Modelos de gestión de inventarios (I) MIGUEL ANGEL GARCIA MADURGA Modelos de gestión de inventarios Introducción – Existen diferentes modelos de gestión de inventarios: Modelos monoproducto Gestión de inventarios con demanda independiente Modelos Con demanda Suministro determinísticos constante instantáneo Suministro gradual Sin rotura Con rotura Sin rotura Con rotura Con demanda • Tamaño medio variable • Silver-Meal • Coste unitario mínimo • Partes por periodo Modelos no • Demanda constante y plazo de entrega determinísticos o aleatorio modelos • Demanda aleatoria y plazo de entrega probabilísticos constante • Demanda y plazo de entrega aleatorios • Stocks de anticipación (con variable continua o discreta) • Stocks de fluctuación (con variable continua o discreta) Modelos multiproducto o Gestión agregada de stocks Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: • Es el modelo más básico de gestión de inventarios con demanda independiente. Es el más sencillo pero el que más restricciones de uso presenta. • En este modelo, los productos que adquieren las empresas comerciales y las materias primas que compran las empresas transformadoras son suministrados por el proveedor de una sola vez y en una determinada cantidad. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: • Esta cantidad suministrada tiene asociados unos costes de forma que las empresas calcularán el volumen óptimo/económico de pedido o de compra que deben realizar para que dichos costes sean mínimos. • Los modelos de suministro instantáneo sin rotura los vamos a estudiar considerando las dos formas de revisión que puede llevar a cabo la empresa: – sistema de revisión continua – y sistema de revisión periódica. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua – Premisas del modelo: • la demanda es conocida y con tasa constante. • no existen descuentos. • no existen roturas de inventario. • la recepción del pedido se hace en una sola remesa de tamaño Q. • y no existen restricciones al tamaño del lote. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua La evolución de los inventarios en este modelo tiene este aspecto: Q: Remesas de tamaño fijo Q/2 :número medio anual de unidades almacenadas del artículo. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua – Parte de una situación como la representada en la figura anterior en la que se consideran conocidos con certeza la demanda, los tiempos de suministro y los costes unitarios. Se supone que no existen costes de ruptura y que el consumo de los artículos es uniforme, agotándose el inventario justo en el momento en que se recibe el siguiente pedido, no existiendo, por tanto, stock de seguridad. – En la realidad estas características no suelen ser presentarse. Sin embargo este modelo es bastante utilizado debido a su sencillez y el escaso error que se comete con estos supuestos restrictivos. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. CANTIDAD DE PEDIDO Al no existir costes de rotura, el coste total anual de gestión de inventarios CT(Q) en función del tamaño Q será la suma del coste de compra de la demanda anual más los costes de emisión de pedidos y los costes de almacenamiento: CT(Q) = P D + e D Q (a Pi) Q 2 Donde D/Q es el número de pedidos que se emitirán en el año y Q/2 es el número medio anual de unidades almacenadas del artículo. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. CANTIDAD DE PEDIDO El objetivo será minimizar el coste anual de gestión de inventarios, para lo que se deriva e iguala a cero la función anterior CT(Q). C(Q) (a Pi) e D 2eD 0 Q* Q 2 a Pi Q2 A la cantidad Q* que minimiza la función de costes se la llama lote óptimo o lote económico de pedido (Economic Order Quantity, EOQ) y a su expresión se la conoce también con el nombre de fórmula de Harris-Wilson. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. CANTIDAD DE PEDIDO Gráficamente: CT(Q) = P D + e D Q (a Pi) Q 2 Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. CANTIDAD DE PEDIDO El número óptimo de pedidos anuales N* y el tiempo óptimo entre dos pedidos consecutivos T* serán respectivamente: N* D Q* T* T* nº dias laborales N* 1 años N* 360 días N* 250 T* días N* T* Ejemplo Supongamos por ejemplo una empresa de montaje (que vamos a utilizar como caso práctico a lo largo de todo este tema) que precisa de 2.000 rodamientos al año (D), siendo el precio de compra de 4 euros por unidad. El coste unitario de almacenamiento es de 5 euros al año, y el coste de emisión de cada pedido es de 200 euros. Calcular el lote económico de pedido, el número anual de pedidos, el tiempo entre pedidos y el coste anual para la empresa. – NOTA: Las empresas no siempre tienen en cuenta los dos componentes (a+Pi) calculando el coste de almacenamiento o mantenimiento con tan sólo uno de ellos. Por lo tanto, nosotros calcularemos dicho coste en función del dato que dispongamos en cada ejercicio a resolver. Ejemplo La empresa de montaje precisa de 2.000 rodamientos al año (D), siendo el precio de compra de 4 euros por unidad. El coste unitario de almacenamiento es de 5 euros al año, y el coste de emisión de cada pedido es de 200 euros. El lote económico de pedido será entonces: Q*= • • • 2eD a Pi 2 200 2.000 400 5 rodamientos El número anual de pedidos será N* = D/Q* = 2.000/400 = 5 pedidos Se efectuará un pedido cada T* = 1/N* = 1/5 = 0,2 años o T* = 360/5 = 72 días. Suponiendo que la empresa trabaja 250 días al año, se realizará un pedido cada T* = 250/5 = 50 días laborables. El coste total anual para la empresa será: CT(Q*) = P D + e D Q* 2.000 400 (a Pi) CT(400) = 4 2.000 + 200 5 = 10.000 euros Q* 2 400 2 Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. PUNTO DE PEDIDO – El punto de pedido (Pp o r*) es el número de unidades que debe haber en el almacén en el momento de formular una orden de compra. – Este valor dependerá del plazo de entrega o tiempo de aprovisionamiento t (tiempo que transcurre desde que se lanza una orden de pedido hasta que se recibe en el almacén, medido en días)y de su relación con el tiempo cíclico de pedido T*. – Como mínimo, habrá que lanzar el pedido t días antes de que el inventario se agote porque así la llegada del nuevo suministro evitará la rotura de inventario. