %0+ 4
#
+#
9#
$#
*#
9#
$#
+#
M
,
(
*#
+
#
A;C
B?B
A;A #
+
%
#
G , Æ &
A;A %0+
. AA # , ( G
J '
G 4
#
( #
#
;
( 5 ( #
%
M
#
" , %
KD:L )%E
A;<
$
#
%0+
%
A;F
M ; #
M ? %0+
A;C
A;A
,-./ % ! 0 -- # % #0 (!#
F@
%%
#
"
( (
A;A # J # & " . # & , Q . ( $ B 4
+
) #
)
)
)
B?B , " ! ) +
#
& /
# +
#
M
% ) )
) #
)
# +
M
% #
#
# & /
+
#
M
+ +
A;D
0 4
= , " H% , ( =
1
( G #
5 #
5 #
( 4
M ; 3
( A?@
4
& &
K3,@@L $$
. K$@? )@? 7DD
)@?L R H% %0+ G KJ@; +@A %@AL "( " # & ! , %* H% & ( )%Q Q - ) *##% % &+ &, ##
Æ " F;
/ 1
H% ( Q 3 W
,
)
%
+
)
) #
)
##
( W
A?;
, , %& &
# % ) #
)
)
)
+
# #
5 #
4
M ; A??
3
W
$ ( ( & ( K)@AL . ( & +
#
# ( 3 M ; '
M ; ( G ! %0+ 3 9 M
B M
( . H% + + %0+ %0+ ! %0+ ( ( (
+
5%
. " % 5% ! K3,@@L . KJ@; $@? %@A 7DD )@?L G , . K$@?L # " & %. ) 5% . ! Æ , %. (
-- # % #0 (!#
F?
%" 5% ! G %.
( " & A?? %. %. & +
%. ( #
5 ! O
/ P OP @ &
( A?;
O
O
" & P P OP " , A;D A?? " " & . " %. & A?? ' " " %
5 5
1
&
+
#
S
#
+
U
%
#
#
5 #
U
A?B
" ! ! , G " ( )
- ) *##% % &+ &, ##
FB
OP " " % &
, &
" . ! #
M ;@@ G ( , ( 0 , 1
+&#
+#
#
M
#
0 -& U
M @ ;
4
M ; -&
( A?B @; : 5 A?A
( 5 & 3
( -
&
'
@D:- &
( && 1
+
#
&
*
+
+
,
+
+
-
;
(
#
+
K.FD 3F<L ( & #
+ & +#
& #
& +#
& +
&
A?:
A?? ()& (
'
G
! . %. Æ " ( -- # % #0 (!#
FA
1
. ' (
M @DD
A?C
! ( ( (
A?? A< ' A; (
. A?: $! J
, ( %. 0 & ! & "
%. & ;@@ & -&
! ! H% (
G ,
. $ B # D: ;@@ X % ' AB R & %. %. & ;@@ A?C ;@ X
: 5 -&
'
@D:- , &
! @ % ' AB R %. - ) *##% % &+ &, ##
F:
Main iteration
BEGIN
Initialization
2
b
0.95
2
b
Lar = 5
Initialization
Lar ?
T=1
= mean transmit
power with no MAI
(u)
bk = 0
2
b
T
0.9T
Lar < 5
Propose 100 solutions.
Na = number of nonaccepted solutions
Lar
Propose 100 solutions.
Na = number of nonaccepted solutions
Lar = 0
T
Lar+1
T
2T
0 < Na < 10
Na = 100
Na ?
Na < 95
95 < Na < 100
0.99T
Na ?
Na > 10
Na = 0
no
convergence ?
END
yes
END
(a)
(b)
( $ %& 8 $ % & $ -. !## 2
FC
%&
$0
AA %. ! " & A?? 0 5% . %*
. 2
. G %. !
, %. ! 3 ! K3,@@ )F?L !
" 3 (
, ( A?@
" ! 9 3
( +
#
S
#
+
%
U
U
5 ! A?<
, ! K3,@@L/
+#
' +#
)
A?F
)
'
% U )
& U
5 A?D
# G
. $ B ! @
( , Q )% )%E , ! 4
9
Q #
)% ( ( Æ
"
- ) *##% % &+ &, ##
Æ 4
M ;
4
W +#
M
U ?
' $
M
4
5 ?6
U
/
(
W '
;
4 #
;
M
M @
%
( Æ 4
F<
#
%0+
+#
Æ 4?
#
M
4/
#
#
#
#
9
* 9 + #
;
AB@
' #
#
AB;
?%0+
( ( K5DCL
/
%0+
M
;
?6
(
%0+
#
;
?%0+
%0+
AB?
.
.
. #
#
#
.
9
*
9
+
.
9 * 9 + ..
$
% .+
#
#
#
#
#
+ 9 * 9 +
#
#
#
+
#
9 #
* #
9 +#
#
9#
*#
9
+
+ 9 * 9 +
%
B 9
+
+
9
#
M
#
#
;U
ABB
;U
*#
M
U
ABA
#
( .( A.
. , 5% ! G 0 %*
2 5 + 2
' KJ@; %@A 7DD )@?L . %0+ ,
( A;: A;C .
! "( -. !## 2
FF
Initialization
Set all the transmit beamvectors equal to the
maximum eigenvectors of
(t(u),r(u)) H
Hk
(r(u))
O
In
-1
(k)Hk(t(u),r(u))
(without taking into account the MAI).
Calculate the power allocation: GEOM or MAXMIN.
Calculate the covariance
matrices:
(u)
{Rk }
Calculate the transmit beamvectors as the
maximum eigenvectors of
(t(u),r(u)) H
Hk
-1
(u)
(t(u),r(u))
Rk H k
Calculate the power allocation: GEOM or MAXMIN.
no
convergence ?
yes
END
( $ ( , ( !
. , ( ( Æ (& %0+ (
(
9#
$#
*#
9#
$#
! B?B B?? )
'
H% ( " G / 5* - ) *##% % &+ &, ##
Simulated Annealing. MT’s power. Scenario 1.
10
power
10
FD
1
10
5
10
0
10
8.5
9
9.5
user 1
user 2
user 3
10
x 10
0
10
0
1
2
3
4
5
flops
6
7
8
9
10
10
x 10
Simulated Annealing. Mean BER. Scenario 1.
0
10
mean BER
−100
−2
10
10
−200
10
−3
10
user 1
user 2
user 3
8.5
−300
10
0
1
2
3
4
5
flops
6
7
9
8
9.5
9
10
x 10
10
10
x 10
* $ 3 1 "0 3 + 6
5 4 " / ( 3@ .0 C .>0 ! %0+ ! BB & . G ( $ B % ' AA R
. K%@A 7DD )@?L ) . G & 0 %1
, B Q
)% : '
M ;C -3 # D@
Simulated Annealing. MTs power. Scenario 1.
10
1
10
power
10
5
10
0
10
8.5
user 1
user 2
user 3
9
9.5
10
x 10
0
10
0
1
2
3
4
5
flops
6
7
8
9
10
10
x 10
Simulated Annealing. Mean BER. Scenario 1.
0
10
−2
mean BER
−100
10
10
−200
10
−3
10
user 1
user 2
user 3
−300
8.5
10
9
9.5
10
0
1
2
3
4
5
flops
6
7
8
9
x 10
10
10
x 10
* $ 3 1 "0 3 + 6
5 4 " " 6 D < ( 3@ .0 C )% Q , H% ;@ ;@ ( G / ;@
A?B ;@@ & ! ; B
$#
M
4 & '
( , " ' A: )*+Q %. ! " " H% " FA: J ?@; J
" ! F J ' AC %. <C J " - ) *##% % &+ &, ##
2
Simulated Annealing. MT’s power. Scenario 2.
10
D;
10
power
10
5
10
0
10
user 1
user 2
user 3
8.5
9
9.5
10
x 10
0
10
0
1
2
3
4
5
flops
6
7
8
9
10
10
x 10
Simulated Annealing. Mean BER. Scenario 2.
0
10
mean BER
−100
10
−2
10
−200
10
−3
10
user 1
user 2
user 3
−300
8.5
10
9
9.5
10
0
1
2
3
4
5
flops
6
7
8
9
x10
10
10
x 10
* $ A 1 "0 3 + 6
5 4 " 7
3A ( 3@ .0 C . ?@F J ( ( & " ' A< AF " ! ;? ) ' A< %. ' AF 5% & ! )
M @@@; R %. " 5% ! 3 ( A?< ! " &
% . G / 5* .>0 BB;
BBB ' . -4 ##" D?
Gradient based method. MT’s power. Scenario 2.
2
10
power
user 3
user 1
1
10
user 2
user 1
user 2
user 3
0
10
0
1
2
3
4
5
flops
6
7
8
9
10
10
x 10
Gradient based method. Mean BER. Scenario 2.
−1
10
user 1
user 2
user 3
mean BER
user 3
−2
10
users 1,2
−3
10
0
1
2
3
4
5
flops
6
7
8
9
10
10
x 10
* A 1 "0 3 + 6
5 4 " 7
3A ( 3@ .0 C A; ! 5% " " . %. , . %. ( K7DDL ( )%Q Q ( %2
# . '
# #
# , , &
& # ( )*+ ( %. ! 5%
. %. "
- ) *##% % &+ &, ##
DB
* .0 $5 5 $ A
5 ( 5 ( 5 ( 5 (
2
-
23
;@? J
F< J
:A: J
<BA J
DC J
F@ J
AC: J
CA; J
FB J
CF J
CBC J
<F< J
D; J
<D J
C:: J
F?: J
2
-
23
5 3* 5 3* 5 3*
;@
;@; ;@
;@
;@
;@
;@
;@; ;@
;@
;@
;A?
