LABORATORIO DE ELECTRÓNICA DE POTENCIA ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones Carrera de Ingeniería Electrónica y Redes de Información Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N°3 1. TEMA TRANSISTOR DE EFECTO DE CAMPO MOSFET 2. OBJETIVOS 2.1. Diseñar el circuito de control para un MOSFET de potencia. 2.2. Conocer las características de conmutación de los MOSFET’s. 3. INFORMACIÓN El MOSFET de potencia (Metal Oxide Semiconductor, Field Effect Transistors) difiere del transistor bipolar de juntura en principios de operación, especificaciones y funcionamiento. Las características de operación de los MOSFETs son superiores a las de los transistores bipolares de juntura: tiempos de conmutación más rápidos, circuito de control simple, no segunda avalancha, posibilidad de colocarse en paralelo, ganancia estable y amplio rango de respuesta de frecuencia y temperatura. El MOSFET de potencia es un dispositivo controlado por voltaje (si bien lo más apropiado es señalar que es un elemento controlado por carga) a través del terminal gate, el que está eléctricamente aislado del cuerpo de silicio por una delgada capa de dióxido de silicio (SiO2). Por el aislamiento de la compuerta la corriente que ingresa en el gate es pequeña lo que hace que el circuito de control no deba entregar valores considerables de corriente, ventaja importante con respecto al TBJ. Al ser un semiconductor de portadores mayoritarios, el MOSFET opera a mayor velocidad que un transistor bipolar porque no tiene un mecanismo de mantenimiento de carga [1] LABORATORIO DE ELECTRÓNICA DE POTENCIA Figura 1: Símbolo y estructura interna de un MOSFET. Las regiones de operación del transistor de efecto de campo son la región de corte, región activa y región óhmica (Figura 2). Región de corte (Cutoff): el voltaje gate-source es menor que el voltaje de umbral VGS(th), el cual es típicamente unos cuantos voltios en la mayoría de MOSFETs de potencia. El dispositivo puede mantenerse abierto aunque se aplique una fuente de potencia entre sus terminales siempre y cuando este voltaje sea menor que el voltaje de sustentación BVSS. Región activa: la corriente de Drenaje ID es independiente del voltaje drain-source VDS y depende únicamente del voltaje gate-source VGS, y está dada por ID = gm[VGS-VGS(th)]. Región óhmica: cuando el valor de voltaje gate-source es considerablemente mayor al voltaje de umbral VGS >> VGS(th) y VDS es igual o menor que VGS - VGS(th), el elemento entra en la región óhmica. En esta región no es válida la dependencia de la corriente ID del voltaje VGS, sino más bien ID está limitada por el circuito dentro del cual se encuentre el MOSFET. Figura 2: Regiones de trabajo del MOSFET. El TBJ y el MOSFET tienen características que se complementan entre sí, por ejemplo las pérdidas durante la conducción son menores en el TBJ especialmente en dispositivos con alto voltaje de bloqueo, pero tiene tiempos grandes de conmutación sobre todo durante el LABORATORIO DE ELECTRÓNICA DE POTENCIA apagado. Por el contrario el MOSFET puede encenderse o apagarse más rápido, pero sus pérdidas durante la conducción son grandes especialmente para dispositivos de alto voltaje de bloqueo, por lo que una combinación de las características positiva de cada elemento formarán un transistor de buen desempeño, con el objetivo de lograrlo aparece el elemento conocido como IGBT. Al IGBT se lo puede considerar como un MOSFET el cual ha sido modificado en su estructura interna (Figura 3), agregando una capa tipo P bajo el DRAIN, esta modificación tiene como objetivo obtener características entre Drain y Source similares a las de ColectorEmisor del transistor TBJ pero manteniendo las características del MOSFET en el Gate. Es así que el IGBT se caracteriza por tener reducidos tiempos de conmutación, bajas pérdidas durante la conducción y un control por voltaje [2]. Figura 3: Símbolo y estructura interna del IGBT. 4. TRABAJO PREPARATORIO 4.1. Diseñar un control PWM en base a un LM555 [3]. Con un potenciómetro la frecuencia debe variar entre 10kHz < f < 40kHz, de igual forma con otro potenciómetro relación de trabajo debe variar entre 0,2 < δ < 0,8. 4.2. Diseñar el circuito de la Figura 4, si la fuente de potencia a usarse es de 40 V (utilice un puente de diodos y un capacitor) y la resistencia de carga es un foco de 100W. Tomar en cuenta que el Vth de estos elementos es mayor de 5 V, por lo que el circuito de control debe ser alimentado con 12 o 15 VDC. 4.3. Añadir el dimensionamiento de una diodo de conmutación rápida (Fast Recovery) para trabajar con una carga inductiva. 4.4. Traer armado los circuitos solicitados. LABORATORIO DE ELECTRÓNICA DE POTENCIA Figura 4: Circuito a Implementarse con MOSFET 5. EQUIPO Y MATERIALES Fuente de poder DC. Osciloscopio. Capacitor de 1000 µF. Puente de diodos. Autotransformador. Puntas de prueba. Cables. 6. PROCEDIMIENTO 6.1. Para el circuito diseñado en el literal 2 del trabajo preparatorio, observar formas de onda y comprobar que el elemento esté trabajando en las regiónes de corte y óhmica, caso contrario corregir. A una relación de trabajo aproximada de 0.5 tomar formas de onda de voltaje y corriente en función del tiempo y además tomar tiempos de conmutación con carga resistiva. Tomar también el tiempo que permanece encendido y apagado el MOSFET para calcular luego la potencia. 6.2. Con el módulo matemático del osciloscopio, multiplicar las ondas de voltaje y corriente para observar la curva de potencia disipada en el dispositivo (no todos los osciloscopios tienen esta opción). LABORATORIO DE ELECTRÓNICA DE POTENCIA 6.3. Repetir lo anterior para carga inductiva con diodo de conmutación (FAST RECOVERY) como se menciona en numeral 3 del trabajo preparatorio. Verificar las diferencias con los datos obtenidos en el literal 2. 7. INFORME 7.1. Calcular la potencia de disipación del MOSFET para los dos tipos de carga. Utilice los datos tomados en el laboratorio. 7.2. Conclusiones. 7.3. Referencias. 8. REFERENCIAS [1] Batarseh, I., Power Electronics Handbook, The Power MOSFET, 2011. [2] P. S. Abedinpour and P. K. Shenai, Power Electronics Handbook, Insulated Gate Bipolar Transistor, 2011. [3] C. J. Savant and G. L. Carpenter, Diseño electrónico circuitos y sistemas. Responsable: Carlos Imbaquingo Revisado por: Ing. Marcelo Pozo, PhD