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. PUNTO DE PEDIDO 1. Si el tiempo de aprovisionamiento es igual a cero (t = 0), es decir, el suministro es inmediato, bastará con lanzar la orden de pedido justo en el momento en que se haya agotado el inventario y el punto de pedido será de cero unidades. » Un entorno logístico Justo a Tiempo (JIT) tendría como objetivo suministro inmediatos y cero inventarios . Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. PUNTO DE PEDIDO 2. Si el tiempo de aprovisionamiento es menor que el tiempo cíclico de pedido (0<t≤T*), los lanzamientos de pedido se realizarán sin que haya pedidos pendientes de recibir, cuando resten existencias para t días con lo que el punto de pedido se calculará como el producto de la demanda diaria (d=D/250) por el tiempo de aprovisionamiento: r* = t x d Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. PUNTO DE PEDIDO r*: Punto de pedido t: tiempo de aprovisionamiento d: demanda diaria T: tiempo óptimo entre pedidos Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. PUNTO DE PEDIDO 3. Si t > T*, antes de recibir el pedido que se acaba de ordenar llegarán otros pedidos que ya habían sido lanzados anteriormente. En este caso, habrá que lanzar un nuevo pedido cuando las existencias actuales más los pedidos pendientes de recibir alcancen el valor r* = (t – T*) x d + Q Es decir, la suma de lo que se consume en T* más lo que se consume en (t-T*) Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: a) Modelos de suministro instantáneo sin rotura y sistema de revisión continua. PUNTO DE PEDIDO – En resumen, cuando t < T, el punto de pedido r es menor que el lote económico Q, pero cuando t > T el punto de pedido es mayor que Q: t < T* r* = t x d r* < Q* t > T* r* = (t – T*) x d + Q r* > Q* FORMULARIO Modelos de suministro instantáneo sin rotura y sistema de revisión continua Q* = 2eD ; a Pi CT(Q*) = P D + e (t < T*) r* = t x d; D Q* (a Pi) ; Q* 2 (t > T*) N* D ; Q* T* r* = (t – T*) x d + Q nº dias laborales N* Ejemplo Utilizar los datos de la empresa de montaje (D=2.000 rodamientos al año; precio de compra = 4 euros por unidad; coste unitario de almacenamiento =5 euros al año; coste de emisión de cada pedido = 200 euros; Q* = 400 rodamientos; N* = 5 veces al año; T* = 0,2 años = 50 días laborables) para calcular el punto de pedido: 1. Si el plazo de entrega es t = 10 días laborables 2. Si el plazo de entrega fuese t = 60 días laborables Suponer que la empresa trabaja 250 días al año Ejemplo Si utilizamos los datos de la empresa de montaje (Q* = 400 rodamientos; N* = 5 veces al año; T* = 0,2 años = 50 días laborables) para calcular el punto de pedido tendremos: Si suponemos un plazo de entrega t = 10 días laborables (t < T*): Como la demanda diaria d = D/250 = 2.000/250 = 8 rodamientos por día laborable, es suficiente con que se lance el pedido cuando quede inventario justo para esos 10 días, es decir cuando el nivel de inventario baje de r* = t x d = 10 x 8 = 80 rodamientos. Si el plazo de entrega fuese t = 60 días laborables (t > T*): Habría que tener en cuenta las cantidades ya pedidas y pendientes aún de recibir, por lo que el punto de pedido será: r* = (t – T*) x d + Q= (60-50) x 8 + 400= 480 rodamientos Ejemplo 37 El comercio EL CAFETAL mantiene en su inventario un tipo particular de café, el cual tiene las siguientes características: las ventas son de 10 paquetes a la semana; el precio de compra para el comercio es de 60 euros; el coste de emisión de un pedido es de 20 euros por pedido; y el coste anual de almacenamiento es del 30% del precio de compra del producto. a) ¿Cuántos paquetes deben pedirse cada vez?. b) ¿Con qué frecuencia debe pedirse el café?. c) ¿Cuál es el coste anual de pedir y almacenar el café?. d) ¿Qué efecto tendría sobre el lote económico y sobre el coste total los siguientes cambios?: • un aumento de un 50% en la demanda, • un aumento de un 50% en el coste de almacenamiento. Ejemplo 38 La empresa AIRSOL utiliza remaches para la fabricación de autogiros en una cantidad aproximadamente constante de 5.000 kg. al año. El precio de los remaches es de 20 euros/kg. Los técnicos de la empresa estiman en 200 euros los gastos fijos que cada pedido les ocasiona y en un 10% sobre el coste del producto, el coste del almacenaje por kg. y año de almacén. La empresa trabaja 250 días al año. a) ¿Cuál es el lote óptimo de pedido? b) ¿Cada cuánto tiempo deben repetirse los pedidos? c) Si de hecho las estimaciones de los técnicos de la empresa no fueran correctas, sino que los costes fijos de pedido fueran de 625 euros y ascendiera a un 20% el coste de almacenaje anual por kg., ¿cuánto estaría perdiendo la empresa por calcular el lote óptimo con arreglo a las estimaciones de los técnicos? d) Suponiendo que la estimación del 10% para el gasto de almacenaje es correcta, pero que ignorándose el coste fijo de pedido, el responsable de compras pide lotes de 800 kg, ¿cuánto tendría que valer este gasto fijo de pedido para que la decisión del gestor fuera óptima? e) Suponiendo que se tardan 10 días desde que se lanza el pedido hasta que se recibe, ¿cual será el punto de pedido? Ejemplo 38 La empresa AIRSOL utiliza remaches para la fabricación de autogiros en una cantidad aproximadamente constante de 5.000 kg. al año. El precio de los remaches es de 20 euros/kg. Los técnicos de la empresa estiman en 200 euros los gastos fijos que cada pedido les ocasiona y en un 10% sobre el coste del producto, el coste del almacenaje por kg. y año de almacén. La empresa trabaja 250 días al año. a) ¿Cuál es el lote óptimo de pedido? b) b) ¿Cada cuánto tiempo deben repetirse los pedidos? ------- a. Suministro instantáneo sin rotura: Q*= a. 2eD = a Pi 2 200 5.000 = 1.000 kg 20 0,10 El número de pedidos y la frecuencia son: N* D 5000 5 pedidos Q * 1000 considerando los 250 días que la empresa trabaja al año: T* 250 250 50 días laborables N* 5 Ejemplo 38 Demanda=5.000 kg. al año; precio de los remaches = 