Capítulo 8 ECUACIONES DIFERENCIALES Cálculo de

Anuncio
!"#$%&' (
) *+ ,-.)/ 0,1)2). ,+3)/
4&5%&' 67 678"&!9!:;7<$'8
!" #$!%&%'( #)(!$*
+"," -./01 233-4.
! "#$" %&'($)*+ #" #,#$"-&$,.&! *&# "%)&%,+!"# /)" 0+1,"2!&! "* %+-'+2$&-,"!$+ 3" 4,0&#5
! 0"!"2&* #" 2"%)22" &* 3"!+-,!&3+ -6$+3+ 3" "/),*,12,+ + -6$+3+ 3" *+# 3"#'*&.&-,"!$+#7 /)"
%+!#,#$" "! "8'2"#&2 *&# "%)&%,+!"# 3,9"2"!%,&*"# 3" "/),*,12,+ "! 9)!%,:! 3" *+# 3"#'*&.&-,"!$+#5
;!,%,&*-"!$" #" "#$)3,& "* %+-'+2$&-,"!$+ 92"!$" & %&20&# &8,&*"#7 *)"0+ #" "#$)3,& "* '2+1*"-&
3" <"8,:! = >!&*-"!$" "* 3" $+2#,:!5 ?&# "%)&%,+!"# 3,9"2"!%,&*"# +23,!&2,&# 2"#)*$&!$"#7 %+! #)#
%+22"#'+!3,"!$"# %+!3,%,+!"# 3" %+!$+2!+7 ')"3"! ,!$"02&2#" = +1$"!"2 *+# 3"#'*&.&-,"!$+# = 0,2+#
3" )! "*"-"!$+ 3" 4,0& &,#*&3+5 @" -)"#$2&! &*0)!+# "A"-'*+# #,-'*"# 3" %+-+ 2"&*,.&2 3,%B&
,!$"02&%,:!5
+"5" 6-789 91:;/- 89 8 ;9#2;0<19 8=-8>;9
!"!#! $%&'%()* +(,-.-*%('/
C"%+23"-+# *& B,':$"#,# 3" D"2!+)**(E F !"#$%& '# &()"*#+,-$ & !$# .,&/# "&+%# 0)*&%, # #
&0(!&"/) #1,' '#0 0&++,)$&0 %"#$02&"0#'&0 .&"*#$&+&$ .'#$#0 3 .#"#'&'#0 # 0, *,0*# G7 *+ %)&* %+!3)%"
& /)" $+3+# *+# ')!$+# 3" *& #"%%,:! #+-"$,3& & )! "#9)"2.+ &8,&* "! #) 1&2,%6!$2+ -"%H!,%+
#" 3"9+2-&! )!& -,#-& -&0!,$)3 εx 5 #$& 3"9+2-&%,:! εx ')"3" "#%2,1,2#" "! 9)!%,:! 3" *+#
3"#'*&.&-,"!$+ &8,&*"# u %+-+
du
εx =
IJ5KL
dx
M!& "8'2"#,:! 3,9"2"!%,&* /)" 2"*&%,+!& )!& -"3,3& 3" 3"9+2-&%,:! I εx L %+! %+-'+!"!$"# 3" 3"#N
'*&.&-,"!$+ IuL #" 3"!+-,!& )!& !"#$%&' () !$*#$%&'+ $%'!,-.%$# 5 ?& "8'2"#,:! 3" *& 3"9+2-&%,:!
"#'"%(>%& εx (x) IJ5KL 2"#)*$& 3" %+-'&2&2 I4"2 O,0)2& J5P5KL *& *+!0,$)3 3"* "*"-"!$+ 3,9"2"!%,&*
du
&!$"# (ds = dx) = 3"#')6# /)" #" 3"#'*&%" ds∗ = dx + dx
dx
du (x)
ds − ds
=
ε (x) =
ds
dx
∗
PK
IJ5PL
x
x+dx
u+du
*
ds
ds
u
du
x+dx+u+dx dx
x+u
!"#$% &'() *+,-$.%/!01 2+ #1 +3+.+14- 2!,+$+1/!%3 2+ 5%$$%
6% 4+17!01 +1 /%2% 8#14- 2+ 3% 7+//!01 7+ -54!+1+ % 8%$4!$ 2+ 3% 3+9 2+ :--;+
<&'=>
?1% +@8$+7!01 A#+ $+3%/!-1% #1% .+2!2% 2+ 4+17!01 < σx > /-1 #1% .+2!2% 2+ 2+,-$.%/!01 < εx > 7+
2+1-.!1% #1% !"#$%&' $(')*%*+*%,# <2+B1+ +3 /-.8-$4%.!+14- .+/C1!/- 2+3 .%4+$!%3 $(')*%*+*%,( >'
D! 3% 7+//!01 +7 E-.-"F1+% 7+$C 3% .!7.% 4+17!01 8%$% 4-2-7 3-7 8#14-7 2+ 3% 7+//!01' G+/-$2+.-7
A#+ +3 +7,#+$H- %@!%3 N 7+ 2+B1+ /-.- 3% !14+"$%3 2+ 3%7 4+17!-1+7 %@!%3+7 7-5$+ 3% 7+//!01)
σ x = E εx
N=
=
ˆ
ˆA
σx dA
<&'I>
Eεx dA
<&'J>
A
7! 3% 7+//!01 +7 E-.-"F1+%
N = σx A = EA εx
7! 3% 7+//!01 1- +7 E-.-"F1+% 7+ 2+B1+ +3 L%3-$
EA =
ˆ
E dA
A
<&'K>
<&'M>
<&'&>
N-17!2+$+.-7 #1% 5%$$% 2+ 7+//!01 4$%17L+$7%3 A </-174%14+ - 2+ L%$!%/!01 7#%L+O L+$ !"#$%
&'P'(> 7-.+4!2% % #1% /%$"% 2!74$!5#!2% p (x) +1 3% 2!$+//!01 2+3 +Q+ 2+ 3% 5%$$%' D+ E% 7#8#+74A#+ 3% L%$!%/!01 2+ 3% 7+//!01 +7 7#B/!+14+.+14+ 7#%L+ 2+ 4%3 ,-$.% A#+ +7 %/+84%53+ 3% E!804+7!7 2+
R+$1-#33! 2+ A#+ 3% 2+,-$.%/!01 εx +7 #1!,-$.+ +1 /%2% 7+//!01' S3 +3+.+14- 2!,+$+1/!%3 2+ 5%$$%
<#1% $+5%1%2%> 7+ 2+B1+ /-.- +3 3!.!4%2- 8-$ 2-7 7+//!-1+7 7+8%$%2%7 #1 2!,+$+1/!%3 dx'
S3 +A#!3!5$!- 2+ +74+ +3+.+14- 2!,+$+1/!%3 $+7#34% 2+ 7#.%$ +7,#+$H-7 !14+$1-7 9 ,#+$H%7 +@4+$1%7
%/4#%12- 7-5$+ +3 .!7.dN (x)
+ p (x) = 0
<&'T>
dx
G++.83%H%12- <&'K> 9 <&'P> +1 <&'T> $+7#34%
N = EA εx
du
d EA (x)
dx
dx
+ p (x) = 0
<&'(U>
D! +3 C$+% 2+ 3% 7+//!01 +7 /-174%14+ 3% +/#%/!01 %14+$!-$ 7+ 7!.83!B/% %)
EA
V#+ +7 #1% +/#%/!01 2!,+$+1/!%3)
d2 u
+ p (x) = 0
dx2
PP
<&'((>
!"#$%!#%
"& '&()$"
*#$&%*
!" #$%&'(% )! $%* +%'&* &,,-)!%*)*
!"&$
x.
!/ 012'0, ,-)!% )! )!-'3*&'(% 4$! *5*-!&! !" 6.
%, 7*8 5-,)$&9," !%9-! /*" 3*-'*:/!" , !%9-! /*" 3*-'*:/!" 8 "$" )!-'3*)*"
% + &,+#&$-&' + $'-%$-&'
/," &,!;&'!%9!" 4$! 0$/9'5/'&*% * /* '%&(<%'9* 8 "$" )!-'3*)*" %,
)!5!%)!% )! /* &,,-)!%*)*
x=
>*-* -!",/3!- !"9* !&$*&'(% )!:! &,%,&!-"!. *)!01" )! /* &*-<* !29!-%*
+ $"#+# $&' "& + $- !$
. !"& =
p (x).
&$*/!" ",% /*"
?* &*%9')*) )! &,%)'&',%!" )! &,%9,-%, 4$! 5$!)!% 8 )!:!%
;@*-"! !" 6 A!/ ,-)!% )! /* !&$*&'(%B 8 !% <!%!-*/ $%* !% &*)* !29-!0, )! /* :*--*= C"9*" 5$!)!%
"!- )! )!"5/*D*0'!%9, A;@*- !/ 3*/,- )!
uB , )! #$!-D* A;@*- !/ 3*/,- )! N
, !4$'3*/!%9!0!%9! !/ )!
εB=
!"!"! #$%&'()*+ ,+%+-.-,/%+
E$*%), !/ 5-,:/!0* !" '","919'&,. !"9, !" &$*%), !" "$;&'!%9! &,% /*" &,%)'&',%!" )! !4$'/':-',
5*-* )!9!-0'%*- /," !"#$!-D,". 5$!)! -!"$/9*- 01" "!%&'//, 5-'0!-, ,:9!%!- /," !"#$!-D,"
!"9," /*" )!#,-0*&',%!"
ε (x)
$"*%), /* /!8 )! F,,G! 8 /$!<, /," )!"5/*D*0'!%9,"
u
N (x). &,%
'%9!<-*%), /*
!&$*&'(% &'%!019'&*= C" )!&'-
!" )! /*" )," &,%)'&',%!" )! &,%9,-%, )!:!
H= * 5*-9'- )! /* !&$*&'(% )! !4$'/':-', I=J ),%)!
"!- )! #$!-D* A"$5,%<*0," !% !/ !29-!0, K'%*/
x = LB.
N (x) = N (L) +
ˆ
"! ,:9'!%!
N (x)
&,0,
L
p (x) dx
x
6= E,% /," !"#$!-D," "! ,:9'!%!% /*" )!#,-0*&',%!" $"*%), /* /!8 )! F,,G! I=L
ε (x) =
N (x)
EA
M= N%9!<-*0," /* !&$*&'(% &'%!019'&* I=6 $9'/'D*%), /* "!<$%)* &,%)'&'(% )! &,%9,-%, A!% !/
!29-!0, ,5$!"9, * /* )! #$!-D*"B 4$! )!:! "!- )! )!"5/*D*0'!%9," A!% !"9! &*", "$5$!"9, !%
!/ !29-!0, !%
x = 0B
u (x) = u(0) +
ˆ
x
ε (x) dx
0
N+
N
p(x)
dN
dx
dx
X
dx
K'<$-* I=6
C4$'/':-', )! $% !/!0!%9, )'#!-!%&'*/ )! :*--*
6M
!"!#! $%&'()*+(,) -. /%01+(%)./
! "#$!% &%'($ )$ *+, &'+"*$-%, )$ .!/$!.$'0% '$,#*(% %1$&(%"*$ *% 2.&3($,., )$ *.!$%*.)%) #(.4
*.5%)% $! $,(% &%'($ )$* 1#',+6 ! (%* 1%,+ $, &+,."*$ ,#-%' *%, ,+*#1.+!$, )$ #!% -.,-% $,('#1(#'%
1+! ).,(.!(%, 1%'/%, 78+ ).9$'$!($, 1+!).1.+!$, )$ 1+!(+'!+ &%'% +"($!$' #!% !#$:% ,+*#1.3!6 ,
)$1.' ;#$ ,. )%)% #!% "%''% )$<!.)% &+' ,# /$+-$('0% =*+!/.(#) 7 ,$11.3!> 7 -%($'.%*? ,$ 1+!+1$!