;@
;@
;@
! 5% . ) 5% . , %. . %. ! & ( ( . ! (
! K5FFL &
K5FDL %. " ( G %. O P
& '
' , ! & - /' 5 6 (!!"
DA
%
#' )# -3 -
"
# ( ( J )%E G ;
$
%
%
?%0+
%0+
;
?6
" ,
AB:
+
9
*
9
+
%
B 9
+
+
9
M
*
M
/
M
U
ABC
AB<
9 ( /
M
;
?6
( %0+
"
G /
, M
#
%0+
M
M
?6
4
"
;
M
4
K%D; EDB
*
*#
*
M
M
M
M
$
M
4
' *
+#
4
( AA@
U
AA;
#
#
#
#
#
; U
*
M
ABD
U
*
ABF
*#
9#
+#
+#
9#
%
B 9
+
+
9
9 ( %0+ %0+
9#
*#
9#
+#
( 5DCL/
%0+
?%0+
) ( %0+
$
9 +#
+#
9#
*#
+ 9#
*#
9#
+#
AA?
#
#
#
#
#
#
; U
+ 9 * 9 +
#
#
#
+
9
*
9
+
+
9 * 9 + + 9 *#
9#
+#
AAB
AAA
! 1 2 1
!" $3 1 2
¾
¾ ½ - ) *##% % &+ &, ##
! %0+ %0+
M
D:
" .
.
#
#
#
#
. #
#
#
.
9
*
9
+
9 * 9 + ..
$
% ..+
#
#
#
#
#
+ 9 * 9 +
#
#
#
+
#
9 #
* #
9 +#
#
9#
*#
9
+
+ 9 * 9 +
;U
AA:
;U
DC
- /' 5 6 (!!"
# $ &
#
$ B A # , 0 $%
! $% # G G
! ( G $% " " % :? . & % :B $
B $% ( ' ) % :A $% ( ) % :: % :C
$% ) K@A @BL ( K@B @B @BL
D<
. # DF
&
( $% $% ! I # ! ! $%
$% ! " G ( ! , ( , , 0 ( +' ( "
( ( '
! , ) , ,
" G , $% '
" , $ * , H& ' , ! $% ! $%
' , & (
9
. # ! %
9
DD
$% $%
( $ B A (
*
9
'
/ /
" !
, 9
%* , " 3% 3 5 3% ( ! 3
- ! . ( ( M
U
9 - -
& %* 3% (
9
:;
, ( - 9- :?
( , /
9 -- - - C
C 9 9
M
( -
( - 9- , (
( :B
" C - - - M
:A
::
. # ;@@
9 " ! 9 (
-
" ( 9
M
M
/
- - :C
! ;
M
- -
) C
M
;
- :<
( & - C
& '.
C ..
.K
*
(
L
M
-
-
:F
/ ! $) & /
9 ( " S , & 3
9
0 $% . ,
( :D
+ 5 & ! '
9 9
(
M
9
9
( -' 6,Q K%DDL C 9 9
9
-' ?6( , :;@
. # ! %
;@;
Error power due to the channel variability
3
Power of the error in the CSI
Power of the error in the CSI
2.5
2
1.5
1
0.5
0
0
0.5
1
1.5
delay (normalized by 1/fD)
* ! ) 7
6
5 ) 8 ) 7
)
" 85 5 ¾ ; 3
(
( ! & ) C
" , . (
" /
'.
C ..
.K
L
(
M ?-
'
?-
' ?6( , :;;
' :; $% ! ' " ( ! K$@? L %* "
G , '
$% , . # ;@?
*
6" /
J ( 9
,
(
9
!& !& ( (
C 9 9
:;?
! !& ( 3 ( 9 9
K
@ - 3 '
L
! $! -' ?
!& !& !& & %* &
M ?
& &
K$D; $@? L !& ! '.
C ..
.K
L
-' ? ?
(
M
-' ?
!& M
-' ? :;B
!& G
, % K3@AL *%
! $) /
J , G ! $% !& ( 0
$% ! ! $% ! , , " ! . # ! %
&
;@B
# .4 ./ - $% $% , , K$@? L K$@?L + R %
& $% $G
)*+ K)@?L + R % G ! $% / $% $% $% !& $% $% !&
$% # '
$% $% ! $ B ) ( *
0 /7/" & + "$(
D > & - - $ @
-@- / M
M M
M
:;A
M ;
:;:
& ( ( 7?0 . % &+ %&, "# ;@A
/
5) @>
AB C))D ) 3 & -@- / @
U
M
M ) - 3 :;C
/ - & -
( = /
# 8 $ " "" " " $ @
"@" 8 &
3 3 ) 3 /
M
M
M
M M
M
&
1
U
/ & & 0 *
M ?
) 3 :;<
0 "
M ;
#
, ++(!+ (4 &
3 '
$ B #
#
, ( , 9 + * B?B +
9 * 9 *
9 + 9 * 9 M
M
M
:;F
:;D
:?@
%0+/
%0+
M
+ 9 * 9 +
M
:?;
. # ! %
;@:
, ( ( %0+ ( 5 )*+ 3 " 9 9 C * * 5 U
C
5
U
. G ( K+F@ DDL ( ( "
/
M
U
(
5
5 " * * * * 5 * :?B
( :??
:?A
:?:
( U
= 5 5
M
(
(
C
( 5 & -
-
C
, 3 !
K3@?L ! " ! 5 5
( K
@;L ( ) (
( . /
+
M
M
9 * 9
9 * 9
9 *
)
)
) ) M
9
:?C
:?<
. % &+ %&, "# ;@C
.>0 M
;
:?F
BA?
# %0+ J %0+ , + $! "
B?B B;</
M
* 9 + . %0+ $% %0+
9 * 9 +
M +
M
:?D
+ 9 * 9 + + +
:B@
:?D B;C
. " ( 9 * 9
( !/
9 * 9
9 C * 9 C 9 * 9 9 * C 9 9 C * 9 M
:B;
M
U
U
:B?
:BB
= ( ) " %0+ $% %0+
M
M
*
+ 9 * 9 + + 9
9 + + +
+ +
+ +
+ +
+ + + + + +
+ +
;
M
:BA
( .>0 :?F . # ! %
;@<
J $% %0+ :BA ( ( , K5DCL %0+
;
:B:
) $ ; )', ; ,
! :B? ( ( 9 * 9 ( $% ? (
M
M
Æ U
Æ
9 * 9
9 * 9
Æ M
. .>0 M
/
M
:BC
9 * 9
)
)
)9 * 9 ) )
)
) ) :B<
:BF
BBB % # ( %0+ :BC/
#
Æ M
#
M
U Æ # $
M
:BD
:A@
, %0+ .>0 $% %0+
BBB ( BAB/
M %0+ M
( %0+ %0+
%0+
U
Æ U
U
M
U
Æ U
:A;
:A?
Æ
Æ
Æ U
:AB
Æ
Æ U
Æ U
Æ
:AA
. % &+ %&, "# ;@F
. " ( %0+ %0+ $% %0+
%0+
.
.
%0+
..
M
Æ
Æ Æ
:A:
. " ( ( .( :.. " (/
Æ
Æ
U
Æ
# M
;
!
Æ
#
U
Æ
"
;
#
#
:AC
( KÆ L M K
L
M
0
/
1
0
KÆ L
M
1
:A<
:AF
! 6Q ! 9 ! KÆ L/
KÆ L
, M 9 * 9 M
, U ?- , ?-
K L
K L
:AD
.( :.) ) , :AD " ( %0+
;
9 * # 9 ?-
!
?-
9 * # 9 - 9 * # 9 9 * # 9 "
9 * 9 - 9 * 9 #
* # 9 9 * 9 9
U?
U
::@
U?
;
$%
43 '*
'* ' * '678* ' * 5 . # ! %
;@D
%0+ -
- . .>0 ( ' ( =.+ BB? BB?
M
;
%0+ ::;
.>0 %0+
;
Æ ::?
. .>0 =.+ ( %0+ %0+
( %0+ , ( :BD :A@ , %0+ $% %0+
%0+
BB? BBB
Æ
U
U
Æ
U
U
M
M
::B
Æ
U
U Æ
Æ
U Æ
Æ
::A
U Æ
( U
Æ
Æ
U Æ
" " ( .( :.$ /
%0+
.
..
.
%0+
%0+
;
?
Æ Æ
U
;
Æ
?
:::
( Æ
-
K L
- %0+
. % &+ %&, "# ;;@
1
2+2 and 4+4 antennas. As=30º (TX), 15º (RX). channel A. No interferences.
10
worst relative degradation of the SNR
0
10
−1
10
−2
10
Theoretical upper−bound degradation. 2+2 antennas.
Estimated degradation. 2+2 antennas.
Theoretical upper−bound degradation. 4+4 antennas.
Estimated degradation. 4+4 antennas.
−3
10
−10
0
10
20
30
estimation SNR (dB)
40
50
60
/. /. $>/ ) ! ) 5 A9A :9: " ) 6 $ " 12Ó
34Ó " *
" ,"
& ! $% . BA $ B " =3.0I? K*%@@L ,
" . K*%DFL ! :@ & M ;
&
BA B@ ;: %0+ " BA %0+ M
- . -
.J50 5 ! %0+ " %0+
;-
9 -
. . # ! %
;;;
2+2 antennas. BPSK. As=30º (TX), 15º (RX). channel A. Noise in the CSI.
−1
10
−2
uncoded effective BER
10
−3
10
−4
10
Estimation SNR=5 dB
Estimation SNR=10 dB
Estimation SNR=15 dB
Estimation SNR=20 dB
Estimation SNR=25 dB
Perfect CSI
−5
10
0
2
4
6
8
10
12
14
SNR (dB)
) ! . /. $>/ ) /. ? 45 325 345 A25 A4 5 ! 5
A A " ) 6 $ " 12Ó 34Ó " , , , ' :? %0+ .>0 =.+ ?U?