20 euros/kg; gastos fijos que cada pedido ocasiona = 200 eur; coste del almacenaje por kg. y año de almacén =10% sobre el coste del producto, el. La empresa trabaja 250 días al año. c) Si de hecho las estimaciones de los técnicos de la empresa no fueran correctas, sino que los costes fijos de pedido fueran de 625 euros y ascendiera a un 20% el coste de almacenaje anual por kg., ¿cuánto estaría perdiendo la empresa por calcular el lote óptimo con arreglo a las estimaciones de los técnicos? ------c) En este caso, el lote óptimo de pedido es: Q*= 2eD = a Pi 2 625 5.000 = 1.250kg 20 0,20 Para calcular la pérdida (o ganancia) de la empresa por estar pidiendo lotes a partir de las estimaciones erróneas de los técnicos, comparamos costes. Puesto que el precio y la demanda no varían, compararemos solamente los costes incrementales: CI(Q*) = e D Q* 5.000 1.250 (a Pi) = 625 4 = 5.000 euros Q* 2 1.250 2 mientras que los costes reales que vamos a tener al hacer pedidos de 1.000 kg son CI(Q*) = 625 5.000 1.000 4 = 5.125 euros 1.000 2 Luego se incurre en un sobrecoste de 125 euros Ejemplo 38 La empresa AIRSOL utiliza remaches para la fabricación de autogiros en una cantidad aproximadamente constante de 5.000 kg. al año. El precio de los remaches es de 20 euros/kg. Los técnicos de la empresa estiman en 200 euros los gastos fijos que cada pedido les ocasiona y en un 10% sobre el coste del producto, el coste del almacenaje por kg. y año de almacén. La empresa trabaja 250 días al año. d) Suponiendo que la estimación del 10% para el gasto de almacenaje es correcta, pero ignorando el coste fijo de pedido, el responsable de compras pide lotes de 800 kg, ¿cuánto tendría que valer este gasto fijo de pedido para que la decisión del gestor fuera óptima? ---------------d) Aplicando la expresión de la cantidad económica de pedido con Q*=800: Q * = 800 = 2 e 5.000 e = 128 euros 20 0,10 es decir, los costes de emisión de pedido tendrían que bajar hasta 128 euros para que fuese rentable hacer pedidos de 800 kg., porque de lo contrario los costes totales de gestión de inventarios serían mayores. Ejemplo 38 La empresa AIRSOL utiliza remaches para la fabricación de autogiros en una cantidad aproximadamente constante de 5.000 kg. al año. El precio de los remaches es de 20 euros/kg. Los técnicos de la empresa estiman en 200 euros los gastos fijos que cada pedido les ocasiona y en un 10% sobre el coste del producto, el coste del almacenaje por kg. y año de almacén. La empresa trabaja 250 días al año. e) Suponiendo que se tardan 10 días desde que se lanza el pedido hasta que se recibe, ¿cual será el punto de pedido? -------------------e) El tiempo de suministro t=10 es menor que T*. La demanda diaria de remaches es de d = 5.000/250 = 20 remaches, con lo que el punto de pedido será r = t x d = 1020 = 200 remaches. Ejemplo 37 El comercio EL CAFETAL mantiene en su inventario un tipo particular de café, el cual tiene las siguientes características: las ventas son de 10 paquetes a la semana; el precio de compra para el comercio es de 60 euros; el coste de emisión de un pedido es de 20 euros por pedido; y el coste anual de almacenamiento es del 30% del precio de compra del producto. a) ¿Cuántos paquetes deben pedirse cada vez?. ---------------- a) Se trata de suministro instantáneo sin rotura: Q* = 2eD = a Pi 2 20 (10 52) 34 paquetes 0,3 60 Ejemplo 37 El comercio EL CAFETAL mantiene en su inventario un tipo particular de café, el cual tiene las siguientes características: las ventas son de 10 paquetes a la semana; el precio de compra para el comercio es de 60 euros; el coste de emisión de un pedido es de 20 euros por pedido; y el coste anual de almacenamiento es del 30% del precio de compra del producto. b) ¿Con qué frecuencia debe pedirse el café?. ------------b)Si el consumo anual es de 520 paquetes, el número de pedidos que deberán hacerse a lo largo del año y la frecuencia será: N* D 520 15,3 16 Q * 34 T* Nº semanas 52 3,38 semanas N* 15,3 Ejemplo 37 El comercio EL CAFETAL mantiene en su inventario un tipo particular de café, el cual tiene las siguientes características: las ventas son de 10 paquetes a la semana; el precio de compra para el comercio es de 60 euros; el coste de emisión de un pedido es de 20 euros por pedido; y el coste anual de almacenamiento es del 30% del precio de compra del producto. c) ¿Cuál es el coste anual de pedir y almacenar el café? -------------------- c) Basta aplicar la expresión del coste C(Q) CT(Q*) = P D + e D Q* 520 34 (a Pi) = 60 520 + 20 18 = 31.812 euros Q* 2 34 2 Ejemplo 37 El comercio EL CAFETAL mantiene en su inventario un tipo particular de café, el cual tiene las siguientes características: las ventas son de 10 paquetes a la semana; el precio de compra para el comercio es de 60 euros; el coste de emisión de un pedido es de 20 euros por pedido; y el coste anual de almacenamiento es del 30% del precio de compra del producto. d) ¿Qué efecto tendría sobre el lote económico y sobre el coste total los siguientes cambios?: 1. un aumento de un 50% en la demanda 2. y un aumento de un 50% en el coste de almacenamiento. ----------------------- 1. La nueva demanda será 150%*520= 780 paquetes El nuevo lote económico será entonces: Q* = 2eD = a Pi 2 20 780 42 paquetes 18 Lo que implicará el siguiente cambio en los costes: CT(Q*) = P D + e D Q* 780 42 (a Pi) = 60 780 + 20 18 = 47.549 euros Q* 2 42 2 Ejemplo 37 El comercio EL CAFETAL mantiene en su inventario un tipo particular de café, el cual tiene las siguientes características: las ventas son de 10 paquetes a la semana; el precio de compra para el comercio es de 60 euros; el coste de emisión de un pedido es de 20 euros por pedido; y el coste anual de almacenamiento es del 30% del precio de compra del producto. d) ¿Qué efecto tendría sobre el lote económico y sobre el coste total los siguientes cambios?: 1. un aumento de un 50% en la demanda 2. y un aumento de un 50% en el coste de almacenamiento. ----------------------- 2. El nuevo coste de almacenamiento será: 150%*30%*60= 27 eur El nuevo lote económico será entonces: Q* = 2 20 520 28 paquetes 27 Lo que implicará el siguiente cambio en los costes: CT(Q*) = P D + e D Q* 520 28 (a Pi) = 60 520 + 20 27 = 31.949 euros Q* 2 28 2 Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: b) Modelos de suministro instantáneo sin rotura y sistema de revisión periódica – Es un sistema en el cual los pedidos se emiten regularmente, correspondiendo la periodicidad de las emisiones a los distintos momentos en que se realiza el recuento físico o inventario sobre las existencias de las principales materias primas. – Las hipótesis de partida de este modelo son similares a las del modelo de cantidad económica de pedido: La demanda, el tiempo de suministro y el coste son conocidos con certeza, no se utiliza stock de seguridad, el suministro es instantáneo y no se admite la posibilidad de ruptura de stock. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: b) Modelos de suministro instantáneo sin rotura y sistema de revisión periódica – En vez de calcular el lote económico y cada cuanto tiempo ha de lanzarse, lo que haremos es realizar un recuento cada R fracciones de año y lanzar entonces un pedido de tamaño Q para completar el inventario que hay en ese momento hasta alcanzar un nivel predefinido S – Al ser una demanda determinista, puede reabastecerse el almacén justo con la antelación equivalente al plazo de entrega t, sin riesgo de que haya rotura. El objetivo del modelo es calcular R, que es una fracción de año, y S. Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: b) Modelos de suministro instantáneo sin rotura y sistema de revisión periódica – Considerando que el número de pedidos anuales es 1/R y la demanda anual del artículo es D » En el periodo R se consumen Q = DR » El inventario medio será Q/2 = DR/2, Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: b) Modelos de suministro instantáneo sin rotura y sistema de revisión periódica – El coste total anual en función de R será: DR 1 CT(R) = P D + e (a Pi) 2 R Coste adquisición – Coste de emisión Coste de almacenamiento NOTA: Suponemos que en el coste de lanzamiento de pedido “e” se incluyen los gastos propios de realizar el recuento en caso de que no estuviese informatizado el sistema Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: b) Modelos de suministro instantáneo sin rotura y sistema de revisión periódica – Derivando e igualando a cero, se obtiene el óptimo R*: R *= – 2e (a Pi) D Q* = D R * El nivel máximo de stock S debe cubrir la demanda en el período R*+t, es decir, S* = Q* + D x t= D(R*+t). FORMULARIO Modelos de suministro instantáneo sin rotura y sistema de revisión continua Q* = 2eD ; a Pi CT(Q*) = P D + e (t < T*) r* = t x d; • D Q* (a Pi) ; Q* 2 (t > T*) N* D ; Q* T* nº dias laborales N* r* = (t – T*) x d + Q Modelos de suministro instantáneo sin rotura y sistema de revisión periódica R*= 2e ; (a Pi) D Q* = D R *; S * = Q * D t D (R * +t) Ejemplo Con una demanda anual D de 2.000 rodamientos, unos costes unitarios de almacenamiento y de emisión de pedidos de cinco y doscientos euros respectivamente, y un plazo de entrega t de diez días, calcular el periodo óptimo de revisión, la cantidad óptima de pedido según este método y el nivel predefinido de stock S Ejemplo Con una demanda anual D de 2.000 rodamientos, y unos costes unitarios de almacenamiento y de emisión de pedidos de cinco y doscientos euros respectivamente, si suponemos un plazo de entrega t de diez días, tendremos los siguientes resultados: 2e 2 200 = = 0,2 años (a Pi) D 5 2.000 – Periodo óptimo de revisión: – Cantidad óptima de pedido: Q * = D R * = 2.000 0.2 = 400 rodamientos – Nivel predefinido de stock: R *= = 50 días laborables S * = D (R * +t) = 2.000[0,2 + (10/250)] = 480 rodamientos OJO A LAS UNIDADES Y SU HOMOGENEIDAD EN LAS FORMULAS! Para el calculo de S* hemos medido los tiempos R* y t en años y por eso se han dividido los 10 días del tiempo de suministro entre 250 días laborables que trabaja la empresa. Si hubiésemos utilizado días laborables para medir R* y t entonces tendríamos que haber multiplicado R* (0,2 años) por 250, y haber dividido D por 250 para tener la demanda diaria de rodamientos, pero el resultado de S* habría sido el mismo. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. Análisis de sensibilidad del lote económico de pedido – • Dado que el modelo del lote económico de pedido es el más básico y el que adolece de mayores restricciones resulta interesante calcular las desviaciones en costes totales que se producen cuando por cualquier tipo de restricción no puede pedirse el lote óptimo Q* sino otro Q cualquiera. • Para ello podemos comparar los costes incrementales resultantes de considerar el lote óptimo Q* del problema por una parte, y un lote de tamaño Q distinto por otra. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. – Análisis de sensibilidad del lote económico de pedido eD (a Pi)Q C(Q) = Q 2 C(Q) eD (a Pi)Q = = C(Q*) Q 2(a Pi)eD 2 2(a Pi)eD C(Q*) = 2(a Pi)eD con 2eD Q* = (a Pi) 1 Q 2(a Pi) eD Q 2Q * 1 2Q 1 Q* C(Q) 1 Q* Q = C(Q*) 2 Q Q* 1 2(a Pi) Q eD Q 1 Q* Q 2Q * 2 Q Q * Q 2eD 2 (a Pi) Ejemplo • Si, debido por ejemplo a restricciones de espacio en el almacén, la empresa de montaje escogiese un lote de pedido Q de 240 rodamientos en lugar del óptimo Q* de 400 rodamientos (es decir, Q/Q* = 240/400 = 0,6, lo que significa que se escoge un tamaño de pedido Q que sea el 60% del óptimo Q*), tendríamos que la relación entre costes totales de gestión de inventarios sería: C(Q) 1 Q * Q 1 400 240 = 1,13 C(Q*) 2 Q Q * 2 240 400 La empresa tendrá un incremento en sus costes de gestión del 13% Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. Análisis de sensibilidad del lote económico de pedido – • La tabla muestra los incrementos en los costes que se experimentan al elegir tamaños de lote Q mayores y menores que el óptimo Q*: • Puede comprobarse que el aumento de los costes es siempre mayor cuando se utilizan lotes inferiores al óptimo que cuando se emplean lotes superiores por lo que será más aconsejable sobrevalorar el tamaño de los lotes que infravalorarlos. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. – Análisis de sensibilidad del lote económico de pedido La curva de costes totales es muy plana en la región del mínimo, de forma que desviaciones del tamaño de lote óptimo tienen sólo un pequeño efecto sobre los costes. El modelo es también muy robusto frente a inexactitudes en la determinación de los costes de preparación, las tasas de inventario y la previsión del consumo anual. C(Q)/C(Q)* Q/Q* Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: Cálculo del intervalo económico del lote de pedido • Se trata de determinar el intervalo QI-QII del lote de pedido en el que el coste C(Q) no sobrepase un valor máximo establecido por la propia empresa Cm(Q). Modelos determinísticos con demanda constante 1. Modelos de suministro instantáneo sin rotura: Cálculo del intervalo económico del lote de pedido El coste de inventario de nuestro ejemplo para Q* = 400 rodamientos era de 2.000 euros por lote. Si la empresa no desea que este coste sobrepase los 2.100 euros, el intervalo económico del lote que obtendremos es: • Cm(Q) 1 Q* Q + C(Q*) 2 Q Q* 2100 1 400 Q + 2000 2 Q 400 QI 291 QII 548 • Es decir, el lote de compra deberá ser como mínimo de 291 rodamientos y como máximo de 548 rodamientos. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. Descuento por cantidad – • En muchas ocasiones la empresa puede conseguir diferentes descuentos a medida que aumenta el tamaño del pedido adquirido a su proveedor, por lo que su objetivo será el de calcular el lote óptimo de pedido en el intervalo de precio que le es ofrecido y que hace mínima la función de costes totales. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. Descuento por cantidad – • Supongamos que una empresa puede comprar un artículo a un precio unitario P1 si hace un pedido (Q) inferior a Q1 unidades; si compra una cantidad superior, el proveedor le ofrece un descuento de forma que la empresa podrá pagar un precio unitario inferior P2 haciendo pedidos superiores, es decir, entre Q1 y Q2 unidades; e incluso pagará un precio unitario P3, todavía inferior, si realiza pedidos superiores a Q3 unidades, es decir, Precio P1 Precio P2 Precio P3 si si si 0 < Q < Q1 Q1 Q < Q2 Q2 Q P1 > P2 > P3 Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. – Descuento por cantidad Las fórmulas anteriores pueden no conducir a una solución óptima dado que, al existir distintos precios, la función de costes deja de ser continua y se convierte en una función por tramos, lo que hace que las propiedades de la derivada dejen de ser validas en los puntos de discontinuidad de dicha función. Necesitamos de un procedimiento específico. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. – Descuento por cantidad. Procedimiento 1. Se calcula el lote económico para el precio más bajo, en este caso P3, es decir Q* – 2eD a P3 i Si Q* es una cantidad superior a Q2, entonces Q* es el lote económico – Si Q* es una cantidad inferior a Q2, el proveedor no va a vender a la empresa a un precio unitario P3, por lo que Q* no es el lote económico y deberemos calcular un nuevo tamaño de lote a un precio inmediatamente superior P2. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. – Descuento por cantidad. Procedimiento 2. Se calcula el nuevo tamaño de lote considerando un precio unitario P2, es decir, Q ** – 2eD a P2 i Si Q** es una cantidad superior tal que Q1 < Q** Q2 , entonces Q** es el lote económico – Si Q** es una cantidad inferior a Q1, el proveedor no va a vender a la empresa a un precio unitario P1, por lo que Q** no es el lote económico y deberemos calcular un nuevo tamaño de lote a un precio inmediatamente superior P1. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. – Descuento por cantidad. Procedimiento 3. De esta forma, se calcularán nuevos tamaños de lotes, cada vez con un precio inmediatamente superior, hasta que se obtenga uno cuya cantidad se sitúe en el intervalo exigido por el proveedor para poder contar con el descuento o el precio establecido para dicho intervalo. Posteriormente, se calcula el coste total en función del lote obtenido al correspondiente precio Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. – Descuento por cantidad. Procedimiento 4. ¿Puede mejorar la empresa esta situación, es decir, incurrir en unos menores costes, comprando lotes cuyas cantidades no se corresponden con el tamaño del lote óptimo pero a un precio inferior? Basta comparar los costes totales del lote óptimo obtenido, CT(Q***;P1), y los costes totales que resultan de comprar la mínima cantidad posible que exige adquirir el proveedor para un precio inmediatamente inferior, CT(Q1; P2): CT(Q * **; P1) = P1 D + e D Q *** (a P1 i) Q *** 2 CT(Q1; P2) = P2 D + e D Q1 (a P2 i) Q1 2 Si los costes totales del lote Q1 son inferiores a los costes totales del lote óptimo, la empresa comprará lotes de tamaño Q1. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. Descuento por cantidad. RESUMEN – • La empresa calculará el tamaño de lote a adquirir considerando el menor precio al que su proveedor le va a vender y, en el caso de que dicho tamaño no pertenezca al intervalo exigido por el proveedor para un precio dado, habrá de considerar sucesivos precios inmediatamente superiores, hasta encontrar una cantidad que pertenezca a un intervalo asociado a un determinado precio. • Posteriormente, deberá comparar los costes totales del lote económico calculado, con los costes totales de las mínimas cantidades que ha de adquirir a unos precios inferiores, eligiendo la opción que suponga menor coste total para la empresa. Ejemplo Supongamos que la empresa de montaje que utilizamos de ejemplo (D=2.000 rodamientos al año; coste unitario de almacenamiento=5 euros al año; coste de emisión de cada pedido = 200 euros) tiene la posibilidad de obtener un descuento de su proveedor de rodamientos de 10 euros en el precio unitario habitual (que es de 50 euros) siempre que los pedidos sean como mínimo de 500 rodamientos. En esta ocasión consideraremos un tipo de interés de mercado del 6%. Calcular el tamaño del lote a pedir. ----- Ejemplo Supongamos que la empresa de montaje