)+, ,+*#1.+!$, u1 (x) 7 u2 (x) &%'% $,(%)+, )$ 1%'/% p1 (x) 7 p2 (x) 7 1+!).1.+!$, )$ 1+!(+'!+ cc1
7 cc2 '$,&$1(.:%-$!($
d2 u
+ p1 (x) = 0
dx2
d2 u
EA 2 + p2 (x) = 0
dx
EA
+
cc1
=⇒ u1 (x)
+
cc2
=⇒ u2 (x)
$!(+!1$,
u (x) = α u1 (x) + β u2 (x)
$, ,+*#1.3! )$
EA
d2 u
+ [α p1 (x) + β p2 (x)] = 0
dx2
+
[α cc1 + β cc2 ]
)+!)$ α 7 β ,+! 1+$<1.$!($, %'".('%'.+,6
, .-&+'(%!($ !+(%' ;#$
@6 A% $,('#1(#'% %.,*%)% )$"$ ,$' *% -.,-% =-.,-% /$+-$('0% 7 -%($'.%*>
B6 A% C,#-%D )$ *%, 1+!).1.+!$, )$ 1+!(+'!+ .-&*.1% ,#-%' (+)%, *%, :%'.%"*$, )$ .!($'E, $!
).12+, &#!(+,6 F. *%, 1+!).1.+!$, )$ 1+!(+'!+ $! 1%)% $G('$-+ ,+! )$* -.,-+ (.&+ *% ,#-% $,
).'$1(%6 F.! $-"%'/+ -#12%, :$1$, *%, 1+!).1.+!$, )$ 1+!(+'!+ )$ *%, ,+*#1.+!$, 1+-".!%)%,
,+! )$ ).,(.!(+ (.&+? &+' *+ ;#$ *% 1+!).1.3! '$,#*(%!($ $! $* 1+!(+!+ $, *% !"# $% &#
'&!()'*% $! $* 1+!(+'!+6 H+' $I$-&*+ ,. $! $* $G('$-+ x = L *% ,+*#1.3! @ (.$!$ #!%
1+!).1.3! )$ 9#$'5% N1 (L) = P 7 *% ,+*#1.3! B (.$!$ #!% 1+!).1.3! )$ )$,&*%5%-.$!(+
u (L) = ū? *% 1+!).1.3! '$,#*(%!($ )$"$ .!($'&'$(%',$ 1+-+ u (L) = α u1 (L) + β u2 (L) +
N (L) = α N1 (L) + β N2 (L)6
!"!2! 34.&50%/
+,-,.,/,
0#11# 23# %* #"4' %561%"' 7 '"%6)$# # 8% ' 81'8)'
J$%-+, #! &'.-$' $I$-&*+ )$ *% ,+*#1.3! )$ *% $1#%1.3! =K6@@>6 L%)% #!% 1+*#-!% 1.*0!)'.1%
.-&$).)% )$ )$,&*%5%',$ $! %-"+, $G('$-+, 7 "%I+ *% %11.3! )$* &$,+ &'+&.+ =:$' M./#'% K6B6N6@>?
.!($'$,% )$($'-.!%' *% ).,('."#1.3! )$ ($!,.+!$, $! *% %*(#'%6
* $I$ x 2% ,.)+ +'.$!(%)+ )$ %"%I+ % %''."% 7 ,# +'./$! $,(O $! $* $G('$-+ .!9$'.+'? *% 1%'/% &+'
#!.)%) )$ *+!/.(#) $, p (x) = −γA )+!)$ γ = ρg $, $* &$,+ $,&$10<1+ )$* -%($'.%* 1+!,(.(#(.:+6
P+(%' ;#$ $! $,($ &'+"*$-% A $, 1+!,(%!($ *#$/+ *% $1#%1.3! ).9$'$!1.%* '$,#*(%
EA
d2 u
= Aγ
dx2
BN
+
γΑ
x
−
u
ε
σ
N
!"#$% &'() *+,#-.% /%0+ ,% %11!2. 34 546+ 5$+5!+
7 ,% !.84"$%1!2. 34 ,% -!6-% $46#,8% 64.1!,,%-4.84
γ
d2 u
=
dx2 ˆE
x
γ x
γ
du (x)
γ
=
dx = x + C = x + C = ε (x)
dx
E 0
E
0 E
γ 2
u (x) =
x + Cx + D
2E
9&':;<
=% 3484$-!.%1!2. 34 ,%6 1+.68%.846 34 !.84"$%1!2. 9 C 7 D < 64 ,+"$% !-5+.!4.3+ ,%6 1+.3!1!+.46
34 1+.8+$.+> 4. .#468$+ 1%6+ 6! ,+6 4?8$4-+6 34 ,% 1+,#-.% .+ 5#434. 3465,%@%$64 $46#,8%
u(x=0) = D = 0
γ 2
u(x=L) =
L + CL + D = 0
2E
34 ,% 5$!-4$% D = 0 > ,,4A%.3+ % ,% 64"#.3% C = −
γ
L
2E
7 468+6 A%,+$46 % 9&':;< 64 8!4.4
γ
x (x − L)
2E
du
L
γ
εx (x) =
x−
=
dx
E
2
L
N (x) = EAεx (x) = γA x −
2
u (x) =
! "#$%&'!( )% *(!#$%! %#$'% %( *'"+%' %,$'%+- . /# 0!(-' &%#1'"2- 3% x
ˆ
0
x
d2 u
dx =
dx2
4/% )% '%5%)2'"6'%
3% (! +")+! 7-'+!
ˆ
0
x
d
dx
du
dx
x
ˆ x
qx (x)
du
du
du =
(x) −
(0) = −
dx
dx =
dx 0
dx
dx
EA
0
du
(x) = −
dx
ˆ
0
x
ˆ
0
x
du
qx (x)
dx +
(0)
EA
dx
ˆ x
du
du
qx (x)
(x) dx = u (x) − u (0) = −
dx +
(0) x
dx
EA
dx
0
ˆ xˆ x
du
qx (x)
dxdx +
(0) x + −u (0)
u (x) = −
EA
dx
0
0
. 8!6"$/!(+%#$% )% '%%+*(!9! %( 0!(-' 3%
du
dx
(0)
. u (0) *-' 2-#)$!#$%) C . D
;B
!"#$ %&"!&'%() *+% %, -%(.,#/#01%&"! u (x) 2#$3# %& 4!$0# '+#-$5"1'#) 2#,% 6 %& ,!( %7"$%0!( 8
%( 05710! # ,# 01"#- -% ,# '!,+0&# 9(1%0.$% &%:#"12!;< =# -%4!$0#'1>& ε (x) 2#$3# ,1&%#,0%&"% 98
.!$ ,! "#&"! ,# "%&(1>& σ 8 %, %(4+%$/! 1&"%$&! N ;) %( &+,! # ,# 01"#- -% ,# '!,+0&#) 05710! .!(1"12!
9"$#''1>&; %& %, %7"$%0! (+.%$1!$ 8 03&10! &%:#"12! 9'!0.$%(1>&; %& ,# ?#(%< =#( $%#''1!&%( %& ,!(
%7"$%0!( (% !?"1%&%& -1$%'"#0%&"% '!0! %, 2#,!$ -% N %& "#,%( .+&"!() &!"#&-! *+% %& %, .$10%$
%7"$%0! x = 0 @#8 *+% '#0?1#$,% %, (1:&! .!$*+% ,# $%#''1>& %( %, %(4+%$/! (!?$% ,# '#$# &%:#"12#
-% ,# (%''1>& 9%( -%'1$ *+% ,# &!$0#, (#,1%&"% # ,# (%''1>& 2# %& ,# -1$%''1>& &%:#"12# -%, %A% x;
L
2
L
= γA
2
RL = N(x=L) = γA
R0 = −N(x=0)
B, .%(! -% ,# '!,+0&# %( %&"!&'%( (!.!$"#-! .!$ 01"#-%( %& '#-# %7"$%0!<
!"!#!"!
$%&&% '(% )* +* ),-&)./0 123&) )* )1 /-&/ 4 5/.)-26% % 7)5/ 7&/72/
C!&(1-%$%0!( #@!$# %, '#(! -% *+% ,# 01(0# '!,+0&# -%, %A%0.,! #&"%$1!$ (>,! %("% #.!8#-#
%& ,# ?#(%< =# %'+#'1>& -14%$%&'1#, &! '#0?1#) (3 '#0?1#& ,#( '!&-1'1!&%( -% '!&"!$&!< B& %("% '#(!
,# '!&-1'1>& -% '!&"!$&! -%, ?!$-% (+.%$1!$ %( ,# *+% (% 0!-1D'#) #@!$# '!$$%(.!&-% # +& ?!$-%
,1?$%) 8 -%?% DA#$(% %, %(4+%$/! 9 N = 0 %& %("% '#(!; ! %& 4!$0# %*+12#,%&"% ,# -%4!$0#'1>& 9 εx = 0
%& %("% '#(!;<
=# (!,+'1>& :%&%$#, -% ,# %'+#'1>& -14%$%&'1#, &! (% 0!-1D'# 9%'< E<FG;) ,! *+% @#8 *+% $%'#,'+,#$
%( %, 2#,!$ -% ,#( '!&("#&"%( -% 1&"%:$#'1>& C 8 D -% #'+%$-! # ,#( &+%2#( '!&-1'1!&%( -% ?!$-%<
H@!$# "%&%0!(
u(x=0) = D = 0
du
γ
= L+C =0
dx (x=L) E
-% -!&-% $%(+,"# D = 0) 8
γ
C = − L)
E
'!& ,! '+#,I
γ x
x
−L
E
2
du
γ
= (x − L)
εx (x) =
dx
E
N (x) = EAε (x) = γA (x − L)
u (x) =
!"#$ *+% %, -%(.,#/#01%&"! u (x) 2#,% 6 %& ,# ?#(% 8 '$%'% %& 4!$0# '+#-$5"1'# @#("# %, %7"$%0!
(+.%$1!$< B, %(4+%$/! 1&"%$&! N 2#$3# ,1&%#,0%&"% -%(-% +& 2#,!$ 05710! &%:#"12! 9'!0.$%(1>&;
%& ,# ?#(% 9-% 2#,!$ 1:+#, #, .%(! -% ,# '!,+0&#;) @#("# +& 2#,!$ &+,! %& %, %7"$%0! (+.%$1!$<
#"+$#,0%&"% "!-! %, .%(! -% ,# '!,+0&# %("5 #@!$# (!.!$"#-! .!$ %, #.!8!<
!"!#!8!
9/1+.*% :;*2:% 3%(/ 7)5/ 7&/72/
J+.!&:#0!( +&# '!,+0&# '>&1'# #.!8#-# %& (+ ?#(% 8 ,1?$% %& ,# .+&"#) ?#A! ,# #''1>& -%,
.%(! .$!.1!< B& %("% '#(! ,# %'+#'1>& -14%$%&'1#, */ )5 % :/)':2)*-)5 :/*5-%*-)5 8 %& :%&%$#,
%& %("!( '#(!( .+%-% -%0#&-#$ @%$$#01%&"#( 0#"%05"1'#( 05( '!0.,%A#(< =# %'+#'1>& -14%$%&'1#,
# +"1,1/#$ #@!$# %( ,# 2%$(1>& 9E<F6;< B, $#-1! %( ,1&%#, %& x 9-!&-% ro %( %, $#-1! %& ,# ?#(%;
x
r (x) = ro 1 −
L
GK
γΑ
-
x
−
u
ε
σ
N
!"#$% &'() *+,#-.% /%0+ ,% %11!2. 34 546+ 5$+5!+
7, 8$4% 34 ,% 6411!2. 46
2
A (x) = π [r (x)] =
9% 41#%1!2. % $46+,:4$ 46