AUA " :B? ::@ . " %0+ ) ;? %0+ ( ' :B G )*+ ?U?
.- ! %
;;?
G %0+ . %0+ ?@?: ) ' %0+ %0+ @; ' :?
) ' :? :B ! . ( ' :? ! " , $% !& , &%
!& K$@? $@? N@AL I $% &
$% ( $% , &
0 " KNDC =DDL . ! ( " "
:? ! ! , . ( ! ( ( K%DDL
K5FD 5DAL . $% , ( K)@;L G G $% " ! . # ! %
;;B
( 5 0 ( K$@? L KN@AL ( %* , G
!& , . !
" / 7 $
/
$
K)@AL ) , & ( " " # , & ) , K0DFL (& %0+ $%/ 5 !&
& )*+ (& %0+ KJD:L R K6T
@?L
%)$ (
%)$ ( & )*+ 5 # , K+@BL K>@AL ! / K+@BL K>@AL .Q K.DFL + ( KEF:L K7FAL K DAL % K+<;L ( K7@BL K%@BL $Q
& ( KF@L ( K3@AL K3@BL
K%@BL , G ( & .- ! %
;;A
( K@B
L
, , # (& ' *%
K)@;L K)DDL K)@BL
+ . ) ( 3
9
$ B
A :B OP
9
$% 9
9 9 C
(
U
C
::C
$%
# & )*+ %* %0+
) ( & 5) ((
)
) 3 , KEDBL
) Q
! 9 9 9 9
C
9
, 0 , Q ! , ) KD;L 99
99
M
9 9
. & 0 ( 9 /
M
9 &/
9 9 99 9
::<
. # ! %
;;:
& ::< # 0
S
& 5) ((
)
( ,
" (
C(
# ( , & & #
9 ) ::F
, &
) ( " 0 ) & ( " " ,S &&
-' + G ( ) ::; %%
' )*+ . # & $G ::? % ( . %0+ & %*
, '+ " (& .. # /# *" %
;;C
P0
s0(m)
P1
s1(m)
IFFT
...
S/P
P/S
xT(n)
CP
addition
...
information
symbols
PN
1
sN-1(m)
" ) ( **
+" -/, 2 (!+ "
$ B A '
, %% # '
'
3
)
@
;
% '
;
! ' " (
" M
)
::D
. ' :A ( " ( % " %% M
J :C@
$ B B?A
, $ . # ! %
'
$ M
% & U ;;<
M ; :C;
'
.J50 -
%0+ %0+
M
% M
% -
M
-
) ( M
) ) :C?
-
0 ( %0+ & B?? %% G " BAA
%
%0+ :CB
( ,
" )%E H%E & G ! ! & $G (
%0+ $G M
%
%0+
" %0+
M
"
:CA
( G ! '
.
, ( ) !! ! !9 ¾¾ 2 7 .. # /# *" %
;;F
*+ 1 %
& %
% M
= (
%
)
M @ @
M &
# & ;
:C:
BBB BA< 9 ( )
M
?-
(
% % @ U
)
:CC
:C@
*+ 1 J , ( ) 3
) ) )
U
Æ
:C<
Æ !
%
%
( ' )
M
% U Æ )
5 (
(
@
@ )) )
M
;
@
6 " $! & (
) @ )
)
:CF
Æ & 5 ( E ÆÆ
)S . # ! %
;;D
Æ Æ M
;
E
6 (
Æ EÆ
:CD
9 Q ))
M
M
))
:A; /
) )
)
;
Æ )
;
;
)
6 )
E
/
(
:<@
) ) E ) )
)) ) )
M
/
M
;
@
6 (
) @)
) )
) )
Æ :<;
# & ( $G G /
;
/
)
+
M
?-
( (
& ( ) )
) )
"* Æ ( )
( :<?
"* # :C@
! ( & .( :) !/
&
# *
* @
M
M @ ;
:<B
M
,
M
. @ E .
. E E).. . @
U
U
:<A
:<:
.( :$ ) EE ( :<B
.. # /# *" %
;?@
Actual channel frequency response
10
5
Channel gain (dB)
0
−5
−10
−15
−20
−25
10
20
30
40
Subcarrier index (k)
50
60
(7
) 5 5 85 *
% " %% &
M ; " ( & ! B '
M CA
' :: ! & ;@ (
' :C :C & %0+ ! ;: ) G E
M @@;
" !
E
M @: ! ! $% " $% . # ! %
;?;
Power allocation − Non−robust design
30
20
k
power P (dB)
25
15
10
5
0
10
20
30
40
Subcarrier index (k)
50
60
50
60
50
60
50
60
Power allocation − Robust design
30
20
k
power P (dB)
25
15
10
5
0
10
20
30
40
Subcarrier index (k)
Power allocation − Non−robust design
30
20
k
power P (dB)
25
15
10
5
0
10
20
30
40
Subcarrier index (k)
Power allocation − Robust design
30
20
k
power P (dB)
25
15
10
5
0
10
20
30
40
Subcarrier index (k)
. %& = /. % ; 223& % & #
/. % ; 24&
.. # /# *" %
;??
Robust and non−robust solutions. Channel estimates length: 3 taps.
0
10
−1
uncoded effective BER
10
−2
10
−3
10
Estim. noise power=0.5 − Non−robust
Estim. noise power=0.5 − Robust
Estim. noise power=0.1 − Non−robust
Estim. noise power=0.1 − Robust
Estim. noise power=0.01 − Non−robust
Estim. noise power=0.01 − Robust
−5
0
5
10
SNR (dB)
15
20
25
! 7
. /. 8 )5 )
7
1 5 ? 245 235 223 " 7
1 ' :< :F G )*+ )%E
" " " B ( ;@ ' G / @@;
@; @: ' " " ( . " " ,
( (
" @
:CF " . # ! %
;?B
Robust and non−robust solutions. Channel estimates length: 10 taps.
0
10
−1
uncoded effective BER
10
−2
10
−3
10
Estim. noise power=0.5 − Non−robust
Estim. noise power=0.5 − Robust
Estim. noise power=0.1 − Non−robust
Estim. noise power=0.1 − Robust
Estim. noise power=0.01 − Non−robust
Estim. noise power=0.01 − Robust
−5
0
5
10
SNR (dB)
15
20
25
! 7
. /. 8 )5 )
7
1 5 ? 245 235 223 " 7
32 **
"
!, ! + !8"& " ) '
) , % , '+ " G
" . G 3 / 7 %* ' :D , '
0 .. # /# *" %
;?A
SIGNAL DETECTOR
h1
z, h, h
z1
h2
hn
...
z2
T
a R*
xR(n)
...
s(n)
s(n)
hD
MLSE (Viterbi)
e(n)
zn
s(n)
heq
T
Channel
estimator
h
Quantization
FEEDBACK
CHANNEL
) ) + (. 6
! ( 3
) @
;
)
" ) ) )
@ )
)
)
K
)
M
;
@
6 (
. )
)
) @ ) L " $! . ::; ( 5 (
/
( ) ( :<C
) )
M
U
Æ
:<<
Æ ) Æ Æ $! Æ
& (
Æ Æ E
M
( ))
M
) )
Æ 5 Æ 0 E/
;
6 E
(
Æ EÆ
:<F
. # ! %
. " ? " 7 @
# '+ " 7 +
) 3
:D M ; 9 '
( ( + ;
+ " 7 ? ? ?
'+
& # ;?:
M
.J50 -
7 U
:<D
" ( M
M
9 ?
U ?
U
M
9?
9
M
@
;
@
M
@
?
;
@
@
@
@
?
9
+ + :F;
;
. ( " :F@
@
@
@
;
U
9 9 9 + +
)
& ( M
? ?
M
7 M
:F?
*+ 5 !
G "/ %* ( %0+ ! 3 +++ J ' :D ! %* , .. # /# *" %
;?C
% $% ! "
7 !& %
& . $% ( !&
" "
)
!& % 0 !& " %* ! , # 9 )
* ? :FB
U
M
#
( # 9? -
? 9 9? 9? ? 9 -
M
%* U
:FA
U ;
" M K@
@ ; @
@L
+ & ( ; # U ; ) %*
*
& ( " )
* ?
& /
? ? -? ? ? -
M
U
U ;
:F:
-
9 + + 9 9 + + M
M
& ?
?
# :F: -
.( :
& ( )
* @ )
. * .
?
5 & :F: :F<
. ( 0 :FC
M
M
?
!
? -? ?
? ? -? -
U
U
-
M @
:FF
:FD
. # ! %
?
& :F: "
"
# :F? ( 3 ( ! ;?<
? ?
@ " !/
? ? -? ? ? -
S
M
U
U;U
? ?
:D@
EE /
? S
M
-? ? 0
? ? U
? ?
M
:D;
:D?
@
:DB
M
@
:DA
' :FD :D; .( :*/
?
)
$
M
-
)
U
-
%
:D:
? ?
M
:F?
(
9 9 9
4/) J ( -
, G 3 7 ' :D , 3 %0+ ) ?
%0+
M
;
-
( ? 9 9?
(& "
?
:DC
) # (& %0+ (&
) ? %0+
M
;
-
? -?
:D<
.. # /# *" %
;?F
(
-
" :F< ( .(
:
(& :D< # :F? B?B (& %0+ 9 " /
?
-
M
:DF
(& %0+
& ! )(
)( + M
" -
" ' :D 7 M
9?