que utilizamos de ejemplo (D=2.000 rodamientos al año; coste unitario de almacenamiento=5 euros al año; coste de emisión de cada pedido = 200 euros) tiene la posibilidad de obtener un descuento de su proveedor de rodamientos de 10 euros en el precio unitario habitual (que es de 50 euros) siempre que los pedidos sean como mínimo de 500 rodamientos. En esta ocasión consideraremos un tipo de interés de mercado del 6%. Calcular el tamaño del lote a pedir. ----Calcular el lote económico considerando el menor precio P1= 50 – 10 = 40: Q * (P1 40) = 2eD 2 200 2.000 = 329 rodamientos a P1 i 5 40 0,06 como es una cantidad inferior a 500 rodamientos el proveedor no va a vender a la empresa al precio de 40 euros por lo que se calcula un nuevo lote teniendo en cuenta el precio inmediatamente superior P2= 50 euros: Q * *(P2 50) = 2eD 2 200 2.000 = 316 rodamientos a P1 i 5 50 0,06 Ejemplo – Vamos a comparar los costes totales considerando este tamaño de lote con los costes totales de adquirir la mínima cantidad a un precio inferior: D Q ** (a P2 i) = Q ** 2 2.000 316 50 2.000 + 200 (5 50 0,06) = 102.529,82 euros 316 2 CT(Q * *; P2 50) = P2 D + e D Q (a P1 i) = Q 2 2.000 500 40 2.000 + 200 (5 40 0,06) = 82.350 euros 500 2 CT(Q 500; P1 40) = P1 D + e – Como el coste es menor, la empresa comprará lotes de 500 rodamientos consiguiendo así el descuento y por tanto pagando un precio unitario de 40 euros. Ejemplo 40 La empresa METALSA se dedica a la fabricación y venta de estructuras metálicas bajo pedido. Los datos de los que dispone sobre sus necesidades de materias primas son: 1. Hierro que compra a un proveedor alemán que le cobra un precio unitario de 1.000 euros por Tm. La empresa necesita anualmente 500.000 Tm. El coste de emitir la orden de pedido es de 100 euros. 2. Acero que adquiere a un proveedor japonés que le ofrece las siguientes condiciones de precio por tonelada: p = 1.000 si Q < 500 p´ = 980 si 500 < Q < 5000 p´´ = 900 si Q > 5000 La empresa necesita 250.000 toneladas de acero al año y el coste de emitir un pedido es de 150 euros. Si la suma del tipo de interés bancario y la tasa de tenencia de inventario es del 10%, determinar el volumen óptimo de pedido para estos dos productos. Ejemplo 40 1. Hierro que compra a un proveedor alemán que le cobra un precio unitario de 1.000 euros por Tm. La empresa necesita anualmente 500.000 Tm. El coste de emitir la orden de pedido es de 100 euros. Si la suma del tipo de interés bancario y la tasa de tenencia de inventario es del 10%, determinar el volumen óptimo de pedido. -----Suministro instantáneo sin rotura: 2eD Q* = = a Pi 2 100 500.000 = 1.000 toneladas 1000 0,10 Ejemplo 40 2. Acero que adquiere a un proveedor japonés que le ofrece las siguientes condiciones de precio por tonelada: p = 1.000 si Q < 500 p´ = 980 si 500 < Q < 5000 p´´ = 900 si Q > 5000 La empresa necesita 250.000 toneladas de acero al año y el coste de emitir un pedido es de 150 euros. Si la suma del tipo de interés bancario y la tasa de tenencia de inventario es del 10%, determinar el volumen óptimo de pedido. -----Suministro instantáneo sin rotura y además, la empresa paga un precio menor, cuanto mayor es el pedido que realiza en cada una de sus compras, luego tenemos un descuento por cantidad. Q(p´´)= 2eD 2 150 250.000 = 912,8 toneladas 5000 a Pi 900 0,10 Q (p´) = 2 150 250.000 = 874 toneladas como está entre 500 y 5000 ton, es el óptimo 980 0,10 Ejemplo 40 No obstante, hay que comprobar si el coste de gestión de inventarios que se tiene con este tamaño de lote es superior o inferior al que se tendría si se compraran lotes de 5.000 toneladas que es el mínimo tamaño que debemos adquirir para poder comprar a un precio más bajo de 900 euros. CT(Q, P) = P D + e D Q* (a Pi) Q* 2 250.000 874 C(Q 874;P 980) = [980 250.000] 150 (980 0,10) = 245.085.732,2 euros 874 2 250.000 5.000 C(Q 5000;P 900) = [900 250.000]+ 150 + (900 0,10) = 225.232.500 euros 5.000 2 Se comprueba que es más barato hacer pedidos en lotes de 5.000 toneladas, aunque este tamaño no es el lote óptimo, ya que el ahorro que se va a producir en el coste de compra y en el coste de emisión (a mayor volumen de compra, menor número de emisiones y por tanto menor coste) se compensa sobradamente con el aumento que va a tener lugar en el coste de almacén al comprar mayor volumen cada vez. Modelos determinísticos con demanda constante Modelos de suministro instantáneo sin rotura: 1. Descuento por pronto pago – • Una forma sencilla de incluir un descuento por pronto pago, δ, en la formulación del modelo del lote económico es considerarlo directamente como la diferencia entre el precio normal, p, y el precio más bajo por pago al contado, p´, es decir δ = p-p´, expresarlo en tanto por uno como δ = (p-p’)/p e incluirlo en la ecuación del lote económico o en la del periodo óptimo de revisión. Q*= 2eD a Pi(1 - ) R *= 2e a Pi(1 - )D Ejemplo • Supongamos que el proveedor de rodamientos de la empresa de montaje de motores (D=2.000 rodamientos al año; coste unitario de almacenamiento=5 euros al año; coste de emisión de cada pedido = 200 euros) le hiciese un descuento del 5% ( = 0.05) por pronto pago. Calcular este caso el tamaño óptimo del lote de pedido y el periodo óptimo de revisión para el sistema (r,Q) y el (R,S) Ejemplo • Supongamos que el proveedor de rodamientos de la empresa de montaje de motores (D=2.000 rodamientos al año; coste unitario de almacenamiento=5 euros al año; coste de emisión de cada pedido = 200 euros) le hiciese un descuento del 5% ( = 0.05) por pronto pago. ----------------1. Tamaño óptimo del lote de pedido Q*= 2eD a Pi(1 - ) 2 200 2.000 410 rodamientos 5 (1 0,05) 2. Periodo óptimo de revisión R* = 2e 2 200 0.205años a Pi(1 - )D 5 (1 - 0,05) 2.000 que son ligeramente superiores a los que se obtendrían sin descuento, es deci,r el descuento permite un mayor margen de maniobra en el sentido de que lotes mayores o períodos de revisión mayores siguen siendo óptimos cuando sin la existencia del descuento estos valores de Q* y R* no lo serían. Modelos de suministro instantáneo con rotura o retropedidos Modelos