πro2
x 2
1−
L
d
x 2 du
x 2
2
=0
Eπro 1 −
− γπro2 1 −
dx
L dx
L
d
x 2 du
x 2
2
− γπro2 1 −
=0
Eπro 1 −
dx
L dx
L }
|
{z
{z
}
|
p
N
$4+$34.%.3+
!.;4"$%.3+ #.% :4<
d
x 2 du
x 2
2
Eπro 1 −
= γπro2 1 −
dx
L dx
L
N=
Eπro2
πro2 γL x 3
x 2 du
=−
1−
1−
+C
L dx
3
L
7. 4, 4=;$4-+ ,!/$4 34/4 1#-5,!$64 >#4 4, 5$!-4$ -!4-/$+ 64 %.#,4 ? N
B46540%.3+ ,% 34$!:%3%
4 !.;4"$%.3+
= 0@A
34 3+.34 C = 0'
x
γL du
1−
=−
dx
3E
L
γL2
u (x) = −
3E
x 1 x 2
−
L 2 L
+D
:%,#%.3+ 4. 4, /+$34 !.C4$!+$ ? ux=0 = 0@ $46#,;% D = 0A D.%,-4.;4
γL2 x 1 x 2
u=−
−
3E L 2 L
E!. 4-/%$"+ 4. 46;4 1%6+ 4, 5$+/,4-% 46 !"!#$# %" F ,% 6+,#1!2. 5#434 +/;4.4$64 4. C+$-%
64.1!,,% 4:%,#%.3+ %@ 5$!-4$+ ,+6 46C#4$<+6A /@ ,#4"+ ,%6 ;4.6!+.46A 1@ 1+. 4,,%6 ,%6 34C+$-%1!+.46
#6%.3+ ,% 41#%1!2. 1+.6;!;#;!:% F 3@ D.%,-4.;4 !.;4"$%.3+ ,+6 3465,%<%-!4.;+6 % 5%$;!$ 34 ,%6
34C+$-%1!+.46' G4%-+6 % 1+.;!.#%1!2. ,+6 34;%,,46'
HI
! "#$%&"&'$ %( ()*&+&,-&# .+#,!+ (/&.( )*( ($ "!%! 0*$1# x (+ (23*(-4# N (x) ()*&+&,-( (+ 0(2#
%( +! 0!-1( 2*0(-&#-5 6#7# +! "#+*7$! (2 "'$&"! %&"8# 0(2# 9!+( :(21# (2 ()*&9!+($1( ! &$1(.-!p (x) ($1-( x ; (+ (/1-(7# +&,-( x = L<
N (x) = −γ
ˆ
x
L
1
A (x) dx = −γV (x) = −γ A (x) h (x)
3
%#$%( h (x) = L − x (2 +! !+1*-! %(+ "#$# 0#- ($"&7! %( +! 2(""&'$5 ! 1($2&'$ ; +! %(3#-7!"&'$
9!+($ -(20("1&9!7($1(
N (x)
1
= −γ (L − x)
A (x)
3
σ (x)
γ
ε (x) =
=−
(L − x)
E
3E
σ (x) =
+*(.# +! ("*!"&'$ "&$(7=1&"! >5? 0(-7&1( (2"-&,&-@
du
γ
=−
(L − x)
dx
3E x2
γ
1x
γ
Lx −
+ C = − Lx 1 −
+C
u=−
3E
2
3E
2L
+! "#$21!$1( %( &$1(.-!"&'$ C 2( #,1&($( *2!$%# +! "#$%&"&'$ u(x=0) = 0A )*( "#$%*"( ! C = 0 "#$
+# "*!+ 2( "#70+(1! +! 2#+*"&'$ %(+ 0-#,+(7!5 B+ %(20+!4!7&($1# %( +! 0*$1! u(x=L) -(2*+1!@
1
γL2
γ 2
=−
u (L) = − L 1 −
3E
2
6E
!"!#!#!
$%&'()* +,%)-%.-/)0-* 1*2% 345% 3,%30%
B+ 0-(2($1( (C(70+# 7*(21-! "#7# "#7,&$!- %#2 2#+*"&#$(25 D*0#$.!7#2 *$! "#+*7$! 2&7&+!! +! !$1(-&#- 0(-# 1-*$"!%! ! *$! !+1*-! H 5
F
γΑ
γΑ
=
H
+
x
E&.*-! >5F@ 6#+*7$! 1-#$"#G"'$&"! ,!C# 0(2# 0-#0&#
H!%# )*( +! ("*!"&'$ %&3(-($"&!+ (2 +&$(!+A 0#%(7#2 #,1($(- +! 2#+*"&'$ %(+ 0-#,+(7! "#7# +!
2*7! %( +! 2#+*"&'$ %(+ (C(70+# !$1(-&#- 7!2 +! 2#+*"&'$ %(+ 1-#$"# %( "#$# 2#7(1&%# ! +! 3*(-4!
F &.*!+ !+ 0(2# %(+ "#$# 0#- ($"&7! %( +! !+1*-! H
2
γ
H
2
F = γA (H) (L − H) = (L − H) πro 1 −
3
L
?>
!"#"$%& ū " '()" ('*+$%" (&!+,-.$/ '()" (+0*' %' 0'(&!1'0
x 2 dū
dū
= Eπro2 1 −
dx
L dx
N (x) = F = EA
%'(2'3"$%&
F
dū
1
=
2
dx
Eπro 1 − x 2
L
-$)'*0"$%&
ū (x) =
!" ,&$()"$)' C (' &4)-'$' ,&$ !" ,&$%-,-.$
1
FL
+C
2
Eπro 1 − Lx
ū(x=0) = 0 ,&$ !& ,+"!
FL
Eπro2
"
#
1
FL
−1
ū (x) =
2
Eπro 1 − Lx
C=−
0''#2!"5"$%& F 2&0 (+ 1"!&0/ (+#"$%& !" (&!+,-.$ %'! '3'#2!& "$)'0-&0 6 0'&0%'$"$%&
γL2
u (x) = −
3E
(
#)
3 "
1
x 1 x 2
H
1−
−
+ 1−
L 2 L
L
1 − Lx
7&)"0 8+' '()" (&!+,-.$ 1"!' 2"0" '! )0&$,& %' ,&$& 9 x ∈ [0 : H]:
;&0 &)0& !"%& (- (' 8+-(-'0" &4)'$'0 !" (&!+,-.$ %' !" ,&!+#$" )0&$,&<,.$-," 4"3& 2'(& 20&2-&
2'0& 0'()0-$*-%" '$ "#4&( '=)0'#&(/ 2+'%' &4)'$'0(' %' !" (-*+-'$)' >&0#"/ "2'!"$%& $+'1"#'$)'
" 8+' !" ',+",-.$ %->'0'$,-"! '( !-$'"! 6 8+' 2+'%'$ ,&#4-$"0(' !-$'"!#'$)' (&!+,-&$'(?
@A %' !" (&!+,-.$ 4"3& 2'(& 20&2-& ,&$ 4&0%' !-40' %')'0#-$"#&( '! %'(2!"5"#-'$)& %'! '=)0'#&
(+2'0-&0
u(x=H)
γL2
=−
3E
("
H 1
−
L
2
H
L
2 #
H
+ 1−
L
3 "
1
1−
1− H
L
#)
BA %' !" (&!+,-.$ ,&$ 4&0%' 4"3& !" ",,-.$ %' +$" ,"0*" F = 1 &4)'$'#&( '! %'(2!"5"#-'$)&
%'! 4&0%' (+2'0-&0
"
#
ū(x=H) =
L
1
1−
2
Eπro
1− H
L
CA !" 0'()0-,,-.$ %' 8+' '! 4&0%' (+2'0-&0 $& (' %'(2!",' -#2!-," +$" 0'",,-.$ R 9+$" >+'05"
2+$)+"! "2!-,"%" '$ x = H : )"! 8+'?
u(x=H) + Rū(x=H) = 0
%' %&$%' 2+'%' &4)'$'0(' !" 0'",,-.$ ,&00'(2&$%-'$)'
R=−
u(x=H)
ū(x=H)
6 !" (&!+,-.$ ,&#2!')" '( !" (+#" %' !" (&!+,-.$ ,&$ '! 4&0%' !-40' #D( !" (&!+,-.$ %'4-%" "
!" 0'",,-.$ R
2
(
1 x 2
3 "
#)
"
1
1
RL
1−
+
x
2
Eπro
1− L
1 − Lx
#
"
3 # "
2
2
γL x 1 x
L R
γL
H
1
=−
+
−
−
1−
1−
2
3E L 2 L
E πro
3
L
1 − Lx
u (x) = −
γL
3E
x
−
L 2 L
+ 1−
H
L
!"
1−
#
!"!#!$!
%&'()*+ ,-+ .* +)/&0 .123.)&0 4&* (*+ 4+35+ 6(*2(+'!
!"#$% "&$'" ($#$ ($)%*+!'"' !, ("%$ +! -) ("'." /-)0-", "/,*("+" " -)" ",0-'" a1 2" ($,-#)"
!%03 '!%0'*).*+" +! +!%/,"4"'%! !) "#5$% !60'!#$% 7 %- %!((*8) !% ($)%0")0!1
Pa/L
−
P
+
ε
σ
N
a
x
+
u
P(1-a/L)
9*.-'" :1;< =$,-#)" ($) ("'." /-)0-",
2" !(-"(*8) +*>!'!)(*", )$ 0*!)! 0?'#*)$ *)+!/!)+*!)0! !) 0$+$ !, +$#*)*$
EA
d2 u
=0
dx2
@!5*+$ " A-! ," ("'." /-)0-", P *#/,*(" -)" +*%($)0*)-*+"+ !) N !) x = a, /"'" *)0!.'"' ,"
!(-"(*8) +*>!'!)(*", '!%-,0" )!(!%"'*$ +*B*+*' !, +$#*)*$ !) +$% /"'0!% [0 : L] = [0 : a] + [a : L]C
*)0!.'")+$ !) [0 : a]
N = EA
du
= C1
dx
0≤x<a
!) a !%03 ," ("'." /-)0-", A-! #$+*D(" !, B",$' +! N 1 2" ("'." /-)0-", /-!+! *)0!'/'!0"'%! ($#$
%* !) -) !)0$')$ δ +! x = a &"7 -)" ("'." +*%0'*5-*+" p = Pδ +! 0", >$'#" A-! ," *)0!.'", !) +*(&$
!)0$')$ δ !%<
ˆ a+ du
N(x=a+ δ ) = EA
= C1 +
2
dx
+! 0", >$'#" A-! !) !, %!.-)+$ 0'"#$
N = EA
δ
2
−
a− 2δ
du
= C1 − P
dx
P
δ
dx = C1 − P
a<x≤L
*)0!.'")+$ )-!B"#!)0! !) ("+" 0'"#$ /$' %!/"'"+$
EAu = C1 x + C2
EAu = C1 x − P (x − a) + C2
0≤x<a
a<x≤L
2" +!0!'#*)"(*8) +! ,"% ($)%0")0!% !% #-7 %!)(*,,"C B",-")+$ ," /'*#!'" ! x = 0
EAu(x=0) = C2 = 0
,,!B")+$ " ," %!.-)+" 7 B",-")+$ !) x = L
EAu(x=L) = C1 L − P (L − a)
a
C1 = P 1 −
L
EF
! "#$%&'() *" *)+#)&*"
P 1 − La
x
0≤x<a
u (x) =
EA P 1 − La
P
u (x) =
x−
(x − a)
EA
EA
xi
Pa h
1−
a<x≤L
=
EA
L
! ,!-'!&'() .* $#" .*"/$!0!1'*)+#" *" 2'3$')*!$4 #" *"5%*-0#" *) $#" *6+-*1#" ,!$*)
*) x = 0
*) x = L
a
N0 = C 1 = P 1 −
L
a
NL = C1 − P = −P
L
7#+!- 8%* $! &#),*)&'() /#"'+',! /!-! P *" $! .'-*&&'() /#"'+',! .*$ *9* x: !"; /!-! %)! &!-<!