K3=@@L & G ( 3%*
! ; , ( ! ( )(
( (
-
9 9
*
% ) " & % M
)
M ;
( " ! B B@
)%E M : M B 7 ' :;@ %* "
M < "
)
!&
% ;@ ( G -
,
5 :D: .( :
& " 5 !& S ( G
!& G 5 E
M
-Æ
-Æ
. # ! %
;?D
MMSE technique
−1
10
uncoded BER
−2
10
4 TX ant. Delay diversity. MLSE receiver
2 TX ant. Quant. (6 bits). Non−robust
2 TX ant. Quant. (6 bits). Robust
4 TX ant. Quant. (4 bits). Non−robust
4 TX ant. Quant. (4 bits). Robust
4 TX ant. Gauss. noise power=0.01 − Non−robust
4 TX ant. Gauss. noise power=0.01 − Robust
8 TX ant. Gauss. noise power=0.01 − Non−robust
8 TX ant. Gauss. noise power=0.01 − Robust
−3
10
−4
10
−5
0
5
10
SNR (dB)
! ) ) 6 . /. 8
)5 ) 7
1 5 7
) ? 7
2235 7
8 : @ " 7
4 5 7
8 6 E 32 5 ) " 12Ó5 A5 :5 D
. " , $% )*+ %0+ ) )*+ %0+ !& ) '
:;@
K%DBL ( " G ! ! , , ' :;; ! 3%* ! A
5 " .3 ##" ;B@
MLSE technique
−1
10
−2
uncoded BER
10
−3
10
−4
10
1 TX ant. MLSE receiver
4 TX ant. Delay diversity. MLSE receiver
4 TX ant. Gaussian noise power=0.5. Non−robust
4 TX ant. Gaussian noise power=0.5. Robust
4 TX ant. Gaussian noise power=0.1. Non−robust
4 TX ant. Gaussian noise power=0.1. Robust
−5
10
−5
0
5
SNR (dB)
10
15
! ) )5 )5 /. . /. " 7
' # " 8 )5 ) 7
1 " ? 24 23 " 7
1 " 12Ó5 :
. " ) %* 7 !&
%* %0+ ) ( )*+ $% ! &1
# 3%* G $% & . " G G (
. # ! %
;B;
'
, $% $ B '
, (
G ( &/ )
# , ( !
G
& ) #
& ( # & ' ( ) %%'
# & $G % / , '+ " # (& %0+ & %* " , . /' / %
;B?
&
#' -' * #
) 3( F$8%&G ) - 5
)A
:AC " " ( ( %0+ :AA Y%0+
)
*
M %0+
, " (
%0+
;
; Æ *
;/
Y%0+
M
M
M
M
M
Æ U
Æ
Æ
;U
Æ
;
Æ
U
Y%0+
%0+
M
M
Æ
Æ
;
%
Æ
:;@?
$
;
"
Æ
U
Æ
$
#
;
Æ
Æ
:;@A
Æ
%
:;@:
:;@C
" Æ
Æ
:;@<
:;@F
U
:;@B
%
#
#
%
"
!
Æ Æ
Æ
Æ
:;@;
;
Æ
!
#
U
;
%
Æ
9 ( ( :AC ;
$
Æ
Æ
Æ $
Æ
Æ
!
#
$
:;@@
Æ U
; U
Æ
;
:DD
Æ
;
Æ U ;
;U
U
Æ U
Æ Æ U
"
;
#
#
:;@D
. # ! %
) "(( Æ
K
C * 9
KÆ L
. :AF
* L
* ;BB
U
M
9 * C 9 9
U
U
/
C
C
M
M
C
C C C C
, M
M
M
M
-
0
:;;@
:;;;
- 0
:;;?
:;;B
5 ( 9 * C C
* 9
C
M ?
C
U 9 9 9 * C C * 9 - 9 * 9 9
9
9
9 * * 99 * * 9
9
9 * * 99 * * 9
9 * * 99 * * 9 ?
:;;A
& " :;;A ( M
(
M ?
:;;:
( ?
:;;C
U
:;;<
U
:;;F
,
#
:;;B ( M
# KDDL /
9 9 9 * * 99 * * 9
*
99 * * 99 *
'
* 99 * * 99 * * 99 * * 99 * -
* 99 * -
9 * 9 M
?
:;;D
M
?
M
?
M
? M
?
:;?;
M
?
:;??
:;?@
(
. /' / %
;BA
$ KÆ L
?-
9 * 9 KÆ L
U ?-
" 9 * 9 :;?B
# ) 3( F$8$$G ) 9* 5
)A
::: =.+ " " ( ( %0+ %0+
%0+ Y%0+
)
M
M
M
M
;U
U
:;?A
U Æ
U
;U
Æ U
U
;
Æ
;
Æ
?
$
$
%
;
Æ
Æ
%
;
:;?:
;
Æ
?
%
$
;
$
Æ
Æ
%
;
;
Æ
?
%
Æ
?
;
Æ
?
;
!
?
;
;
$
Æ
! ;/
Æ Æ M
M
;U
U
Æ
*
Æ ; *
::A Y%0+
, " (
;
;
Æ
?
Æ
Æ
" $
#
;
"
Æ
#
U
Æ
$
#
;
;
?
;
Æ
?
%
Æ
?
;
!
%
:;?C
:;?<
"
Æ
#
Æ
#
. # ! %
9 ( ( ::: Y%0+
%0+
Æ
" Æ
Æ
U
$
Æ
Æ
%
M
&+
;B:
;
Æ
?
;
U
?
:;?F
#' " -0 ' "
5&26
( & :<?
/
;
)
( ) )
)
Æ ;
M
:;?D
"
:;B@
E
6 ( :;?D ) )
) )
"* Æ "
"
"
"
"* M
;
@
6 !/
"
" "
:;B;
#
@ E + # E) M
M
U
U
)
;
@
6 ;
E
6 :;BB
. ! ( :;?D ;
:;B?
/
)
"
" "
:;BA
" , ;
/
#
6 )
"
M ;
$ ( :;?D ;
)
;
@
6 E
"
:;B:
" # "
:;BC
.* /' ( 2 / (!# 7.4 8
;BC
# & ( /
# "
( & &
# #
/
# (
@
:;B<
M @ ;
:;BF
M
& ! ( K5DCL/
#
#
M
M
@ U E +
@ E @ E + @ E
U
; U
;
@ U E ;U+ U
:;BD
U
;
@ U E :;A@
9 ( :;BF ! & ( # :;BF/
(
+
* ; U
@ E + U
:;A;
# :;BF &
&
# *
" /
* @
M @ ;
:;A?
M @
M
,
M
. @ E .
. EE).. . @
U
U
:;AB
:;AA
. # ! %
&
;B<
#' + "! ( ) &
# * * @
M @ ;
:;A:
M @
M
,
M
@ E
. .
. E E ).. . @
U
:;AC
U
:;A<
EE 3 & S
( (
+ *
; U
+ U
:;AF
EE .
S . M
$
7 M
U @
M @ @
M @
;
:;AD
;
:;:@
:;:;
M
@
M @ M
@
M @
;
:;:?
;
:;:B
M
+
$ M
(
7 M
; U
+,
U
; U
$
+
+ , ;U
+ :;:A
%
+ :;::
:;:C
' EE $ U 7 M
7 :;:<
" /
. /' %# *" ! ($ ;BF
v zk(Pk)
v zk(Pk)
v
c(sk+tk)
c(sk+tk)
xk(Pk)yk(Pk)
v
xk(Pk)yk(Pk)
Pk
Pk
Pk
Pk =0
(a)
(b)
!
%& % 9 & % &
% 9 &
' ! :;:< G /
H
@ EE $! ! 7
! Æ 7 @$ @
M
7 /
$ M @
$ M
G G 0 + U , 7 @ M ; + U , + U , 0 3 $ % ( ' :;?
H
! @ @$ @
M @ ' EE U
7 @
M
7 @
! " + U , U M
M
@ + U
, 0 G + U
, (
@$ @ U 7 @
M 7
@
M
+ @ "
, U
% ( ' :;? . # ! %
7
! &
;BD
M
.
! #' #.4 -' #
-
" - )
9 + + 9 9 + + :;:F
:;:D
Æ ) M )UÆ 5 ) @
))
Æ 0 E 5 ( KEDBL/
)) # # @ E #@ E) M
U
M
U
:;C@
:;C;
:;C?
) 3( 3 (
, @
M
+ +
M
)
, ;
M
( & (
M
. + +
M , :;C? M
9 :F;
) 3( (
#
M
)
)
#
M
( # #
# # :;C; :;CB
. /' &+# / ## # +
;A@
#
M
) ) *
M
M
9 9 ) ( (
* *
* * + + -
+ + :;CA
' (
*
( /
* &-
#
#
U , # U ;, #
U , # ;, # U M
;
;
:;C:
#' #.4 -' $ 4
' EE :D; ( :FD :F? ! -? U
?
0
M
? ?
:;CC
?
? -?
M
"/
U
-
:;C<
M
' :;CC :;CF
?
,
( :;C< :;CF/
? ? ? -? ? ?
? -? -
? -? - U
U
U
M @
:;CD
) ( 3
( " M
? ? ? -?
-
- @
:;<@
U
9 :;CC ( /
? ? $? -? -
U
U
-
%
? ? M
:;<;
" ( "/
?
$
M
)
-
U
-
%
:;<?
. # ! %
)
;A;
" )
M
-
? ?? -?
? U
? ?
M
"
:;<B
;A?
. /' &+# / ## # +
% " 1
#
. ( $ : , $% ,
( ( ( $% :A; " , & % C? ( %
CB ( & G $% # % CA % C:
% CC ( % C<
" " % CF
K@: @A @A @AL
1
# # " 4
. $ B ' R ;AB
3 "# (!# +#
;AA
power allocation
beamforming
#1
pnT
...
s(R)(m)
u nT
R symbols
# nT
...
OSTBC
...