determinísticos con demanda constante Modelos de suministro instantáneo con rotura 2. – Se parte de una situación como la representada en la figura, en la que se considera, al igual que en el modelo de lote económico de pedido, que tanto la demanda como los tiempos de suministros y los costes unitarios son conocidos con certeza, y que el consumo de artículos es uniforme. Sin embargo, en este caso se admite posibilidad de ruptura de stock. Modelos determinísticos con demanda constante Modelos de suministro instantáneo con rotura 2. – Este modelo añade pues al modelo básico del lote económico de pedido la posibilidad de que exista carencia en un producto, en cuyo caso se ofrece eventualmente al cliente un descuento. – Según este modelo se lanzan pedidos de tamaño Q que se agotan al cabo de un tiempo , menor al tiempo cíclico de pedido T. Modelos determinísticos con demanda constante Modelos de suministro instantáneo con rotura 2. – Por lo tanto, durante un tiempo T- se produce una rotura de inventario que hace que las órdenes de venta recibidas en ese periodo tengan que ser satisfechas con retraso en el momento en que se disponga otra vez de existencias. Modelos determinísticos con demanda constante Modelos de suministro instantáneo con rotura 2. – Cuando se recibe el lote Q al comienzo del periodo se satisface la demanda insatisfecha del periodo anterior (Q – S), por lo que al principio del periodo la cantidad almacenada no será Q, sino S. – Por ello, se determinará, además del valor del lote económico de pedido (Q*), el valor de ruptura óptima, que vendrá dado por la diferencia entre el lote óptimo (Q*) y la cantidad almacenada óptima (S*). Modelos determinísticos con demanda constante Modelos de suministro instantáneo con rotura : 2. En este modelo, la función de costes totales se amplía respecto a la función de costes del modelo de suministro instantáneo sin rotura, al considerar ahora también el coste que supondrá para la empresa el hecho de no servir a tiempo el producto a sus clientes y esto, para todos los ciclos que tengan lugar a lo largo del año. – CT= Coste adquisición + Coste emisión + Coste almacenamiento + Coste rotura • Los costes de adquisición y de emisión coinciden con los presentados anteriormente: – Coste de adquisición=P*D – Coste de emisión= e * D/Q Modelos determinísticos con demanda constante 3. Modelos de suministro instantáneo con rotura • El coste total de almacenamiento será igual al coste unitario del mismo “a+P*i” multiplicado por el inventario medio existente en almacén a lo largo del año y por el tiempo durante el cual existen inventarios y, todo esto, para cada uno de los ciclos que tengan lugar durante un año. CTmto= Coste unitario mto * Inv. Medio * t en inv./ciclo * nº ciclos/año Modelos determinísticos con demanda constante 3. Modelos de suministro instantáneo con rotura • En cada ciclo, el inventario varía entre 0 y S unidades; puesto que el descenso es lineal, la media del inventario medio será S/2 unidades. • En lo que se refiere al tiempo de existencia del inventario en almacén por ciclo, se puede calcular relacionándolo con el consumo total que tiene lugar a lo largo del año. 1 año____D ________S =S/D Modelos determinísticos con demanda constante 3. Modelos de suministro instantáneo con rotura • El coste de mantenimiento o almacenamiento será entonces: S S D S2 Coste de mantenimie nto (a P i) (a P i) 2 D Q 2Q Coste unitario Inv. Medio t en inv./ciclo nº ciclos Modelos determinísticos con demanda constante 2. Modelos de suministro instantáneo con rotura • Coste de rotura: Por servir con retraso, supondremos que la empresa ofrece un descuento unitario según una tasa de descuento iD, es decir, el coste de descuento por artículo será =iD*P, siendo P el precio normal. • Para cada ciclo, el coste de rotura será igual al coste unitario por el nivel de rotura medio que se produzca durante el tiempo en que se produce el retraso de entrega a los clientes. CT rotura= Coste unitario * Rotura Media * t en rotura/ciclo * nº ciclos Modelos determinísticos con demanda constante 3. Modelos de suministro instantáneo con rotura • En cada ciclo, el inventario varía entre 0 y S unidades; puesto que el descenso es lineal, la rotura media será (Q-S)/2 unidades. • En lo que se refiere al tiempo rotura por ciclo, se puede calcular relacionándolo con el consumo total que tiene lugar a lo largo del año. 1 año____D T-________Q-S T- =(Q-S)/D Modelos determinísticos con demanda constante 3. Modelos de suministro instantáneo con rotura • El coste de rotura será entonces: (Q S ) 2 QS QS D Coste de rotura 2 D Q 2Q Coste unitario Rotura Media t en rotura/ciclo nº ciclos Modelos determinísticos con demanda constante 3. Modelos de suministro instantáneo con rotura • Con lo que, finalmente, el coste total de este modelo es D S2 (Q S ) 2 CT (Q) P D e (a P i) Q 2Q 2Q • El objetivo es el de minimizar la función de costes para obtener el volumen económico de pedido así como el nivel de rotura que tiene lugar. Derivando la expresión anterior obtenemos: Q*= • 2eD (a P i) + (a P i) El nivel óptimo de rotura es Q*-S* S* = 2eD (a P i) (a P i) + FORMULARIO Modelos de suministro instantáneo sin rotura y sistema de revisión continua 2eD ; a Pi Q* = CT(Q*) = P D + e D Q* (a Pi) ; Q* 2 (t < T*) r* = t x d; • D ; Q* T* nº dias laborales N* r* = (t – T*) x d + Q Modelos de suministro instantáneo sin rotura y sistema de revisión periódica R*= • (t > T*) N* 2e ; (a Pi) D Q* = D R *; S * = Q * D t D (R * +t) Modelos de suministro instantáneo con rotura Q* = 2eD (a P i) + ; (a P i) S* = 2eD ; (a P i) (a P i) + D S2 (Q S ) 2 CT (Q) P D e (a P i) ; Q 2Q 2Q N* D ; Q* T* 360 ; N* S ; D T QS D Ejemplo • Supongamos que el proveedor de rodamientos de la empresa de montaje de motores (D=2.000 rodamientos al año; coste unitario de almacenamiento=5 euros al año; coste de emisión de cada pedido = 200 euros) llega a un acuerdo con su cliente según el cual por servir el pedido con un retraso inferior a dos semanas, le hará un descuento de 10 euros por motor () Calcular este caso el tamaño óptimo del lote de