/#"'+',! *$ *"5%*-0# *) *$ /-'1*- +-!1# *" .* +-!&&'() = *$ +-!1# "%/*-'#- .* &#1/-*"'()4 !"
-*!&&'#)*" "#) '),*-"!1*)+* /-#/#-&'#)!$*" ! "% .'"+!)&'! !$ /%)+# .* !/$'&!&'() .* $! &!-<! >,*?'<%-!@4
P
!"!#!$!
%&'()*+ ,&* )&-.)./*0&1 2/ /304/)&
?')!$1*)+* &#)"'.*-*1#" *$ &!"# .* %)! &#$%1)! .* $#)<'+%. L: 8%* )# +'*)* &!-<! !/$'&!.!
>p (x) = 0@ /*-# .* $! &%!$ "* &#)#&*) $#" .*"/$!0!1'*)+#" u0 = uL .* "%" *6+-*1#"4 ! *&%!&'()
.'5*-*)&'!$ *" >"%/#)'*).# 8%* $! &#$%1)! *" .* "*&&'() &#)"+!)+*@
EA
du
=0
dx
&%=! ')+*<-!$ *" "*)&'$$!1*)+*
du
=ε=C
dx
u (x) = Cx + D
# /-'1*-# 8%* .*2* )#+!-"*: $# &%!$ *" "*)&'$$# * ')+%'+',#: *" 8%* !$ )# A!2*- 5%*-0!" .'"+-'3
2%'.!" *$ *"5%*-0# )#-1!$ N *" &#)"+!)+*4 %*<# !$ A!2*- "%/%*"+# AE &#)"+!)+*: $! .*5#-1!&'()
*" +!12'B) &#)"+!)+* *) +#.! $! /'*0!4 !" &#)"+!)+*" .* ')+*<-!&'() "* &!$&%$!) ! /!-+'- .* $!"
&#).'&'#)*"
u(x=0) = D = u0
u(x=L) = CL + D = uL
.* .#).*
u L − u0
C=
=ε
L
uL − u0
x
x
u (x) =
+ uL
x + u0 = u0 1 −
L
L
L
D = u0
=
.#).* /%*.* ,*-"* 8%* *$ .*"/$!0!1'*)+# ,!-;! $')*!$1*)+* &#)
?')!$1*)+* *$ *"5%*-0# )#-1!$ *"
N = EAε =
EA
(uL − u0 )
L
ED
x
L
*)+-* u0 = uL 4
>C4DE@
! "#$%&%'(#! %')&% *+, "%,-*!.!/#%')+, "% *+, %0)&%/+, (uL − u0 ) %, *! %*+'1!(#2' e "% *! 3!&&! 4
!* (+(#%')% EA
,% *+ "%'+/#'! *! &#1#"%. !0#!* K "% *! 3!&&!5 (+' "#(6! '+)!(#2'
L
N = Ke
78% !,#/#*! %* (+/-+&)!/#%')+ "% 8'! 3!&&! !* "% 8' &%,+&)% "% &#1#"%. K 9
:%(+&"!& 78% "%3#"+ ! *! 6#-2)%,#, "% *#'%!*#"!" %, -+,#3*% ,8-%&-+'%& *!, !((#+'%, 4 &%,-8%,)!,9
;% %,)! $+&/! %, -+,#3*% %<!*8!& *! &%,-8%,)! "% 8'! (+*8/'! 3!=+ -%,+ -&+-#+ "% *! (8!* ,% (+'+(%'
*+, "%,-*!.!/#%')+, "% ,8, %0)&%/+, (+/+ *! ,8/! "% *!, ,+*8(#+'%, "%* -&#/%& %=%/-*+ 4 "% %,)%
>*)#/+9
!"! #$%&' () *+(,$-)
!"!#! $%&'() *+,-.*) /% 0.1)- %2 3%4.52 67')
:%,8/#%'"+ *+ <#,)+ %' *+, (!-?)8*+, @AB5 *!, 6#-2)%,#, /C, #/-+&)!')%, "%* (+/-+&)!/#%')+
"% <#1!, %' D%0#2' ,+' E!"%/C, "% *!, "% *#'%!*#"!"FG
H* %=% "% *! <#1! %, &%()+
! ,%((#2' '+ (!/3#! %' )+"+ %* )&!/+9
! "#&%((#2' '+&/!* !* -*!'+ "% *! <#1! %, 8'! "% *!, "#&%((#+'%, -&#'(#-!*%, "% #'%&(#! "% *!
,%((#2'
I8-+'"&%/+, E,#' '#'18'! -%&"#"! "% 1%'%&!*#"!"F 78% %* -*!'+ "% /+<#/#%')+ E+ -*!'+ "% (!&1!F
"% *! <#1! %, %* -*!'+ Ex − yF 4 78% %* %=% x (+#'(#"% (+' %* %=% "% *! <#1!9 ;%'+/#'!&%/+, (+' v !
*+, "%,-*!.!/#%')+, %' *! "#&%((#2' y9
J9 !, $8%&.!, %0)%&'!, !()>!' %' *! "#&%((#2' y E'+ 6!4 $8%&.!, %0)%&'!, %' *! "#&%((#2' !0#!*
x5 ,# *!, 683#%&! *! ,+*8(#2' "% )!* -&+3*%/! %, *+ )&!)!"+ %' *! ,%((#2' !')%&#+&F9
K9 !, )%',#+'%, '+&/!*%, %' *! "#&%((#2' )&!',<%&,!* ! *! <#1! E σy F ,+' "%,-&%(#!3*%,5 %,)+
#'(*84% *!, )%',#+'%, "% (+')!()+ "%3#"!, ! *!, (!&1!, !-*#(!"!,5 *8%1+ %, #'"#,)#')+ 78% *!,
(!&1!, ,% !-*#78%' ,+3&% *! -!&)%, ,8-%&#+&5 #'$%&#+& + ,+3&% %* %=% "% *! <#1!9
L9 !, ,%((#+'%, ,% /!')#%'%' -*!'!, !* "%$+&/!&,% *! <#1!
@9 !, "%$+&/!(#+'%, "%3#"!, !* (+&)% )&!',<%&,!* ,+' "%,-&%(#!3*%, γ = 0 9 H, "%(#& 78% *!,
,%((#+'%, ,% /!')#%'%' '+&/!*%, !* %=% "%$+&/!"+9
!, >*)#/!, "+, EL 4 @F (+'$+&/!' *! 6#-2)%,#, "% M%&'+8**#AN!<#%&5 *! ELF %0-&%,! 78% *+,
"%,-*!.!/#%')+, u %' *! "#&%((#2' x E"%3#"+, ! *! D%0#2'F "%-%'"%&C' "%* 1#&+ "% *! ,%((#2' φ 4
<!&#!&C' *#'%!*/%')% %' *! !*)8&! "% *! <#1! (+' <!*+& '8*+ %' %* %=%
u (x, y) = −φ (x) y = −
dv (x)
y
dx
EO9J@F
"+'"% *! ,%18'"! #18!*"!" &%,8*)! "% E@F9
H' 3!,% ! *+ !')%&#+& *!, >'#(!, "%$+&/!(#+'%, &%*%<!')%, ,+' *!, "%$+&/!(#+'%, "% D%0#2' %' *!
"#&%((#2' x5 78% "%'+/#'!&%/+, ,#/-*%/%')% (+' ε9 H,)!, "%$+&/!(#+'%, <!&?!' *#'%!*/%')% %' %*
%,-%,+& %' $8'(#2' "% *! "#,)!'(#! !* 3!&#(%')&+ "% *! ,%((#2' 4 ,+' -&+-+&(#+'!*%, ! *! (8&<!)8&!
"%* %=%9
du
dv (x)
d
ε (x, y) =
−
=
y = −χy
EO9JPF
dx
dx
dx
LK
φ
Y
u=- φy
1
dv
dx
v
1
y
X
!"#$% &'() *+,-.%/%0!+123, +1 4!"%,' 5.%13 678
9319+ .% :#$4%2#$% 9+. +;+ 3$!"!1%.0+12+ $+:23 <#+9% +1231:+, 9+=1!9% -3$
χ (x) =
d2 v
dφ (x)
= 2
dx
dx
>&'?@A
B#+"3 .%, 2+1,!31+, +1 .% 9!$+::!C1 %6!%. 4%.+1
>&'?(A
σ(x, y) = Eε (x, y) = −E χ (x) y
D. +,E#+$/3 13$0%. -3$ F!-C2+,!, 4%.+ 0G .3 <#+ ,+ 4+$!=:% 8% <#+
N (x) =
ˆ
σ (x, y) dA =
A
ˆ
−Eχ (x) ydA = −Eχ (x)
A
ˆ
y dA
A
>&'?&A
9319+ .% H.2!0% !12+"$%. !19!:%9% +, 0 -3$<#+ +. +;+ -%,% -3$ +. I%$!:+12$3 9+ .% ,+::!C1'
D. 030+123 J+:23$ $+,#.2% 9+ !12+"$%$ +. 030+123 9+ +,2%, 2+1,!31+, +1 +. K$+% 9+ .% ,+::!C1
M (x) = −
ˆ
σ (x, y) y dA = Eχ (x)
A
ˆ
y 2 dA = Eχ (x) I
A
>&'?LA
D,2% H.2!0% +:#%:!C1 13, -$34++ .% $+.%:!C1 :31,2!2#2!4% +12$+ +. +,E#+$/3 "+1+$%.!/%93 > M A 8
.% 9+E3$0%:!C1 "+1+$%.!/%9% > χA'
B% +:#%:!C1 9+ +<#!.!I$!3 % .% 2$%,.%:!C1 >4+$2!:%.A $+,#.2%
dT (x)
+ q (x) = 0
dx
>&'MNA
D1 2%123 <#+ .% +:#%:!C1 9+ +<#!.!I$!3 9+ 030+123, %.$+9+93$ 9+. +;+ 13$0%. > z A %. -.%13 9+
034!0!+123 >x − yA +,
dM (x)
=0
>&'M?A
T (x) +
dx
dM (x)
T (x) = −
dx
>&'MMA
d2 M (x)
+ q (x) = 0
dx2
>&'MOA
B.+4%193 +,2% H.2!0% % .% +6-$+,!C1 >&'MNA 9+ +<#!.!I$!3 % .% 2$%,.%:!C1
−
OO
y
q(x)
T+
T
dT
dx
dx
x
dM
M+ dx
dx
M
dx
!"#$% &'&( )*#!+!,$!- ./ 0!"%1
% 1# 0.2 $..34+%2%/5- +% .64$.1!7/ 5.+ 3-3./8- ./ 9#/:!7/ 5. +% :#$0%8#$% ;&'<=>
−
d2 EIχ (x)
+ q (x) = 0
dx2
;&'?@>
A ./ ,%1. % +% B!478.1!1 5. *#. +% 1.::!7/ .1 :-/18%/8. ./ 8-5% +% 4!.2%
−EI
d2 χ (x)
+ q (x) = 0
dx2
;&'?C>
D/%+3./8. $..34+%2%/5- %*#E +% :#$0%8#$% ./ 9#/:!7/ 5. +-1 5.14+%2%3!./8-1 ;&'<F>
−EI
d4 v (x)
+ q (x) = 0
dx4
;&'?F>
8./.3-1 +% .:#%:!7/ 5!9.$./:!%+ 5. .*#!+!,$!- 5. +% 0!"% % G.6!7/ ./ 9#/:!7/ 5. +-1 5.14+%2%3!./8-1'