S/P
...
s(n)
...
...
u1
...
s(1)(m)
...
p1
"!
+5 5 ( ! '
.J50 ! *
M
-
- CCA . (/
( ! ( ( CCB 9 (
( . " 9 B??
# ( 9
9 9 C
U
C C;
$% $ $% $ B ( *
M
-
9 9
B?B B?? , , (
9 9
! ( (
1 0 2 1 ! : & 2 ! ! 3 ! /# % %&, ##
;A:
3 ,
%)$
9 9
, ! ( ' C; %)$ ( , K6T
@? >@A N@? N@BL
$
%)$
,
(
. K=@?L %)$ KDD 5@;L/
- "
M
$
5 +
U
5
( & ;
5
$
5 , C?
M
- 5 $
5 %)$ =&+ KDDL K5@;L (
" M
9 9
( 3 . , " %)$
(
- 9- M
U
CB
.J50 # # ! ;
-
( M
0 ( @
CA
CA 0 M
M @
M ? ( 3 /# (!#
;AC
' C? %)$ 3 %0+ ( KDDL K5@;L
%0+ M
(
M
( C " 9 9"
C
0 -
" 9 9"
(
(
(
(
C:
( ;
(& " 9 C 9 C"
U
)
" M U
(
CC
# C;
(
S (!
. ( . C
, (
( , & ! $% # ( , (
(&
# 1
M
;
;
( C
( C
(
CA & ( @
C<
' "
G " ( C< ' ( ! ( & 9
" $
( & (& % Æ
&
C
(
3 ! /# % %&, ##
& &
( ( C
&
(& & ( ( C
(
CF
(
0 ( CA " (
(
(& & ;A<
& (
(
?BB (
&
(& ! ! & (
& U ;
(
(
&
(
( C
( C
( C
( C
( C
& (
& ( ( ( M
U ;
M
K
M
(
/
U ;
U ;
U ;
L
K@ ;L
CD
!
" ( K+<;
" V
KN@@L
(
L
C
Æ ( C< ( & 9
," $ # $
) ! "
( & ( )
1> #
# !
1
" 3 /# (!#
;AF
Concave−convex function
1
0.8
0.6
f(x,y)=−x2+y2
0.4
0.2
0
−0.2
−0.4
−0.6
−0.8
1
−1
1
0.5
0
0.5
0
−0.5
−0.5
−1
−1
x
y
1 % & ; ¾ 9 ¾ D ( + , + , & /
; + ; , + , > 5 /
C;@
4 @,
C# 2CB)D < + , & &
& 5 + , / + , ' C? B
( $ M
U$
@ @ 4 @,
C# < 2B)D < & + , ! ! + , / ; +
K
U
L
; , $ M M 9
! ! C;;
3 ! /# % %&, ##
;AD
;
/
5
& *+ C< " ( & " , , ( " !
G ( " CC 0 ! " # (& & %0+ . K DAL (&
K@B L
1( & BC$ & 5 ;
&
,
&
9 C 9 C C (
,
# U
U
C;?
& / ( &
5 , 9 C 9 C B#)$ & / & 5 7 & C B#)$ ;
( C 8 & B#)$ M
U
U
M
18
!
(C
( & 3 ; $! ( " ? ( C
( C ( C ( C
( C< (
( C
( C
& (
" C< C;B
(
3 ? ( 3 /# (!#
;:@
& ( ( &
C (
# ( C
C;A
(& /
( # @
(
" 9 C 9 C" '
(&
U
U
C;:
(& ( " 9 C 9 C"
'
(
9
( C
"
C
9
C
" 9
C
9
C
(
" 9 C 9 C"
(
U
M
(
U
U
M
(
U
U
/
U
C;C
! ( (
. ! C< C;? ; U
U
( ,
& ( ! & ,
% ( C;? C
M
M
( C
3 ?S (
, 3 ! 9 C
,
U
& C;? 9 C U
M
5 C;? Æ EE
, EE %Q (
?BA K)@AL 3 ? "
( C
( EE ( C
C
M
5 (
EE
) C
C
! C;B 5
C
"
3 C;? & ( (
( C
@
3 ! /# % %&, ##
;:;
,
C S
,U
,
M
;
U
!
5 U
5
M
9 C 9 C ,
U
U
9 C 9 C"
U
) U
U
C
C;<
5 " C
) 5
"
C;F
5 " EE /
C 5
M ;
) C
U
5
5 " S
U
@
U
C;D
@
C?@
M
U
( C
" 9 C 9 C "
U
5 ) C
0
U
C
9 C
9 C 9 C ,
0 3 U
)
9 C "
M @
9 C
,
@
C?;
M @
C??
U
(
U
C
C?B
EE /
9 C "
U
' "
( " U
C C
C
9 C U
M
( C
C
( C
@
C?:
0
C?C
M @
C?<
,
M
,
M
M
)
M
5 9
5 U
C;DC?? C?AC?< C?A
EE C;DC?? C?AC?< ) C?? M
C
@
C
!
(
(
S
0 " ! 5 ! 5
@ C?@ 5
C?;
%& ( C< M ; " ( C;? 3 3 /# (!#
;:?
& $ ( , Æ (
& C
C;?
,
3
5 $!
Æ (
C;? " !
(
9
"& : +"
G ; 3 & $ ( (
# " 9 C 9 C"
(&
U
@
U
(
C?F
!
" ! M
(
M
(
(
M ; M
@
(
# 3 (&
# ,U
(
& ,;
/
(
# @
9 C ,
9 C
U
M ; U
,U
" = (&
C?D
@
,
U
CB@
M ;
U
@
,
9 C 9 C
M ;
(&
, 9 C 9 C ,
U
U
CB;
3 ! /# % %&, ##
;:B
& (& " & 3 K)@AL ,
&
,
# 9 C 9 C U
U
?BA
CB?
C;? 3 5
,
9 C 9 C U
U
; 0 CB; CB?
C (
5
M
C(
M
5 " 1%
' 3 ' / " (
& , ! :? , &
" G # & ( ! & . 9%
/ ." . 5 ,
, # ( , 5
3 9& 9 3
U
3
&
& 0 G
C
9
3
C
9&
3
C
9 9&
3- / ," %
;:A
3 "
)
9
9
, 3
3
)
. # 5 0
#
'
#'
)
)
. 5 KEDBL/
))& '' #''
))&
''
M
;
#''
.
6 .
."
.
CBB
''
#''
' #'#' #)& ' #' # M
U
M
U
U
''
)
CB:
, %* ) KEDBL ) CBA
$! CBB ) 9
" ''
Æ C ! ) '' . (
" ! C;? !/
C
M
/
Æ M C
Æ 5 Æ ' Æ #
''
Æ #''Æ '
M
CBC
; (
! ! H% %0+
%0+ ! )*+ ( )*+ '
M 8
& 8
! ?
CBB & (
'
M
-
9 '
9
- , #''Æ
( 5 3
) C C
9 9
/
& (
' & ;? ' M
'
-'
; U
/.
CB<
/. -' - %0+ ! ( 3 ! /# % %&, ##
9%
;::
6" /
'
,
% , ( !& $% . , ! Y
/.
9
C- Y '
9
'
(
M
9
!&
!& , !& %0+ "
-
9
9
$! (
C
" . .+ K
/
C .. L
5
" ( ! /
..
Y
?
C .. K
L
Y
?
CBF
9 !& ! C , &
, 9%
&
M
B%0+ %0+
, !& & $ / 6" /
G 5 !& ( " ( (
M
C C C . C
9. .
.
C . .
M
U
/
+
K
( 0 ( L
C
K
.
.
L
CBD
5 ( !& . & C;? ! /
&
# ,
9 C C 9 C C C C. 9 . . . .
C . . C . , U
U
U
U
CA@
+
K
L
K
L
& 3- / ," %
;:C
i
i
i
r
r
r
(a)
(b)
(c)
) F5 F ; . F F
; F %& 5 % & 7
8 5 %& 7
8 ' CB Y Y
9%%
$
M +
Y
Y
M Y
4& ,
,
( ( /
;
()
;( >
' C
9
Æ #''Æ 5 ?
B
. .
<? >
C .. .. C .. #+ 2 .
. A?
>
. .
C C
C 9 . C . . C . +
K
L
K
L
U
+
K
L
K
L
. , (
9
9
C
M
!& !& % ( E3 K6FDL $ " ) %
"( (
(
"
M
, )) "" M
5 3 ! /# % %&, ##
;:<
.
Hi
G) 7
8 5 + /
,
)
M
)
M
)
M
, Æ
9
9
M
( 9 "( , CA;
( I!& 9
M
Æ Æ
9 9
ÆM
M
C
Æ
M
9 Æ
9
A
:
" Æ
K)@AL
/
()
;( ) >
<? ) >
C
( ( M
( Æ
CA?
#+ % $8
'
: Æ
Æ Æ +
3. &+# ," %
;:F
!& !&S !& $ 9 (
U
9 9 (
U
9
( , ! * (
9
" " ' CA ( /
<
7
A?> 9 9
M
C (
(
. ( !& K0DFL 3 K5D?L
" (& %0+ % % K3@AL !& ! " , 1&
#.4 / ( C;? ( " 1(
& BC$ (
C
9 9 9 " ., & M
& / +/ & / &
*
,
M
-
%
$
)
;
@
CAB
/ ) ;
/ 51
$
M
%
9
CAA
/ 1
18
?
