Ministerio de Educación Universidad Tecnológica Nacional Facultad Regional Trenque Lauquen 1) CURSO DE INGRESO MATEMATICA Marcar con una cruz, el o los conjuntos que corresponda a cada número: Ejemplo: Número 0,3 Número N - N Z - Z F - F Q X I - R X Q I R i - C X i C 5 -5 -2+5i √ ⁄ √ -π e2 - ⁄ -0,050 2) Responder si las siguientes expresiones son Verdaderas o Falsas, justificando las respuestas. a) (3 + 4)2 = 32 + 42 b) (6 : 2)2 = 62 : 22 c) (a + b)2 = a2 +2 ab + b2 d) (4 m n)3 = 64 m n e) (3 m2 n)3 = 27 m6 n3 f) (6 abc : 2 ac)3 = 3 b3 g) [22] 3 · 25 = 2 Año 2013 1 Ministerio de Educación Universidad Tecnológica Nacional Facultad Regional Trenque Lauquen 3) CURSO DE INGRESO MATEMATICA Resolver: RECORDAR: Se deben empezar a resolver los paréntesis ( ), luego los corchetes [ ] y por último las llaves { }. a) b) c) d) e) f) g) 4) * ,( ) ( * , ( ) -+ * ( ) , ( ) ( ) ( ), ( *( ) ,( ) ( ) ( )- ( * , ( ) , ( * ( )- + ) -+ ) ( )+ ) )-+ -+ Resolver los siguientes ejercicios aplicando propiedades de la radicación: a) 3 3 a b b) c c) x 3 x5 27 5 3 300 d) i) 6 27 x3 y 30 z 6 j) 36 1 x12 64 y 24 k) 1 1 2 l) 4 5a 1 2 1 75a 180a 2 e) 23 1 3 108 3 32 3 500 3 4 3 4 5 m) f) 5 1 am 2 n) 3 a 3 a2 3 a2 a a ñ) 46 9 3 32 3 192 34 1024 3 216 1 3 x 4 o) 5 g) h) 3 8 a 4b3m 2 x2 : 4 Año 2013 3a3 a 48a 1 1 50a5 3a 2a 3 0,1xy 2 10 xya 6 x4 y3a 2 1 4 2 mn : 27 6 1 m3 3 n5 2 Ministerio de Educación Universidad Tecnológica Nacional Facultad Regional Trenque Lauquen 5) MATEMATICA Calcular aplicando propiedades: 1 1 5 2 3 1 1 3 2 9 2 3 4 6 a) 1 1 2 b) 2 3 2 4 1 3 3 1 2 3 1 2 c) 5 2 5 5 1 d) e) f) 163 3 4 1 3 g) 3 h) i) 7 j) 3 3 · 3 3 2 · 3 36 1 1 1 1 : 1 5 1 6 1 5 1 1 2 1 3 3 x b · (bx) 3 2ab x b 2 x 20 30 (x 2 )15 10 3 6) CURSO DE INGRESO k) 2 1 8 3 1 3 2 5 1 2 4 2 : 3 23 2 3 b 2 a 1 a 1 2 b a2 1 b2 b a 2 1 b 2 1 2 Racionalizar: a) b) e) √ √ f) √ c) d) √ √ h) √ optativos) i) √ √ √ i) √ √ j) √ √ g) √ √ √ k) √ √ √ l) √ ii) Año 2013 √ √ √ √ √ √ √ 3 Ministerio de Educación Universidad Tecnológica Nacional Facultad Regional Trenque Lauquen CURSO DE INGRESO MATEMATICA 7) Plantear y escribir: i) Escribir utilizando simbolismo algebraico: 1. Un número aumentado en 5. 2. Un número disminuido en 8. 3. El cuadrado de un número aumentado en 2. 4. La suma de tres números consecutivos. 5. El cubo de la suma de tres números consecutivos. 6. Dos números pares consecutivos. 7. El cuadrado de un número menos el número. 8. En una división el divisor es d, el cociente q y el resto r. Represente el dividendo. 9. En una división el dividendo es D, divisor es d y el cociente q. Represente el resto. 10.Un joven tiene 15 años de edad. Represente su edad: a) hace x años; b) dentro de x años. 11.Un joven tiene x años. Represente su edad: a) dentro de dos años; b) dentro de m años. 12.La cifra de las centenas de un número es c, la cifra de las decenas es d y la de las unidades es u. Represente el número. 13.Represente el número de pesos que hay en una billetera que tiene x billetes de 5 pesos, y billetes de 10 pesos y z billetes de 20 pesos. ii) Asociar a cada enunciado la expresión simbólica que le corresponda: 1. El cuadrado de una suma a) 2. El doble de la suma de tres números b) 3. El doble de un número menos 7 c) ( 4. La tercera parte de un número menos otro d) ( 5. La suma de los cuadrados de dos números e) ( 6. El área de un cuadrado f) 7. La distancia recorrida en 3 horas a una velocidad g) )( ) ) ) de x km por hora 8. La edad actual de una persona si dentro de 15 años h) se ha duplicado 9. La tercera parte de la diferencia de dos números i) 10. El producto de dos números impares consecutivos j) Año 2013 4 Ministerio de Educación Universidad Tecnológica Nacional Facultad Regional Trenque Lauquen 8) CURSO DE INGRESO MATEMATICA Plantear y resolver los siguientes problemas: a) El triplo de un número es igual al número aumentado en 8. Halle el número. b) Juan y Pedro tienen conjuntamente $50. Pedro tiene $12 más que Juan. ¿Cuántos pesos tiene cada uno? c) Determine tres números consecutivos cuya suma sea 63. ch) Una empresa ganó $30000 en 3 años. En el segundo año ganó el doble de lo que había ganado en el primero y en el tercer año ganó tanto como en los dos años anteriores juntos. ¿Cuál fue la ganancia en cada año?. d) Hay cuatro números cuya suma es 90. El segundo número es el doble del primero, el tercero es el doble del segundo y el cuarto es el doble del tercero. Determine dichos números. e) Obtenga dos números naturales consecutivos cuya diferencia de cuadrados sea igual al número primo 31. f) Un terreno rectangular tiene de ancho 5 metros menos que de largo y su perímetro es de 