)18% .:#%:!7/ 5!9.$./:!%+ -$5!/%$!%H +!/.%+H 5. @ -$5./ $.*#!.$. 5. @ :-/5!:!-/.1 5. ,-$5.H ./ "./.$%+
? 4-$ .68$.3-' )18%1 :-/5!:!-/.1 4#.5./ 1.$ 5. 5-1 8!4-1(
! "#$#%&'!() !*!+%#,'!*) %#+!-.(#%,* / 0!/-1($#%,* ' E1!:%3./8. 4-5.3-1 !34-/.$
+-1 5.14+%2%3!./8-1 ./ #/ .68$.3-' )18-1 5.14+%2%3!./8-1 4#.5./ 1.$ ./ +% 5!$.::!7/ yH ;.1
5.:!$ 4-5.3-1 !34-/.$ v>H - ./ +% 5!$.::!7/ xH ./ .18. I+8!3- :%1- :-3- u 5.4./5. 5.+ "!$dv
φ ;&'<@> +- *#. 4-5.3-1 !34-/.$ .1 dx
'
! 2!3-,++) +,(3$,'!* / ! 43!$5,* ' E1!:%3./8. 4-5.3-1 !34-/.$ +%1 9#.$2%1 ./ #/
.68$.3-' )18%1 9#.$2%1 4#.5./ 1.$ .+ .19#.$2- 5. :-$8. T - .+ 3-3./8- G.:8-$ M ./.$"J8!K
:%3./8. %1-:!%5-1 $.14.:8!0%3./8. %+ 5.14+%2%3!./8- 0.$8!:%+ v A %+ "!$- φ'
L%8#$%+3./8. ./ #/ 3!13- .68$.3- 4#.5./ 8./.$1. 1!3#+8M/.%3./8. #/% :-/5!:!7/ 5. :%5% #/%
4.$- /- +%1 :-/N#"%5%1H .1 5.:!$ 4#.5- 1!3#+8M/.%3./8. !34-/.$ .+ 5.14+%2%3!./8- A .+ 3-3./8G.:8-$ ;,-$5. 1!34+.3./8. %4-A%5-> - !34-/.$ .+ "!$- A .+ :-$8. ;:-/5!:!7/ 5. 1!3.8$E%>H 4.$/- 1!3#+8M/.%3./8. .+ 5.14+%2%3!./8- A .+ :-$8.H - .+ "!$- A .+ 3-3./8-' O%1 :-3,!/%:!-/.1 5.
:-/5!:!-/.1 5. :-/8-$/- 3M1 :-3#/.1 1-/
P@
!"#$%&!'()$#
*%$'+,-&+'.)
/$%(!# -'0%(
1'!($%2&
dv
=0
dx
v=0
φ=
v=0
M
d2 v
=χ= 2 =0
EI
dx
T
1 dM
d3 v
=−
=− 3 =0
EI
EI dx
dx
M
d2 v
=χ= 2 =0
EI
dx
1 dM
d3 v
T
=−
=− 3 =0
EI
EI dx
dx
φ=
dv
=0
dx
) -&3 (/"%(3'#)(3 &)$(%'#%(3 3( ')4'+&) +#)4'+'#)(3 4( +#)$#%)# ),-&35 "(%# 4(0( ()$()4(%3(
6,( ,)& +#)4'+'.) 4( +#)$#%)# )# ),-& (3 '7,&-!()$( $%&$&0-(8
9(3,-$& '!"#%$&)$( 4(3$&+&% -& +#):()+'.) 4( 3'7)#3 ,$'-';&4& "&%& 7'%#3 < φ=5 +,%:&$,%&3 <χ= >
!#!()$#3 <M =8 ?&3 :&%'&0-(3 7'%# φ5 > !#!()$# @(+$#% M 3#)5 4(34( (- ",)$# 4( :'3$& (3"&+'&-5
-&3 +#!"#)()$(3 3#0%( -& )#%!&- &- "-&)# 4( @(/'.) <(A( z =5 4( -#3 :(+$#%(3 φ > M 8 ?& +#):()+'.)
,$'-';&4& +#%%(3"#)4( ()$#)+(3 & 6,( 4'+B#3 :(+$#%(3 $()7&) ,)& +#!"#)()$( "#3'$':& 3#0%( (- (A(
z 8 C( (3$& D#%!& %(3,-$& 6,( ,) 7'%# "#3'$':# <3()$'4# &)$'EB#%&%'#= +#)4,+( & 4(3"-&;&!'()$#3
u "#3'$':#3 () -& "&%$( 4#)4( y (3 )(7&$':# <(+,&+'.) F8GH=8 3$& #"+'.) 3( B&+( (/$()3':& &!#!()$# @(+$#%5 4( D#%!& 6,( (- !#!()$# @(+$#% (3 "#3'$':# 3' $%&++'#)& -&3 I0%&3 4#)4( y (3
)(7&$':# <-&3 ')D(%'#%(3 () (3$( +&3#= 4( 4#)4( %(3,-$& (- 3'7)# () -& 4(I)'+'.) ,3,&- 4(- !#!()$#
<(+,&+'.) F8GJ= > () -& (/"%(3'.) 4( -&3 $()3'#)(3 () D,)+'.) 4(- !#!()$# @(+$#%
σx (x, y) = −
M (x)
y
I
<F8KL=
M')&-!()$( -& (-(++'.) 4( -& +#):()+'.) "#3'$':& "&%& -& +,%:&$,%& χ +#')+'4( +#) -& 4(- !#!()$#8
C(34( (- ",)$# 4( :'3$& 4( ,) "%#0-(!& (/+-,3':&!()$( 0'E4'!()3'#)&- & !(),4# 3( ,$'-';& ,)&
+#):()+'.) +#)$%&%'& & -& ')4'+&4&5 (3$# )# &+&%%(& )')7N) "%#0-(!& () $&- +&3#5 "(%# &- (3$,4'&%
"%#0-(!&3 $%'4'!()3'#)&-(3 %(3,-$& +#):()'()$( 6,( (3$&3 :&%'&0-(35 6,( 3#) +#!"#)()$(3 4( ,)
:(+$#%5 $()7&) 3'7)# "#3'$':# 3' 3, 3()$'4# +#')+'4( +#) -& 4'%(++'.) "#3'$':& 4(- (A( +#%%(3"#)4'()$(8
C( (3$& D#%!& )&$,%&-!()$( & -&3 :&%'&0-(3 6,( B(!#3 4(I)'4# +#!# φ5 χ > M -(3 &7%(7&%(!#3
,) 3,02)4'+( z "&%& 4'3$')7,'%-&3 4( -&3 %(3$&)$(3 +#!"#)()$(38 *4(!O3 3(%O )(+(3&%'# 4'3$')7,'%
-#3 4'D(%()$(3 !#!()$#3 4( ')(%+'&5 -,(7# & I -( &7%(7&%(!#3 ,) 3,02)4'+( ')4'+&)4# &-%(4(4#% 4(
6,( (A( (3$&!#3 $#!&)4# !#!()$#
ˆ
Iz =
y 2 dA
<F8KF=
A
M')&-!()$( & -&3 D,(%;&3 (/$(%)&3 > & -#3 (3D,(%;#3 ')$(%)#3 3( -(3 &7%(7&%O ,) 3,02)4'+( ')4'+&)4#
-& 4'%(++'.) () -& +,&- &+$N&)5 (3 4(+'%
q(x) = qy (x)
T (x) = Ty (x)
9(+#%4&% &4(!O3 6,( -& 4'3$%'0,+'.) 4( $()3'#)(3 4( +#%$( $%&)3:(%3&-(3 &- (A( 4( -& :'7& 3(
+&-+,-& & "&%$'% 4( -& (/"%(3'.) 4( P#,%&3Q> <$(#%2& 4( R#--'7)#)=8 *6,2 3( ')+-,>( -& B'".$(3'3 4(
6,( )# B&> D,(%;&3 $&)7()+'&-(3 &"-'+&4&3 3#0%( -&3 +&%&3 4( -& :'7&5 -,(7# "#% %(+'"%#+'4&4 4(
$()3'#)(3 $&)7()+'&-(3 (- :&-#% 4( -&3 $()3'#)(3 4( +#%$( (3 +(%# () -&3 +&%&3 3,"(%'#% ( ')D(%'#%8
*4(!O3 )#$&% 6,( &- B&0(% 4(3"%(+'&4# -&3 4(D#%!&+'#)(3 $%&)3:(%3&-(3 4( +#%$( < γ = 0= )# B&>
,)& %(-&+'.) +#)3$'$,$':& 6,( ",(4& -'7&% T +#) γ 5 "#% -# +,&- (- +#%$( T 3( #0$'()( 4( -& +#)4'+'.)
4( (6,'-'0%'# 4( !#!()$#3 <(+,&+'.) F8KK=
ST
!"!#! $%&'()*+, -,&,./.-0&,
!"! #$% $& '"()*%+! ,%! -,(,./.-0( %, &%0%,!"-( #$% 1(, 1% *!, 0(&1-0-(&%, 1% 0(&.("&( ,%!&
1% 2$%"3! 4&!.$"!*%,5 6 1(, 1% 1%,'*!3!+-%&.(, 4%,%&0-!*%,57 8&.(&0%, %, '(,-)*%9
:7 ;%.%"+-&!" "%!00-(&%, 6 1-!<"!+!, 1% %,2$%"3(, %& '!".-0$*!" %* +(+%&.( =%0.(" 0(+( 2$&>
0-?& 1% x 4M (x)5 $,!&1( *!, 1(, 0(&1-0-(&%, 1% 0(&.("&( 1% 2$%"3!,9
@7 A.-*-3!" *! "%*!0-?& 0(&,.-.$.-B! <%&%"!*-3!1! '!"! ().%&%" *! 0$"B!.$"!
χ (x) =
M (x)
EI
C7 D&.%<"!" *! %0$!0-?& 0-&%+/.-0! '!"! ().%&%" <-"(, 6 1%,'*!3!+-%&.(,
d2 v
M (x)
= χ (x) =
2
dx
ˆ EI
x
dv
M (x)
= φ (x) =
dx + C1
dx
EI
0
ˆ xˆ x
M (x) 2
dx + C1 x + C2
v (x) =
EI
0
0
E7 A,!" *!, 0(&1-0-(&%, 1% 0(&.("&( 1% 1%,'*!3!+-%&.(, '!"! 1%.%"+-&!" *!, 0(&,.!&.%,
C2 7
C1
6
!"!"! 12)*3(&,!
!"!"!#!
$%&' (%)*+,-./'0'
F(+( $& '"-+%" %G%+'*( ,%&0-**( (),%"B%+(, 0(+( ().%&%" *! ,(*$0-?& 1% $&! B-<! )->%+'(."!1!
0(& 0!"<! $&-2("+%7
q
d4 v (x)
=
4
dx
EI
q
x
L
H-<$"! I7J9 K-<! %+'(."!1! )!G( 0!"<! $&-2("+%
0$6!, 0(&1-0-(&%, 1% 0(&.("&( ,(&
v(x=0) = 0
dv
=0
dx (x=0)
v(x=L) = 0
dv
=0
dx (x=L)
CL
!"#$%&!'( #)"& #*+&*,-! ',.#%#!*,&/ )# (0",#!#
+!& 1#2
d3 v
=
dx3
1
EI
´x
'() 1#*#)
d2 v
=
dx2
1
EI
´ ´x
"%#) 1#*#)
dv
=
dx
*+&"%( 1#*#)
v=
1
EI
1
EI
(x)
= − TEI
q (x) dx + A
0
q (x) dxdx + Ax + B
0
=
M (x)
EI
345678
´ ´ ´x
0
´ ´ ´ ´x
0
2
q (x) dxdxdx +
Ax
+ Bx + C
2
q (x) dxdxdxdx +
=φ
Ax3 Bx2
+
+ Cx + D
6
2
9",/,2&!'( /& :%& ; /& <"&= >&%& ,?>(!#% &//@ /&) *(!',*,(!#) '# 0,#?>("%&?,#!"( "#!'%#?()