U
( 9
M @
CA:
9
C
( /
9 9 " C C" CAC
3 ! /# % %&, ##
;:D
( C
" 9 C 9 C"
M U
U
(
M 9 C 9 C
U
U
(
CA<
C C
9
C C
9
0 " (
"
C (
M
/
! ) (
9
( C< & '
'
(
U
U
CAF
9 C 9 C U
(
9 C 9 C
C
9
# 3 ? (
M
( ; ( &
)
U
)
)
) M
)
U
Æ ) $
Æ ( C ) U Æ)) Æ M +)) 9 & Æ
Æ &
'
9 C
+
&
U
M
)
) 9 C
U
(
M
) $
)
) ;
)
)
;
)
%)
)
+ )
)
. CAF &
M
+
# ,
)
$
;
;
)
%
+
) +
M
CAD
! ( C:@
M
0 ) + 9
+
C
9
,
+ + + 9
M
) )
) )
! " , ) ;
M
/
E
"1
,
?
+
M
)
) M
9
@ %0+ E
& 1
C
9 9
M
M
9
G @
! 3. &+# ," %
;C@
h1
h2
c1
himax
c2
cimax
t
...
h nT
...
i =1 i =2
P0
imax
i =nT
active eigenmodes
. ) C:@ " ! +
@
( (
" ! ,
"
)
9
+
, + ) +
+ $
@
M
$! + , M 9 ' C: ( , ( (
! " M
Æ
+ ) ) 9
! @ +
+
M @
/
M
+
( ) + ) + "
9 C:;
" , ( 9/
( , ' C: +
M
) ) U
+ M ; C:?
, 3 ! /# % %&, ##
! +
U?
+
) ) M
+
0
C
( C
U
C
C
9/
M
+
) ) 9
M
9
"
M
@
C:B
" 1
+
" C:A
(
) ) + M
U
+
$ ;C;
" EE 3 C) S
" 9 C 9 C"
U
U
(
U
)
C C 9
C::
EE 9 C"
U
( " U
)
C 0 " 9 C " (
9 C (
C
M
U
U
" ' ! " )
*
)
;
*
M
) M @
" )
+
+
M
$
+ ; M
C:C
M
C:<
%
) )) )+ * *
, )
*
M @
;
-
) @
M
M
+
M
) " C:B ? !
CA:
11
+
;
& M
U Æ U ) Æ U
)
)
C" 0
) C
0
U
# -'
( 33 /
;C?
99
+" " (
' EE C;DC?? ( C;? 5
C
( C
M
$! " 9 C 9 C "
U
U
5 C:F
&
%0+ %0+ &
# ! , 5 ! 99
M %0+
-
" 9 C 9 C"
U
U
5 C:D
2 2 + " +" -/, (& . K$<? J D: 5D< $@;L
# )*+ # (&
! ( )*+ $ %0+ )*+ H.
)*+ . )*+ %0+
%0+
, , /
; " H% ( )*+ ? 5 & 9
(
3 C
5 3 ! /# % %&, ##
;CB
B $ ( %0+ C:D/
%0+
-
M
" 9 C 9 C "
U
A $ ( U
" )*+
5 %0+
CC@
)*+ , %0+ ! )*+ & " ! M @ H%
" " ( C:D
: ' 0 ! " )*+ ! ( %& . ! (& H% 99
/ , ( 3
*
( " (& %0+ " 9 * 9"
%0+ M 9
(
9 * 9 9 9
M
9
* B?B B;:
" M " 9 9"
9 * 9 "
9 * 9 9 9
( " M
M
(
CC;
(
0 ( %0+ ! C:
(
(& ( C
) "/
M * " 9 C 9 C"
U
U
(
CC?
33 /
;CA
C
9
9 9 C
M
U
CCB
. " C
( (
(
( 99%
C
* *
M
(
9
* (
(
(
M
(
9
(
C * C C (
M
/
CCA
( C
/ !+ + "
R ! $!
( . ! '
K)D@ 0DF J@@L # ( ! 3 M @ 9
; ( ' C 9 9
3
(
M
" C (
'
G ( ' CC " ( M "
/
9 9
%
%0+ (
. ( CC:
3 ! /# % %&, ##
power allocation
;C:
beamforming
...
...
p0,1
...
u 0, nT
S/P
pN
beamforming
1,1
...
...
...
s(n)
power allocation
uN
...
1, nT
...
pN
...
...
OSTBC
R symbols
1,1
...
...
{sN-1(l )(m)}Rl=1
#1
...
...
R symbols
p0, nT
IFFT
P/S
CP
...
OSTBC
...
R
{s0(1)(m)}l=1
...
...
u 0,1
uN
IFFT
P/S
CP
# nT
1, nT
" ( (
0 (
M
;
-
" 9 C 9 C " U
. U
5
" # M
(
& .>0 CCC
BBB
. M
;
(
,
CC<
%0+ 12
! %)$ 34 # ;CC
Mean value of the normalized robust power allocation
1
Mean value of γ1
Mean value of γ2
Mean value of γ3
Mean value of γ4
0.9
0.8
0.7
Mean value of γi
0.6
0.5
0.4
0.3
0.2
0.1
0
0
0.1
0.2
0.3
0.4
0.5
0.6
Parameter g
0.7
0.8
0.9
1
8 ) . CB ( ! , M
! M @
M ? J " A C & 9 9 9 9 C $ 0 C (
M
! M
U
@
M
5 ; 0 ! @
%
M A A ' C< & . ( .
5 M @ " 0 %)$ !
M ;A M @?: ;
A . ' C< &
; K5@;L 3 ! /# % %&, ##
;C<
Cumulative density functions of the minimum transmit power
1
0.9
0.8
0.7
g = 0.1
Probability
0.6
g = 0.65
0.5
g = 0.8
0.4
0.3
g = 0.9
0.2
0.1
0
Robust maximin approach
Non−robust approach
Pure OSTBC
5
10
15
20
25
Minimum transmit power (dB)
30
35
40
!
) 7
8 ) 5 /. 7
/.¼ ; 32 %)$ ( , /
(
&
M
( 9 9
;
/
;
0 9 0
M
M ; G %)$ ( ! . M ; CC; ( %0+
! '
CF ! %0+ M;@ ) M ? M ? G !/ %)$ , G @C: @F @D . /
@;
%)$ ( J & " H% ! 0 ( ! %)$ $% 34 # ;CF
Mean value of the minimum transmitted power (dB). TDD system. Spherical uncertainty regions.
Robust. P =0.85. n =2, n =2
in
T
R
Non−robust. Pin=0.85. nT=2, nR=2
Pure OSTBC. Pin=0.85. nT=2, nR=2
Robust. Pin=0.6. nT=2, nR=2
Mean value of the minimum transmit power (dB)
22
20
18
16
14
12
10
8
9
10
11
Estimation SNR (dB)
12
13
14
7
" ) %
5
) & /. 7
/.¼ ; 32 %)$ 0 ! ! ' CD C;@ ! %0+ M;@ ) '
& !& %0+ CA ' G H% " CA; M @C /
M @F: " !& %0+ %)$ ( , .
!& %0+ ! " %0+ ! & 0 ! ! .
!& %0+ %)$ !
, ( 3 ! /# % %&, ##
;CD
Mean value of the minimum transmit power (dB). FDD system. Cubic uncertainty regions.
11
Robust. nT=4, nR=4
Non−robust. nT=4, nR=4
Pure OSTBC. nT=4, nR=4
Robust. nT=6, nR=6
Mean value of the minimum transmit power (dB)
10
9
8
7
6
5
4
3
2
1
5
6
7
8
9
10
Quantization SNR (dB)
11
12
13
14
7
( ) %7
8 5
) & /. 7
/.¼ ; 32 H% ! & ' " ' ( ) A ) M ? M A M ? %0+ M ;;
M A %0+ M : )
B ) . ( %0+ 9 0
M
&&
' C;; C;? H% !
9 C $ 0 C (
U
M
!& %0+ '
G . !& %0+ ( H% ! H% (
9 0
M
H% 39 ##" ;<@
Probability of service provision
1
0.9
Probability of service provision
0.8
0.7
0.6
0.5
0.4
0.3
nT=4, nR=4, SNRest=6 dB
nT=4, nR=4, SNRest=4 dB
nT=4, nR=4, SNRest=3 dB
nT=4, nR=4, SNRest=2 dB
nT=4, nR=4, SNRest=0 dB
nT=2, nR=2, SNRest=6 dB
0.2
0.1
0
−5
10
−4
−3
10
−2
−1
10
10
1−Pin (Probability of no QoS)
10
0
10
* ) 3 5 ) , ) . ( CC? (& (
)*+ C;B ! ;@
! 9
'
( )*+
M
9 ! '
! ( ) "( H%E ;CH.
' " , (
& ( " 18
# $% 3 ! /# % %&, ##
;<;
Probability of service provision
1
0.9
Probability of service provision
0.8
0.7
0.6
0.5
0.4
0.3
nT=8, nR=8
nT=6, nR=6
nT=4, nR=4
nT=3, nR=3
nT=2, nR=2
n =1, n =1
0.2
0.1
T
0
−4
−2
0
2
Quantization SNR (dB)
4
R
6
8
* ) 7
8 /.5 7
8 ) G 5 !& , ( ( &
%0+ & $%
%)$
, %)$ ! , & %0+ & ( ( & 3 & 0 39 ##" ;<?
System throughput with maximum BER constraints
8
Robust AM, nT=8, nR=8, g=0.4
Non−robust AM, nT=8, nR=8, g=0.4
Robust AM, nT=4, nR=4, g=0.6
Non−robust AM, nT=4, nR=4, g=0.6
Fixed modulation − Robust nT=4, nR=4, g=0.6
7
Throughput (bits/s/Hz)
6
5
4
16−QAM
3
2
QPSK
1
0
5
10
15
20
25
Maximum available power (dB)
30
35
$ +
.¼ ; 32 ¿
( Æ ( , ' ( ! (
' %)$ (
' ! %)$ ! !& %0+Q !