95m. Determine las dimensiones del terreno. g) La edad de un padre es el cuádruplo de la de su hijo y dentro de 5 años será el triple. Halle la edad de cada uno. h) Un terreno rectangular tiene 40 pies más de largo que de ancho. Si tuviese 20 pies menos de largo y 10 pies más de ancho su área sería la misma. Calcule sus dimensiones. i) La diferencia de los cuadrados de dos números consecutivos es 61. Determine esos números. j) En un número de dos cifras, la cifra de las decenas excede en 5 a la cifra de las unidades. Si se invierte el orden de las cifras resulta un nuevo número que sumado con el anterior da 121. Averigüe el número. k) La cifra de las unidades de un número de tres cifras es el duplo de la cifra de las decenas; y la cifra de las decenas es el duplo de la cifra de las centenas. Si se invierte el orden de las cifras y del número resultante se resta el número primitivo se obtiene 594. ¿Cuál es el número? l) Agustín empieza un juego y gana $10. Después duplica su dinero, pierde $25 y queda igual que al principio. ¿Con cuánto dinero comenzó el juego?. Año 2013 5 Ministerio de Educación Universidad Tecnológica Nacional Facultad Regional Trenque Lauquen CURSO DE INGRESO MATEMATICA ll) Determine el número que, disminuido en sus 2/3 equivale a su duplo disminuido en 25. m) De los 200 estudiantes aspirantes a ingresar a una universidad, 98 son mujeres, 60 estudian comunicación y 60 son mujeres que no estudian comunicación. ¿Cuántos hombres no estudian comunicación?. n) Piense un número, multiplíquelo por 2, agréguele 33, réstele 13, divídalo por 2 y vuelva a restar el número que pensó. Su resultado debe ser el número 10. Muestre que este procedimiento dará como respuesta 10 para cualquier número n seleccionado. ñ) La madre de Gabriela compra 6 kg de ciruelas para hacer mermelada. Los carozos quitados representan del peso de las frutas. Añade un peso de azúcar igual al peso de la pulpa que queda. La mezcla pierde por la cocción de su peso. Determine el número de potes de 375 gramos que puede llenar con el dulce de ciruelas elaborado. o) Un campesino ha recolectado 6720 kg de alfalfa con la que quiere alimentar a sus 7 vacas durante 120 días. Al cabo de 15 días, compra otras 3 vacas. Determine la cantidad de alfalfa que le faltará para alimentar a sus vacas durante el tiempo previsto. p) La población de una pequeña ciudad de la provincia de Buenos Aires disminuyó de 17490 a 16980 habitantes. ¿Cuál es el porcentaje de decrecimiento de la población? q) Si la altura de un rectángulo es la mitad de la base y el área es de 64 m2, calcular la medida de la base y de su altura. r) Si se duplica la longitud de un lado de un cubo, ¿se duplica su área lateral?, ¿y su volumen?. Si la longitud del lado aumenta k veces, ¿cuántas veces aumenta el área y el volumen? rr) ¿Cuál es el costo final de una pieza de repuesto de $9000 si se otorga un descuento del 5% y se le aplica el 9% de impuesto a las ventas? ¿El aumento fue del 4%? s) Las aguas cubren el 70,8% de la superficie de la tierra, o sea, 361.106 km 2. Calcular el área total del globo terráqueo. t) Un taller producía 126 artículos diarios. Como resultado del perfeccionamiento técnico su producción diaria aumentó hasta 189 artículos. ¿En qué tanto por ciento se incrementó el rendimiento? u) En una bolsa de 200 caramelos hay 110 de fruta y el resto de chocolate. ¿Cuántos caramelos de fruta hay que agregar para que los caramelos de fruta sean el 70% del total de la bolsa? Año 2013 6 Ministerio de Educación Universidad Tecnológica Nacional Facultad Regional Trenque Lauquen CURSO DE INGRESO MATEMATICA v) Pablo realizó una compra que le demandó los del dinero que le dió su madre, pero sobre ese valor le hacen un descuento del 15%. ¿Cuánto dinero le dió su madre si le quedan $260? w) Un ingeniero mecánico necesita corta planchas de madera de 256 cm de largo y 96 cm de ancho, en cuadrados lo más grande posible: a) ¿Cuál debe ser la longitud del lado de cada cuadrado? b) ¿Cuántos cuadrados se obtienen de la plancha de madera? x) El agua al congelarse aumenta su volumen un décimo del mismo. ¿Qué volumen ocuparán 200 litros de agua después de helarse? y) Una aleación está compuesta por de cobre, de estaño y ¿Cuántos kilogramos de cada metal habrá en 348 kg de aleación? de cinc. z) El 15 de diciembre Eduardo averigua el precio de un aire acondicionado. Cuando va a comprarlo una semana después se encuentra con que había aumentado un 5%. Como pagó en efectivo, el vendedor le hace un descuento del 15% sobre el precio del día, pagando $1071. ¿Cuál era el precio del aire acondicionado el 15 de diciembre? Año 2013 7