0
 0
 L3

0
0
L2
2
6
L2
2

1
A
 B
0 

1  C
D
0
0
1
L
1
L
A(!'# B#?() '#!(?,!&'( *(!

0



 = −  0q 

 v 
φq


L
qx4 qL4
dx =
=
24EI 0
24EI
x=0
ˆ L
3 L
q
qx qL3
φq =
dx3 =
=
EI x=0
6EI 0
6EI
q
v =
EI
ˆ
q
L
4
C! #/ ),)"#?& '# < #*+&*,(!#) *(! < ,!*-$!,"&) %#)+/"&!"#= /&) '() >%,?#%&) #*+&*,(!#) )(! '#
%#)(/+*,-! ,!?#',&"&=
C
D
=
0
0
vq
φq
/( D+# >+#'# //#1&%)# & /&) '() %#)"&!"#)= %#)+/"&!'( #!"(!*#)
L3
6
L2
2
L2
2
L
A
B
'# '(!'#
A=−
=−
qL
2EI
qL3
=−
6EI
B=
L/4
1
qL2
12EI
C! *(!)#*+#!*,& #/ ?(?#!"( E#*"(% 1&/#
x
x2 qL
qL2
dxdx + EI Ax + EI B = q −
x+
2
2
12
0 2
x
x 2
qL
−6 +1
=
6
12
L
L
M (x) = q
ˆ ˆ
D+# 1&/+&'( #! /() #F"%#?() ; #/ *#!"%( 1&/#
M(x=0) =
qL2
12
M(x= L ) = −
2
qL2
24
M(x=L) = +
qL2
12
G&%& 1#% #/ 1&/(% '# /() ?(?#!"() )(0%# /() #?>("%&?,#!"() '#0# %#*(%'&%)# D+# B&; D+#
*&?0,&% #/ ),$!( &/ D+# &*"H& #! #/ #F"%#?( ,2D+,#%'( 3*&%& !#$&",1&85 C/ *(%"# >+#'# (0"#!#%)#
'#%,1&!'( #/ ?(?#!"( (
T (x) = −
ˆ
x
q (x) dx − EI A = −qx +
0
:I
qL
2
!"#$%" &"' ($) *"$++,- ") #"*&,+$(") ." $/-0- *")!(&$ ." "#$(!$* "( +-*&" " (-) "1&*"%-)
qL
2
qL
=−
2
Ry(x=0) = −T(x=0) = −
Ry(x=L) = T(x=L)
2 &$ &- 3!" (-) .")/($4$%," &-) )qL4 x 4
qL4 x 3
qL4 x 2
−
+
24EI L
12EI L
24EI L
x 3 x 2 qL4 x 4
=
−2
+
24EI
L
L
L
v (x) =
2( %51,%- .")/($4$%," &- ") " "( +" &*- 0 #$("
v(x= L ) = vmáx =
2
!"!"!#!
qL4
384EI
$%&' (%)*+,),-., '*/0'1' 2'3/ 4'5&' 6-%7/5),
6$ )-(!+,7 8" "*$( ") ,.9 &,+$ $( +$)- $ &"*,-* :;<=>?' +$%@,$ ($) +- .,+,- ") ." @-*."< AB-*$
" #"4 ." $ !($* "( 8,*- " (-) "1&*"%-) B$0 3!" $ !($* ($) +!*#$&!*$)
ˆ xˆ x
q
dxdx + Ax + B
χ (x) =
EI 0 0
χ(x=0) = B
qL2
+ AL + B
χ(x=L) =
2EI
6$) +!$&*- "+!$+,- ") /$*$ -@&" "* ($) +- )&$ &") *")!(&$ $B-*$