&
" $% ' $% $% G , ( $% ( ) " ( 2
. $ ; # , $ ? G " ! ! $% " . ( & $ B '
, ' '
. '
;<B
4 ;<A
G
$% $%
' (& %0+ G G %0+ & ' (
$ A ( !
. '
$% G " , & # H% ( )*+ , ( ( H% G " ( %. %. & "
R . 5% %. " " ! $ : $% ' G " R & . $% $ B '
$% & %0+ G &/ ) ( ) 4 + :;
;<:
, ( G
' ( ) ! & $G %%'
%0+ / , '+ " %
# & %* (&
' $ C ( R G # (& %0+
, G %)$ %)$ & ( & ( " . (
( '
! . ! (
& # ( )*+ !
2
4 9:
( , ( , $ $% /
* G #
! #
9 ( %. 4 + :;
;<C
9 ( %. ' /
) & G $ C %)$
, , ( !& , %0+ )*+ , , $% ( ,
( #$
K.FDL * . 6 E
( 7
; %
6 J -
% ;DFD
K.=@?L $ .= . 3 =2
& O. ! J
?
? %
& * 7
2>
F F!"2$
/ $3 P
0 ?@@?
K.,@BL 6 ., 5
O ' , ) ), $P
. ?@@B
K.DFL % . O. % ! J $
P
-
( ;C F ;A:;Z;A:F
;DDF
K)@?L )2
. 2
& 0 . O) % %
(
(!")$
'
%P
B ?<CDZ?<<? ?@@?
K)@BL )2
. . 2
& 0 O% % .
(
(!"2$
J %P
A ;F:Z;FF . ?@@B
K)@B L )2
. . 2
& 0 + O' ', ' = . . . J3.0P
%
& ' !"2$
; ;Z: 6 ?@@B
K)DDL ) ) O , ) 9 %"
(
(<<,+.!AA$
&P
DF<ZDDC % ;DDD
K)@;L ) ) O %
3 $ 5 )P
8&
0 ( . ?@@;
;<<
$+$ *!%"
;<F
K)@?L ) O. . 9 % (P
( % 0
(%!")$
;B@Z
;BA . ?@@?
+;
< % %
K)F?L ),
$
% . . ;DF?
K)DDL ),
?
.
. %" ) ;DDD
K)@?L % ) . % ) .& O' , 5 .
%P
:@ : <F:Z<DF ?@@?
K)@BL ) % % & . ) 5 O+ .# (
(!"2$
) $ $ %P
: ;@:Z;@F
. ?@@B
K)D@L 6 . $ ) O / . J
%;
5
7
##
= $P
K)@;L ) %5
?F : :Z;A ;DD@
K)@?L = ) %
)P
' ?@@;
O. 5 9, ,
F ? F!")$
; F<ZD; % ?@@?
K)@@L % ) 3 7 (
+;
/ $ 0 /IIIIBCA %
9 ?@@@
K)@AL % ) 3 7 +;
$ 9 ?@@A
K$FCL . ) $
5= B
;DFC
K$<?L 6 $ O7 + + ' $P
?@ ; ;:Z?? ' ;D<?
K$@?L 6= $ 3 ' +', O6 + *Æ % P
; ; ;CZ?< 6 ?@@?
K$@?L 6 $ O. % . . $
. %P
F :; A C?AZCB: 6 ?@@?
*!%"
;<D
K$@? L 6 $ O . . JIJ $
P
F :; ; ;@;Z;;B 6
?@@?
K$@?L 6 $ O 3 $3 . ' + ' $P
F :; A
<<;Z<<: 6 ?@@?
K$@?L 6 $ = E $ = J 3 O. . ! .
J ' ,P
F :; A C;<Z
C?B 6 ?@@?
K$@;L % $ . 6 5 O
' . / .
9" 7P
AD D ;:C;Z;:<; % ?@@;
K$D;L $ 6 . 6 J - %
0 8, ;DD;
K
@;L 6 O. 0 % $ ( ( %
%/ . % '! *P
A< A ;CF;Z;CF< ?@@;
K
@?L 8 0 6E N NH 3 E J O )*+
(
(!")$
7,(. 2,"GH71 %
8,<(.I) E9
#"# 6CH ###1 7
& ,
( ./
0 7,(.$J 8,
<(. )J 8K$ ), N' *!&P
B ??C;Z??CA ?@@?
K*%DFL *%
;DDF
K*%@@L *%
. ?@@@
K'@@L >
'
%P
$
3
<
O
%
$
BC D FBFZFBD . ?@@@
K'DCL 5 6 ' O3 % . J $ ' * J 9 * .P
7 <& -
; ? A;Z:D . ;DDC
K5@;L 5 5 % O% ), $/ . ( %0+ .P
E * +
E
A< A ;C:@Z;C:C ?@@;
K5@?L 5 5
9 9 ?@@?
*!%"
;F@
K5@? L 5 5 % O
G 9 % ), $P
<
K5DAL J . 5 D ? :<ZC@ ' ?@@?
***
;DDA
K5D?L . 5 + 5 F
=;
E
. ) ;DD?
K5FDL 5 ) 5, 6 O" 0 %
9 = %P
(
B< B BC@ZB<< ;DFD
K5FDL ' 5 O
% P
+,( -
; B ;D@Z
?@C ;DFD
K5DDL 63 5Æ 6 7 O$( 0G &/ . % '
. $ $ P % 9 5 %& ' ;DDD
K5FFL * 5
> (
+;
% <
.J ;DFF
K5DCL 5 5 $ 7 3
% 6 =, ) ;DDC
K5D<L . 6 5 %5 $ O7 + 7 H. '
$P
A: ;@ ;?;FZ;?B@ ;DD<
5 = 1
( *5 (
K=DDL ) = . = % E
%. . ;DDD
K=@?L ) = ) = O$ G 9 % $P
K=@AL $ =
AF C ;AF:Z;:@B 6 ?@@?
+ )2
. . 2
& 0
O %
+ '
%/ %
$(P
!"6$
%
& ' 6 ?@@A
K=@@L 3 = O+ % . . $ %
.
+ % *P
?:? 6 ?@@@
-
8
C ? ?;:Z
*!%"
;F;
K=@@L ) = 3 & O9 % . $ + ' 'P
AC ? :ABZ:CA ?@@@
K=@@ L ) = 3 & 6 + J % + 9 ,
O% 9 % $P
AC C ;DC?Z;D<B % ?@@@
K=@@L ) = J % O
G 9 % P
K=@?L = = . ,
%
& AF ;? ?@A;Z?@:? ?@@@
E%( *% ,
( >
6 J - % ?
?@@?
K=D?L 3 = $ E %& O% 0 '* $,
3 'P
-
( ;@ B C;AZC?D . ;DD?
K=@@L ) 3 = O
G % P
AC < ?:C<Z?:<F 0 ?@@@
##1 <(. % ( %($ <
8K$ G")##
K**DDL ***
;DDD
K6@;L = 6, O. H % ), $P
AD ; ;ZA 6 ?@@;
K6FDL . E 6
? E = *
$G 06 ;DFD
K6DFL J 6 + 7#V
2
+ 3 ,& O6 + &
% $ $P
AC ? ?CDZ?<F ' ;DDF
K6T
@?L 5 6T
%, ) O$ ) % ), $P
AF B C;;Z
C?< ?@@?
KEF:L % . E = 7 O+ ! % / . %P
KEDBL % E
<B B ABBZAF; ;DF:
? 1 = ;DDB
*!%"
;F?
KEFCL . E O% . & '
P
-
% ?< < ;FBAZ;FBF 6 ;DFC
K3F<L 6 3 * = 3 .
(1 (
E . ;DF<
K3@?L * 5 3 5 5 % J= J O % ), $ J H& ' ,P
<
C ;; AF<ZAFD 0 ?@@?
K3=@@L . 3 =2
& 6 7 . 2
& 0 O6 . $ 3%* %9 + 5 $P
-
( ;F ;; ??:?Z??:D 0 ?@@@
K3@?L 8 5 3 O%" $ * '
% J .P
; ; C<Z<: 6
?@@?
K3@BL 6 3 % N J O + $ ) 3P
:; < ;<@?Z;<;: 6 ?@@B
K3@BL 6 3 . . 3 =2
& O) % %)$
!"6$
% 9 $. 0 0,P
?@@B
K3DDL E 8 3 O( + P
;@ ;A:FZ;AC; A<
;DDD
K3,@@L 3, ' J O + & $
. %P
AF < ;;D<Z;?@< 6
?@@@
K3@AL + 3& % ) O+ 7 )P
?@@A
K3@AL 6 3 + J = J % 3 = OJ 7 3
' , $[P
:D %;
A? ;@ :AZ
?@@A
K3&@?L . 3& $ ) O3 % + '!%
J $P
6 ?@@?
:@ ; C:Z<B
*!%"
;FB
KDDL 6 + = 0,
% E9 / (
6 J - % ;DDD
K<DL . J ,
1 %:
;
(
. 0 8, ;D<D
KDDL 3 & ) = O$ . $
3, + ' 'P
A:
; ;BDZ;:< 6 ;DDD
KF@L + . & J ( (
6 J -
% 0 8, ;DF@
K@AL . . . 2
& 0 O'&& + )
P
& *,( KD?L ) ?
?@@A
>% %
& ;DD?
K@?L . 3 , % = % O& %+
% . % J $ EP
%
7 <&
?@@?
K,@;L E E ,, . % ) .& O
. $
(
% $ ' ,P
(<+%(,!"#$
? ;@@DZ;@;B 0 ?@@;
K0DFL . 0 6 3& 5 J J O*Æ 9 % . ' $P
( K0DFL + 0 + = )I3 ;
;C F ;A?BZ;ABC -
;DDF
+?E% %
& % .