." ($) .-) /*,%"*$)
0
 0
 3
 L
6
L
0
1
L2
2
1
0
0
L
0


1
A
 B
0 

1  C
D
0

0
2 


 = − qL  02 


24EI L 
12

B=D=0
." ($ +!$*&$ /!"." .")/"C$*)" A
A=−
0 ." ($ &"*+"*$ C
1
C=
L
qL
2EI
L3 qL
qL4
qL3
+
−
=
24EI
6 2EI
24EI
D $(%" &" "( .")/($4$%," &- 0 "( %-%" &- *")!(&$
x 3 x qx4
qL3
qL 3
qL4 x 4
v (x) =
−2
+
−
x +
x=
24EI
12EI
24EI
24EI
L
L
L
2
2 2
x
qx
x
qL
qL
−
M (x) =
−
x=
2
2
2
L
L
E;
! "#$" %&#'( )*" "# +'#,-." "/&.*&0 .'# "#1*"02'# & +&0$,0 "3%.*#,/&4"!$" 5" .&# %'!5,%,'!"# 5"
")*,.,-0,' 6"#$0*%$*0& ,#'#$7$,%&8( #" +*"5" 9&%"0:
R0 = −
qL
2
x
qL
q dx =
T (x) = −R0 −
− qx
2
0
ˆ x
ˆ x
Lx x2
L
T (x) dx = −q
M (x) = −
− x dx = −q
−
2
2
2
0
0
ˆ
!"#$%$& '!( )$(*'+,+-.$%#!( .%#$/&+%)! '+ )$0!&-+1.2% /$%$&+'.,+)+3
M (x)
d2 v
qL2 x 2 x =
−
=
dx2
EI
2EI
L
L
2 ˆ x 2
qL
qL3 1 x 3 1 x 2 C1
dv
x
x
=
dx =
−
−
+
dx
2EI 0
L
L
2EI 3 L
2 L
L
x
3 ˆ x
4
qL
qL
1 x 4 1 x 3
1 x 3 1 x 2
v=
+ C2
−
+ C1 dx =
−
+ C1
2EI 0 3 L
2 L
2EI 12 L
6 L
L
4' 15'16'! )$ '+( 1!%(#+%#$( C1 C2 ($ 7+1$ 8+'6+%)! '+( 1!%).1.!%$( )$ 1!%#!&%! )$ )$(*'+,+9
-.$%#!( $% +-"!( $:#&$-!( ; v(x=0) = 0< v(x=L) = 0=< '! 16+' 1!%)61$ +
C2 = 0
'6$/!
C1 =
1
12
x 3 x qL4 x 4
−2
+
v (x) =
24EI
L
L
L
4' -5:.-! )$(*'+,+-.$%#! $( $% $' 1$%#&!
8+'$
v(x= L ) = vmáx =
2
5qL4
384EI
>6$ $( ? 8$1$( $' )$(*'+,+-.$%#! -5:.-! )$' 1+(! ".$-*!#&+)!@
Simp. Apoy.
Empotr.
A./6&+ B@CD3 4'5(#.1+ )$ '+ 8./+ "+E! 1+&/+ 6%.0!&-$
!"!"!"!
#$%& '$()*+(+,-+ &)./&0& 1&2. 3&4%& )5,-5&*
F+ 8./+ $( )$ '!%/.#6) L '+ 1+&/+ *6%#6+' $(#5 +*'.1+)+ + 6%+ ).(#+%1.+ aL )$' +*! ! .,>6.$&)!
G+)! >6$ '+ $(#&61#6&+ $( .(!(#5#.1+< *!)$-!( ).&$1#+-$%#$ $(1&.".&
d3 v
P
T (x)
)!%)$H $( '+ 06%1.2% $(1+'2% >6$ 8+'$
=
[(1 − a) − H (x − La)]
=−
0 *+&+ x < La 1 *+&+ x ≥ La
dx3
EI
EI
HI
aL
P
T(x)
P(1-a)
Pa
L
x
M(x)
!"#$% &'(() *!"% +!,-./,/01/ %-23%4% 5%62 7%$"% -#01#%.
Ei 4204/ .% 8#07!90 h i/+ 0#.% +! /. %$"#,/012 M (x)
x Dx
PL h
χ (x) =
(1 − a) −
=
−a
/+ 0/"%1!:2 3 :%./ /. %$"#,/012 +! /+ > 0
EI
EI
L
L
;H (x − La) +/ -#/4/ /+7$!5!$ 1%,5!<0 Lx − a 0 = -%$% /:%.#%$ /. "!$2 !01/"$%,2+ #0% :/>
x 2 D x
E2 P L2
−
(1 − a)
+ C1
−a
φ (x) =
2EI
L
L
!01/"$%042 #0% +/"#04% :/> /0 82$,% +!,!.%$
E3 x 3 D x
P L3
x
−a
(1 − a)
+ C1 L + C2
v (x) =
−
6EI
L
L
L
?%+ 720+1%01/+ C1 3 C2 $/+#.1%0 4/ %-.!7%$ .%+ 7204!7!20/+ 4/ 72012$02' ?% -$!,/$% 7204!7!90 4/
72012$02 27#$$/ /0 x = 0@ A#/ 72$$/+-204/ %. /B1$/,2 !>A#!/$42@ :%.#%042 /01207/+ /0 x = 0
$/+#.1% C2 = 0' ?% +/"#04% 7204!7!90 4/ 72012$02 27#$$/ /0 x = L@ A#/ 72$$/+-204/ %. /B1$/,2@
4/$/7C2@ :%.#%042 /01207/+ /0 x = L
P L3
1 − a − (1 − a)3 + C1 L
6EI
P L3
a (1 − a) (2 − a) + C1 L
=
6EI
P L2
a (1 − a) (2 − a)
C1 = −
6EI
v(x=L) =
4/ 4204/
E3 P L 3
x 3 D x
x
P L3
−a
a (1 − a) (2 − a)
−
(1 − a)
v (x) =
−
6EI
L
L
6EI
L
D
E
3
3
PL
x 2
x
x
=
−a
− a (2 − a) (1 − a) −
6EI
L
L
L
D0 /+1/ 7%+2 /0 A#/ .% 7%$"% 02 /+1E 7/01$%4%@ /. ,EB!,2 4/+-.%>%,!/012 02 +/ -$24#7/ 5%62 .%
7%$"%@ -%$% 4/1/$,!0%$.2 C%3 A#/ /07201$%$ /. -#012 4204/ +/ %0#.% /. "!$2@ -2$ /6/,-.2 +! a = 0,4
;+/ %-.!7% /0 .% -$!,/$% ,!1%4= /. 4/+-.%>%,!/012 ,EB!,2 27#$$/ /0 /. +/"#042 1$%,2 4204/ /.
%$"#,/012 4/ hi /+ -2+!1!:2
2 a
x 2 x
P L2
φ (x) =
−
− a − (1 − a) (2 − a)
(1 − a)
2EI
L
L
3
.2 7#%. !,-.!7% %0#.%$ /. 72$7C/1/@ /. A#/ 2-/$%042 $/+#.1%
0=
x 2
L
−2
x
L
FG
+
1 2
a +2
3
! "# !
x
L
máx
p
=1−
1 − (a2 + 2) /3 = 0,471
vmáx = −(0,01975)
)&'& !* +&," %&'-.+/*&' ! a =
!, 456.4" 7 1&*!
1
2
P L3
EI
$%&'& a = 0,4(
$+&'0& !# !* +!#-'" ! *& 1.0&(2 !* !,%*&3&4.!#-" !* +!#-'"
vmáx = −
!"#$
1 P L3
48 EI
8& .#-!0'&+.9# ! *&, !+/&+."#!, .:!'!#+.&*!, & *", ;#!, ! +&*+/*&' *", !,%*&3&4.!#-",
%/! ! '!,/*-&' 4/7 !#0"''",&2 !# %&'-.+/*&' ,. *&, &++."#!, !6-!'#&, #" %/! !# !;#.',! %"' /#&
<#.+& +/'1& ,/&1! ,"='! -" " !* "4.#."2 %"' !>!4%*" +&'0&, *.#!&*!, %"' -'&4", " +&'0&, %/#-/&*!,?
@* 4A-" " %*&#-!& " &B/C !,-5 "'.!#-& " & 4",-'&' B/! !, %",.=*! '!&*.3&' -&*!, +5*+/*", 7 #"
+"# !* "=>!-.1" ! !,-&=*!+!'*" +"4" /# 4A-" " %'5+-.+" ! &%*.+&+.9# D&=.-/&*? )&'& !* +&," !
!,-'/+-/'&, .,",-5-.+&, " +/&# " ! &*0/#& :"'4& ,! +"#"+!# *", !,:/!'3", !6.,-!# :"'4&, 45,
,!#+.**&, %&'& !1&*/&' !,%*&3&4.!#-",? E,C !# &*0/#&, !,-'/+-/'&, .,",-5-.+&, %&'-.+/*&'!, %/! !
/-.*.3&',! !*
" +"# 4&7"' 0!#!'&*. & /#& -A+#.+& !#"4.#& & !*
=&,& & !# !*
B/! %!'4.-! !1&*/&'
!,%*&3&4.!#-", 7 0.'", !# %/#-", ,!*!++."#& ",?
!"#$# $% &' ()*' +#,-.*'$'
!"#$# $% &' +'/*' 0,)"'/)'
1/),2)3)# $% 4.%/5'6 ()/".'&%6
%&'&'&(& )*+, -*./01234,5, -,62 7,4+, 18938,:
F/%"#0&4", &D"'& !* 4.,4" !>!4%*" &#-!'."' %!'" +"# &4=", !6-'!4", !4%"-'& ",? 8& .:!G
'!#+.& +"# !* +&," ,.4%*!4!#-! &%"7& " !, B/! *", !6-'!4", !,-5# .4%! . ", ! 0.'&'? 8& %'.#+.%&*
1!#-&>& ! *& D.%9-!,., ! *.#!&*. & !, B/! %!'4.-! +"4=.#&' ,"*/+."#!,? @# !,-! +&," 1&4",
& +"4=.#&' ", ,"*/+."#!,2 *& &#-!'."' $B/! .# .+&'!4", +"# !* ,/=C# .+! SA( +"# *& !;#. & &
+"#-.#/&+.9#H
F/%"#0&4", /#& 1.0& ,.# +&'0& !# !* .#-!'."' q = 0
d4 v (x)
=0
dx4
+*42; 92 98:2; 72927*.
+/7&, +"# .+."#!, ! ="' ! ,"# !,%*&3&4.!#-", #/*", !# *", !6-'!4", 7
.0/&*!, 7 "%/!,-", & *", B/! ,! "=-.!#!# +"# *& ,"*/+.9# ,.4%*!4!#-! &%"7& &H
52;
v(x=0) = 0
v(x=L) = 0
dv
1 P L2 3
a − 3a2 + 2a
= φ1 = −φSA(x=0) =
dx (x=0)
6 EI
dv
1 P L2
= φ2 = −φSA(x=L) =
a a2 − 1
dx (x=L)
6 EI
I"4" 7& 1.4", &#-!,2 .#-!0'&# " !,-& !+/&+.9# .:!'!#+.&* ,! "=-.!#! $. A#-.+& & $J?KL( %!'"
,.# q (
/#& 1!3
", 1!+!,
-'!, 1!+!,
d3 v
=A
dx3
(x)
= − TEI
d2 v
= Ax + B
dx2
=
dv
Ax2
=
+ Bx + C
dx
2
=φ
+/&-'" 1!+!, v =
Ax3 Bx2
+
+ Cx + D
6
2
MN
M (x)
EI
!"#"$%&'( #% )*% + #% ,!%- .%*% "/.(&0* %##1 #%2 3(&'"3"(&02 '0 3(&!(*&( !0&'*0/(2