;DDF
K0DAL 8 0 . 0, O $( P
(% ( %
;B ;DDA
K@BL * 0 . % ) 7 7 O*Æ % %
J % J $ 9 $ % P
F K DAL ;DDA
:? ; ;Z;B 6 ?@@B
. + ( > $ *!%"
;FA
K@;L . 3 =2
& . . 2
& 0
O 6 + % + '
(
(!"#$
P
:?;Z:?A . ?@@;
K@BL 6 $Æ . 3 =2
& O6 (+( )
$/ 9" ', $( &P
:; D ?BF;Z?A@; % ?@@B
K@B L 6 $Æ . 3 =2
& O9 .
$/ . 5 .P
AD < ;<@<Z;<?< 6 ?@@B
K@AL . 3 =2
& 6 $Æ O 3 6
+ $ H% $P
:? : ;;<DZ;;D< ?@@A
K@:L . 6 $Æ . 3 =2
& O$(
& . 6 + $P
. ) 5 0 % %%+ $
&& ,
F& 6 J - % ?@@:
KD;L . B
5=
;DD;
KD<L . 6 # $ ) O% J $
P
%;
;A C ADZFB 0 ;DD<
K@;L . . 3 =2
& . 2
& 0 O% . %9 * $P
!"#$
B
;;<DZ;;F? % ?@@;
K@; L . . 2
& 0 . 3 =2
& O .
* % 3& P
0
!"#$
:?FZ:B; . ?@@;
K@;L . . 2
& 0 . 3 =2
& O ) $ . =*+3.0I? '
P
& ' !"#$
%
BZF % ?@@;
K@?L . 0 . . . 2
& 0 O. . ,
0,P
0
7
& (8
./
0
% ?@@?
*!%"
;F:
K@? L . . 2
& 0 . 3 =2
& O6 )
(
(!")$
% '
%P
B ?FA:Z?FAF ?@@?
K@?L . . 2
& 0 . 3 =2
& O6 & J '
$ ) % .
P
*+!")$
? A?;ZA?A
% ?@@?
K@?L . . 2
& 0 . 3 =2
& O% .
! 6 + 9 . '
$P
%
& ' !")$
B?:ZB?D 6 ?@@?
K@?L . . 2
& 0 . 3 =2
&
O . ! 6 ) '
$P
*+!")$
; BFBZBFC % ?@@?
K@BL . . 3 =2
& . 2
& 0 O
1
$
% $ 2
$P
.
*3
345 ,
*,!"2$
% ?@@B
K@B L . . 3 =2
& . 2
& 0 O+ . )*+ %%'
%P
!"2$
? ;?CBZ;?C< ?@@B
K@BL . . 2
& 0 . 3 =2
& O*( (
(!"2$
% '! % % ' , $P
A F:ZFF . ?@@B
K@BL . . 2
& 0 . 3 =2
& O
'
% $ % P
%
& ' !"2$
?
BDCZA@@ 6 ?@@B
K@AL . . 3 =2
& . 2
& 0 O+ $
% % '! % $P
( % 0
(%!"6$
6 ?@@A
K@A L . . 2
& 0 . 3 =2
& O.
+ ( . $ $ % *!%"
;FC
) $( &P
& % ?@@A
K@AL . 2
. 2
& 0 . 3 =2
& O+
. (& % $ %)$ )P
!"6$
%
& ' 6 ?@@A
K@AL . . 2
& 0 . 3 =2
& O. ( .
+ / $ %)$ ) (
(!"6$
+!P
? ;ZA ?@@A
K@AL . . 2
& 0 . 3 =2
& O. . &
*,( -
./
0
6 ) '
%P
?@@A
K@A L . . 2
& 0 . 3 =2
& O .
% ( % 0 + '
%P
E KD:L 6 5 ,
B B F@FZF?@ ?@@A
5= B
;DD:
K+DFL 5 5 + 6 $Æ O% $ J $P
AC B B:<ZBCC ;DDF
K+@?L ' + 3 5 72
&!& O. 6 + % + $ 9 J3.0 .P
!")$
%
& '
6 ?@@?
K+@? L ' + 3 5 72
&!& O . $
E %P
? F!")$
F A ?;?;Z?;?: % ?@@?
K+@BL ' + 3 5 72
&!& O ' &
$% E J .P
!"2$
A ?:C<Z?:<; ?@@B
K+'DFL ' +', E 6 + 3 3 O ) $ $ J %P
-
( ;C F ;AB<Z;A:@ ;DDF
K+'DF L ' +', 3 E 6 + 3 O6 $
) J 0, 9 . .P
AC ;@ ;B;BZ;B?A ;DDF
*!%"
;F<
K+@AL J + J 8 6 $Æ O ) 9, J %P
B ; FCZDC
6 ?@@A
K+<;L + +,
(
9 06 ?
;D<;
K+<; L + +, O% $( .P = J E 5 %&
E9 > , ;@DZ;?< 0= $
;D<;
K+F@L 5 % +
% E < .
)
,,
;DF@
K%F:L 6 %& O
$ 3 $P
-
(' CA C ;;A<Z;;:D 6 ;DF:
K%@;L = % % . # O5& $ 9 J %* $P
AD ;? ?;DFZ??@C ?@@;
K%DDL . % % ) 5 ) 5, O' , &
+ ), $P
A: B ;@;DZ;@B? . ;DDD
K%DD L . % 5 ) 5, % ) O+ ' , *!& / 9" P
A< < ;DFFZ?@@C 6 ;DDD
K%@?L . % % % ) 5 ) 5, O %
3 P
:@ :
;@:;Z;@CA ?@@?
K%D;L 3 3 %
1 E
(
.J ;DD;
K%@AL % %
. 8 O & %P
:? ; ?;AZ??C 6 ?@@A
K%DBL 0 % 6 = J O % % * '!
( '
% 9 . P
:;; ;DDB
F F!A2$
:@FZ
*!%"
;FF
K%AFL $ * % O. $P
-
7 ?< B<DZA?B 6 ;DAF
K%@BL % % & . ) 5 NH 3 E J O+ .
) 5+, % P
:; D ??:<Z??CD % ?@@B
K%@?L % = % . 3 , O ) + $ % $ EP
E%( 0
%
& ,
K%DDL + % 3 =& ?@@?
6 J - % ?
;DDD
K%@;L % )& 5 ' O % ),
$P
F F!"#$
B ??F?Z
??FC ?@@;
K%@?L % 5 5 O(%0+ % ' $P
:@ ;? B@BCZB@A?
?@@?
K%@BL % N J 6 3 O+ $ )P
<
;@ C ;<?Z;<: 6 ?@@B
K%&F<L = %& + = O' % .P
< (
;?? B
;:<Z;C? 6 ;DF<
KDFL 7 , 0 % . + $ , O% $ = +
J $/ $ $ $P
AA ? <AAZ<C: ;DDF
KDDL 7 , = 6, . + $ , O% ), $ P
A: : ;A:CZ;AC<
6 ;DDD
KDD L 7 , . 0 0 % . + $ , O$ . % $P
A: A
;;?;Z;;?F ;DDD
KDDL 7 , . 0 0 % . + $ , O% $ = + J $/ $ $
* * P
A< ? ;DDZ?@< ' ;DDD
*!%"
;FD
K@@L 7 , = 6, O. G % P
-
( ;F < ;;CDZ;;<A 6
?@@@
K7FAL 7 % 5 3 O. $ % . . & $ 7 P
-
:C
? ?:DZ?<; 0 ;DFA
V
V
K$FAL
7 $
O& $ '
% .P +
0 =9'FA:; + 9 =, ;DFA
K7FAL % 72
7 O ( + / . 5 . .
P
B@ ? B?FZBA@ ;DFA
K7DDL * 7, 9 O ) 9 . .
P
F F!AA$
; F:;ZF:C
;DDD
K7@;L * 7, 9 O% J '
,P
A< C ?CB?Z?CBD % ?@@;
K7@BL % . 7 . ) 5 NH 3 O+ . ) 9
J$ &/ . % % P
V
KN@@L
:; ? B;BZB?A ' ?@@B
V
% N,2
$ O. . $ %
$ $ (P
( +
,
DD
:DZ<< ?@@@
KJ@@L N J 5 ) 5, OJ $P
%;
KJ D:L J J
;< B ?DZAF ?@@@
+ % O7 + H. +P
AB < ???BZ??B@ 6 ;DD:
KJF:L 3 J 6 7, O* * &
P
-
(1 % >
% .
;F ;< 3;;;BZ;;;<
;DF:
KJD:L . J
O > P
><+7+%!AH$
>
& ;BZ;< 0 ;DD:
*!%"
;D@
KJ@;L E E J + % E $ E ) 3 + O. . ) % '
I
. %P
AD ; ;D:Z?@C 6 ?@@;
KJD<L 5 J J O*Æ % ! *(
. ' $P
A: ; ;D;Z?@: 6 ;DD<
K>@AL > % N 5 ) 5, O. '
) $
% P
:? ; ?@?Z?;B
6 ?@@A
K8DAL 6 8 % + O6 + & % ' ,P
A@
: ;BBAZ;B< % ;DDA
K8DA L 6 8 % + O 6 + & %P
A? ;? B??;ZB?B; ;DDA
KNDCL E N 6 $ E 5
,
& + = 9 % + 06 ;DDC
KN@?L % N 5 ) 5, O *) %
), $
$ ' ,P
:@ ;@ ?:DDZ?C;B ?@@?
KN@BL % N 5 ) 5, O *) %
), $
$ $P
AD < ;C<BZ;CD@ 6 ?@@B
KN@AL % N 5 ) 5, O= . $ 0 ) . + $[P
B A ;?F:Z;?DA 6 ?@@A
Documentos relacionados
Descargar