0
 0
 L3

6
L2
2
0
0
L2
2
L

1
A
 B
0 

1  C
D
0
0
1
L
1
3(& #( 34%# '0 #%2 '(2 .*"/0*%2 20 !"0&0



0
  φ1 
=

  0 
φ2
C = φ1
D=0
##05%&'( % #%2 '(2 6#!"/%2
*02(#5"0&'(
L3
6
L2
2
L2
2
L
A
B
=
−φ1 L
φ2 − φ1
6
(φ1 + φ2 )
L2
2
B = − (2φ1 + φ2 )
L
A=
+ 3(& 0##(
x 3
x 2
x
− L (2φ1 + φ2 )
+ Lφ1
v (x) = L (φ1 + φ2 )
L
L
L
x 2
x
− 2 (2φ1 + φ2 )
+ φ1
φ (x) = 3 (φ1 + φ2 )
L
L
i
io
h x
o EI n h x
EI n
x
6 (φ1 + φ2 ) − 2 (2φ1 + φ2 ) =
φ1 6 − 4 + φ2 6 − 2
M (x) =
L
L
L
L
L
EI
T (x) = −6 2 {φ1 + φ2 }
L
7" %8(*% 24/%/(2 %/9%2 2(#43"(&02 *00/.#%$%&'( φ1 + φ2 .(* #(2 5%#(*02 '0:&"'(2 %&!02- 20
(9!"0&0 #% 2(#43";& '0 4&% 5"<% 3(& 4&% 3%*<% .4&!4%# 34+(2 0=!*0/(2 &( 20 '02.#%$%& + &( <"*%&>
?# .0*:# '0 '02.#%$%/"0&!( !*%&250*2%# .%*% 0# 3%2( .%*!"34#%* a = 0,4 20 /402!*% 0& #% @"<4*%>
A40'0 &(!%*20 #% B40*!0 '"2/"&43";& '0 #(2 '02.#%$%/"0&!(2 %# 3%/9"%* #%2 3(&'"3"(&02 '0 3(&!(*&(>
φ1−φ2
a=0.4L
P
Empotr.
Simp. Apoy.
@"<4*% C>DEF ?#G2!"3% '0 #% 5"<% 9%H( 3%*<% .4&!4%#>
!"!#! $%&'()* &* &% +%,*- x − z
I4%&'( #% J0=";& &( 20 *02!*"&<0 % 4& .#%&( .*"&3".%# '0 "&0*3"%- 02 &0302%*"( %&%#"$%* 20.%*%K
'%/0&!0 #( L40 (34**0 0& 3%'% 4&( '0 '"38(2 .#%&(2> A%*% 0##( 8%+ L40 4!"#"$%* 4& 20<4&'( <*4.(
,E
Z
−φ y
u= φ z
y
1
dw
dx
w
1
z
X
!"#$% &'()* +,-.$/%0!.1,2 ,1 3!"%2' 45%1. 678
9, ,0#%0!.1,2: ;#, 1. 9!<,$,1 2#2=%10!%5/,1=, 9, 5%2 %1=,$!.$,2: 2>5. 0%/?!%1 5%2 9,1./!1%0!.1,2
@ ,5 A,0A. 9, ;#, ,5 ,B, 1.$/%5 %5 C5%1. D yE ,2 ,1=$%1=, %5 C5%1. ,1 ,2=, 0%2.
u (x, z) = φy (x) z = −
du
d
ε (x, z) =
=
dx
dx
χy (x) =
dw (x)
z
dx
dw (x)
−
z
dx
= χy z
dφy
d2 w
=− 2
dx
dx
σ(x, z) = Eε (x, z) = Eχy z
My (x) =
ˆ
σ (x, z) z dA = Eχy (x)
A
ˆ
z 2 dA = Eχy (x) Iy
A
dTz (x)
+ qz (x) = 0
dx
Tz (x) =
dMy (x)
dx
d2 My (x)
+ qz (x) = 0
dx2
EI
D&')FE
D&')(E
D&')GE
D&'))E
D&')HE
D&')IE
D&')JE
D&')KE
d2 χy (x)
+ qz (x) = 0
dx2
D&')&E
d4 w (x)
+ qz (x) = 0
dx4
D&')LE
−EI
M.=%$ ;#, ,1 ,2=, 0%2. 5% 9,<1!0!>1 9, "!$.2 @ /./,1=.2 ,1 ,5 C5%1. x − z 0.19#0, % 9,2C5%7
8%/!,1=.2 @ =,12!.1,2 5.1"!=#9!1%5,2 C.2!=!3.2 ,1 5% C%$=, 9.19, 5% 0..$9,1%9% z ,2 C.2!=!3%'
H)
!"! #$%&' '()*+$,&' & +(-'$./
!"#!$%& ' (' %&)"*+,- ."',/& !( 0*"0& $)*%!)*& ',%!)*&)- $&,"*/!)')!0&" $&0& #&"*%*1&" (&"
0&0!,%&" %&)"&)!" 2.! 1!$%&)*'(0!,%! $&*,$*/', $&, (' /*)!$$*+, #&"*%*1' /!( !3! x4 (& 0*"0&
/*)!0&" /!( 5*)& $&))!"#&,/*!,%!6 7'" !$.'$*&,!" /*8!)!,$*'(!" 2.! 5&9*!),', (' %&)"*+, /! :'*,%
;!,',% <"*, )!"%)*$$*+, /! '('9!&= "! /*1*/!, !,> '= .,' !$.'$*+, /*8!)!,$*'( &)/*,')*' 2.!- $&,&$*/'
(' )*5*/!? ' %&)"*+,- 5&9*!),' !( $&0#&)%'0*!,%& 5(&9'( /! (' #*!?' !, 8.,$*+, /! !"8.!)?&" @
/!8&)0'$*&,!" 5!,!)'(*?'/'"4 @ 9=.,' !$.'$*+, /*8!)!,$*'( !, /!)*1'/'" #')$*'(!" $.@' "&(.$*+,
#!)0*%! $&,&$!) (' /*"%)*9.$*+, /! %!,"*&,!" /! $&)%! "&9)! (' "!$$*+, %)',"1!)"'( @ !1'(.') ('
)*5*/!? ' %&)"*+,6
!"!#! $%&'%()*&+,-)% * .% .*(/% 0,. ,1, 0, .* 2+/*
A&,/.$! ' .,' !$.'$*+, /*8!)!,$*'( "*0*(') <8&)0'(0!,%! */B,%*$'= ' (' /! (' 9'))' $&, !"8.!)?&"
'C*'(!"6 D9"!)1',/& (' E*5.)' F6G6H- !( !2.*(*9)*& !,%)! (&" 0&0!,%&" '$%.',/& !, /&" "!$$*&,!"
%)',"1!)"'(!" "!#')'/'" dx @ ., 0&0!,%& %&)"&) /*"%)*9.*/& !"
dMx
+ mx (x) = 0
dx
<F6GI=
/&,/! Mx (x) !" !( 0&0!,%& %&)"&) <!"8.!)?& *,%!),&=
Mx (x) =
ˆ
(−τxy z + τxz y) dA
A
<F6GH=
@ mx (x) !" !( 0&0!,%& %&)"&) /*"%)*9.*/& '#(*$'/& ' (& (')5& /!( !3!6
M
x
m
x
M + dM
x
dx x dx
dx
E*5.)' F6HG> J2.*(*9)*& /! ., !(!0!,%& /! 9'))' "&0!%*/' ' 0&0!,%&" %&)"&)!"
7' !$.'$*+, $&,"%*%.%*1' '"&$*'/' !"
<F6GK=
/&,/! J !" !( 0&0!,%& #&(') /! *,!)$*'- ρ !" ., 8'$%&) 2.! /!#!,/! /! (' 8&)0' /! (' "!$$*+, <2.!
"+(& !" H #')' "!$$*&,!" $*)$.(')!" & ',.(')!" $!))'/'"= @ /! &%)'" $&,/*$*&,!" 5!&0B%)*$'" '"&$*'/'"
' (' )!"%)*$$*+, /! '('9!& @ (' (&,5*%./ /! (' #*!?'- G !" !( 0+/.(& /! !('"%*$*/'/ %)',"1!)"'( @ θ
!" !( L,5.(& !"#!$MN$& /! 5*)& </!8&)0'$*+, 5!,!)'(*?'/' '"&$*'/'=
Mx = GρJθ = GIt θ
θ=
dφx
dx
GG
<F6GO=
! "##$%!&'( )# #*+&* ,!+-$&* )(* #./&.-(0#* #0 !& %"-$#"& .(0)/.# & 1%&"& *#..-(0#* /0-2("$#*3
GIt
d 2 φx
+ mx (x) = 0
dx2
145663
7& )#+#"$-0&.-80 )# !& "-9-)#' & !& +("*-80 GIt 0( %/#)# :&.#"*# #0 9#0#"&! #0 2("$& #;&.+&
1*&!<( %&"& *#..-(0#* .-"./!&"#*35 0 &!9/0(* .&*(* %/#)#0 /+-!-'&"*# 28"$/!&* &%"(;-$&)&* ( )#=#
"#./""-"*# & /0& +>.0-.& 0/$>"-.& .($( *# <#"? $?* &)#!&0+#5
7&* .(0)-.-(0#* )# .(0+("0( @/# %/#)#0 -$%(0#"*# &@/A *(0 10("$&!$#0+# /0& #0 .&)& #;+"#B
$(3
#! 9-"( φx C (
#! $($#0+( +("*(" Mx
!"!#!#!
$%&'()* +& ,*-./01 2*1 3&4/01
D/%(09&$(* /0 #E# .-"./!&" =&E( /0& .&"9& )-*+"-=/-)& qz #;.>0+"-.& @/# 1&)#$?* )# F#;-80
#0 #! %!&0( x − z 3 %"()/.# /0 $($#0+( +("*(" )-*+"-=/-)( mx = −qz e 1<#" G-9/"& 4565H5H35 *
-$%("+&0+# "#.(")&" @/# !(* )-*+-0+(* #*2/#"'(* #*+?0 )#*&.(%!&)(*C %(" !( ./&! !& *(!/.-80 )# #*+#
%"(=!#$& .(0*-*+# #0 "#*(!<#" #0 2("$& -0)#%#0)-#0+#I &3 !& F#;-80 #0 #! %!&0( x − z )#=-)& &
!& .&"9& )-*+"-=/-)& J !&* .(0)-.-(0#* )# .(0+("0( & F#;-80 @/# +#09& 10( #*+?0 -0)-.&)&* #0 !&
K9/"&3 =3 !& +("*-80 )#=-)& & !& &%!-.&.-80 #;.>0+"-.& )# !& .&"9& @/# #* !( @/# -0+#"#*& #0 #*+#
%/0+(5
L#*%#.+( & !&* .(0)-.-(0#* )# =(")# */%(09&$(* @/# !(* 9-"(* #0 !(* #;+"#$(* #*+?0 -$%/#*+(*
)# <&!(" φ1 J φ2
φ1
q
e
φ2
G-9/"& 45HMI +("*-80 )# /0 #E#
7& #./&.-80 )-2#"#0.-&! & "#*(!<#" #* 1.(0 ρ = 1 # It = J 3
d 2 φx
qz e
=
2
dx
GJ
dφx (x)
qz e
=
x + C = θ (x)
dx
GJ
qz e x 2
+ Cx + D
φx (x) =
GJ 2
7&* .(0*+&0+#* )# -0+#9"&.-80 *# )#+#"$-0&0 #0 2/0.-80 )# !&* .(0)-.-(0#* )# .(0+("0(
φx (x = 0) = D = φ1
qz e L 2
φx (x = L) =
+ CL + D = φ2
GJ 2
6M
! "# !
D = φ1
C=−
qz e L (φ2 − φ1 )
+
GJ 2
L
$"# %" $&'% ()!") !#'# "*
qz e x
x
(x − L) + φ1 + (φ2 − φ1 )
GJ 2
L
L
(φ2 − φ1 )
qz e
x−
+
θ (x) =
GJ
2
L
(φ2 − φ1 )
L
Mt (x) = qz e x −
+ GJ
2
L
φx (x) =
+!,- " ' %' %-#!'%- ' ! %' !$&'$-.# -/!)!#$-'%0 '% 1-21" )!2&%3' " 2! %%!4' 2- 2! '#'%-5'# 6")
2!6')' " %' -#7&!#$-' ! %' $')4' 8 ! %'2 $"# -$-"#!2 ! $"#3")#" ! 4-)"2 -16&!23"29 :' 2"%&$-.#
!#$"#3)' ' 6&! ! ;!)2! $"1" %' $"1,-#'$-.# (2&1'* ! %'2 2-4&-!#3!2 2"%&$-"#!2
!,- " '% 1"1!#3" 3")2") -23)-,&- " $"# $"# -$-"#!2 ! $"#3")#" ! 4-)"2 #&%"2 !# %"2
!<3)!1"29 =23" 2! $"#"$! $"1" 2"%&$-.# ! %' !$&'$-.# -/!)!#$-'% #">?"1"4@#!' ($"# 3@)1-#"
-# !6!# -!#3! #" #&%"* 8 $"# -$-"#!2 ! $"#3")#" ?"1"4@#!'2 (4-)"2 #&%"2*0 8 2! %' !#"1-#'
A2"%&$-.# 6')3-$&%')B 6")C&! !6!# ! ! %' -23)-,&$-.# ! $')4'9 =# !23! $'2" ;'%!
qz e x
(x − L)
GJ 2
L
P
Mt (x) = qz e x −
2
φPx (x) =
!,- " ' $' ' &#' ! %'2 $"# -$-"#!2 ! $"#3")#" (!# /")1' 2!6')' '* 8 2-# $')4' ! 3)'1"9
=23" 2! $"#"$! $"1" A2"%&$-.# 4!#!)'% ! %' !$&'$-.# -/!)!#$-'% ?"1"4@#!'B (3!)1-#" -# !>
6!# -!#3! #&%"* 8 $"# -$-"#!2 ! $"#3")#" #">?"1"4@#!'2 (4-)"2 #" #&%"2 !# 4!#!)'%*9 D&!
;'%!
x
(φ2 − φ1 )
L
(φ2 − φ1 )
MtH (x) = GJ
L
φH
x (x) = φ1 +
0 $"1" %' )!%'$-.#
:' E%3-1' !<6)!2-.# !2 2-1-%') ' (F9GH* 8 !I#! %' )-4- @5 3")2-"#'% ! %' ;-4' GJ
L
!#3)! !% 1"1!#3" 3")2") '6%-$' " 8 %' -/!)!#$-' !#3)! %"2 4-)"2 ! 2&2 !<3)!1"2
!"! #$%&'()*'+( ,- )**'$(-.
=# %'2 2!$$-"#!2 '#3!)-")!2 2! ?' 1"23)' " $"1" !3!)1-#') %"2 !26%'5'1-!#3"2 !# &#' ;-4'
2"1!3- ' ' %'2 -23-#3'2 '$$-"#!2 !# /")1' 2!6')' '9 J&'# " %'2 '$$-"#!2 '$3E'# !# /")1' 2-1&%3K>
#!' 2.%" )!23' '6%-$') !% 6)-#$-6-" ! %-#!'%- ' (2&6!)6"2-$-.# ! '$$-"#!2 8 !/!$3"2*9 L!$") !1"2
C&! %"2 !26%'5'1-!#3"2 C&! '6')!$!# 6')' $' ' '$$-.# 2"#M
=2/&!)5" '<-'% N M !26%'5'1-!#3"2 '<-'%!2 u(x) $"#23'#3!2 !# !% 6%'#" ! %' 2!$$-.#
N%!<-.# !# !% 6%'#" x − y Mz !"
u (x.y) =
#$%&'()(*+$,-.%
− dv(x)
y
dx
34
v (x)
#$' $/$ #$ '( 0+1( 2 #$%&'()(*+$,-.%
!"#$%& "& "! '!(&) x − z *My +, -".'!(/(0$"&1). w (x) -"! "2" -" !( 3$4( 5 -".'!(/(0$"&1).
z
u (x.z) = − dw(x)
dx
6)7.$%& Mx ,
•
7)1(8$%& φx -" !(. ."88$)&". (!7"-"-)7 -"! "2" -" 1)7.$%& 8)& -".'!(/(0$"&1).
φx
•
−z
y
(!(9") -" !( ."88$%& *1)7.$%& :&$;)70" -" <($&1 ="&(&1+
v
w
=
u (y, z)
>( .:0( -" !). -$.1$&1). ";"81). '"70$1" ".87$9$7 !). -".'!(/(0$"&1). -" :& ':&1) 8:(!?:$"7( -" !(
'$"/( 8)0)




 dv(x) 
 dw(x) 

u (x)
u
u (y, z)
− dx y
− dx z
 +  −φx z 
u (x) =  v  (x, y, z) =  0  +  v (x)  + 
0
0
w
φx y
0
w (x)
N
Mx
Mz
My

@A
Descargar