pedido, el nivel de rotura óptimo, la frecuencia de los pedidos, la duración de las carencias y el coste anual de esta solución. Ejemplo • Supongamos que el proveedor de rodamientos de la empresa de montaje de motores (D=2.000 rodamientos al año; coste unitario de almacenamiento=5 euros al año; coste de emisión de cada pedido = 200 euros) llega a un acuerdo con su cliente según el cual por servir el pedido con un retraso inferior a dos semanas, le hará un descuento de 10 euros por motor () Calcular este caso el tamaño óptimo del lote de pedido, el nivel de rotura óptimo, la frecuencia de los pedidos, la duración de las carencias y el coste anual de esta solución. --------------1. Tamaño óptimo del lote de pedido Q* = 2eD (a P i) + 2 200 2.000 5 + 10 = = 90 rodamientos (a P i) 5 10 2. Nivel de rotura óptimo S* = 2eD 2 200 2.000 10 = = 326 rodamientos (a P i) (a P i) + 5 5 + 10 Nivel de rotura óptimo = Q* - S* = 490 – 326 = 164 rodamientos Ejemplo • Supongamos que el proveedor de rodamientos de la empresa de montaje de motores (D=2.000 rodamientos al año; coste unitario de almacenamiento=5 euros al año; coste de emisión de cada pedido = 200 euros) llega a un acuerdo con su cliente según el cual por servir el pedido con un retraso inferior a dos semanas, le hará un descuento de 10 euros por motor () Calcular este caso el tamaño óptimo del lote de pedido, el nivel de rotura óptimo, la frecuencia de los pedidos, la duración de las carencias y el coste anual de esta solución. --------------3. Frecuencia de los pedidos N* = D/Q*= 2000/490 ≈ 4 ; 4. Duración de las carencias T 5. T= 250/N* ≈ 62 días QS (490 326) / 2000 0.082años 20.5 ˜ 21 dias laborables D Coste CT(Q) P D e 4 2000 200 D S2 (Q S) 2 (a P i) Q 2Q 2Q 2000 (326) 2 (164) 2 5 10 9633 euros 490 2 490 2 490 Ejemplo • Interpretación de los resultados: – Con el modelo del lote económico de pedido se había obtenido un lote económico de 400 rodamientos siendo su coste de 10.000 euros. – Quizás pueda resultar extraño observar que el coste sea menor cuando el tamaño de lote que se pide (Q* = 490) nos ha salido mayor que con el modelo básico (Q* = 400), pero hay que tener en cuenta que la empresa acepta una rotura-carencia (Q* - S*) de 164 rodamientos con lo que en realidad los costes de almacenamiento corresponderían a un nivel medio de inventarios de (490-164)/2 = 163 rodamientos, mientras que en el modelo básico el nivel medio de inventarios era de 400/2 = 200 rodamientos. – El menor coste de almacenamiento que se tendrá como consecuencia del menor nivel medio de inventario es el que reduce los costes de gestión, a pesar del incremento que cargan en los mismos los descuentos que hay que efectuar como consecuencia de la carencia temporal de inventario. Ejemplo 39 • La empresa mayorista DUERMEVELA compra partidas de muelles para atender la demanda de 300.000 muelles al año de sus clientes fabricantes de colchones. La demanda se produce a un ritmo aproximadamente constante. El precio unitario de compra de los muelles es de 30 euros, además de unos gastos fijos de pedido y puesta a domicilio estimados en 200 euros por pedido. La empresa estima, por otra parte, en un 10% sobre el coste del producto, las cargas por almacenaje de una unidad durante un año y en 10 euros los perjuicios que le ocasionaría al año cada unidad deficitaria de stock. El año laboral de la empresa es de 250 días. a) ¿Cuál es el lote óptimo del pedido, la rotura óptima y cada cuánto tiempo deben repetirse los pedidos?. b) Si, suponiendo que son exactas las demás estimaciones, ante la duda del valor del "coste de rotura" el mayorista siguiera la política de ordenar simplemente pedidos de 6.000 muelles y no permitir rotura de stocks, mientras que continuásemos estimando en 10 euros dicho "coste de rotura" (por unidad y año) y calculando en consecuencia los lotes de pedido, ¿qué tanto por ciento de error de estimación de dicho coste unitario deberíamos haber cometido para que nuestra política de stocks no fuera mejor que la del mayorista, es decir, para que los gastos totales en que incurramos no fuesen menores que los del mayorista?. Ejemplo 39 • La empresa mayorista DUERMEVELA compra partidas de muelles para atender la demanda de 300.000 muelles al año de sus clientes fabricantes de colchones. La demanda se produce a un ritmo aproximadamente constante. El precio unitario de compra de los muelles es de 30 euros, además de unos gastos fijos de pedido y puesta a domicilio estimados en 200 euros por pedido. La empresa estima, por otra parte, en un 10% sobre el coste del producto, las cargas por almacenaje de una unidad durante un año y en 10 euros los perjuicios que le ocasionaría al año cada unidad deficitaria de stock. El año laboral de la empresa es de 250 días. a) ¿Cuál es el lote óptimo del pedido, la rotura óptima y cada cuánto tiempo deben repetirse los pedidos?. ----------------– – Lote óptimo Q* = 2eD (a Pi) + = a Pi 2 200 300.000 3 + 10 = 7.211 muelles 30 0,10 10 S* = 2eD = a Pi (a Pi) + 2 200 300.000 10 = 5.547 muelles 30 0,10 3 + 10 Rotura óptima Rotura óptima= Q*-S*= 7211-5547= 1664 muelles - Tiempo de pedido N* D 300.000 41,6 pedidos˜ 42 pedidos; Q* 7.211 T* 250 250 6 días laborables N * 41,6 Ejemplo 39 • La empresa mayorista DUERMEVELA compra partidas de muelles para atender la demanda de 300.000 muelles al año de sus clientes fabricantes de colchones. La demanda se produce a un ritmo aproximadamente constante. El precio unitario de compra de los muelles es de 30 euros, además de unos gastos fijos de pedido y puesta a domicilio estimados en 200 euros por pedido. La empresa estima, por otra parte, en un 10% sobre el coste del producto, las cargas por almacenaje de una unidad durante un año y en 10 euros los perjuicios que le ocasionaría al año cada unidad deficitaria de stock. El año laboral de la empresa es de 250 días. ----------------b. Como queremos comparar dos situaciones y no varían ni el precio ni la demanda, podemos utilizar, solamente, el valor de los costes incrementales. – Si el mayorista no considera rotura y pide lote de 6.000 muelles, el coste que tendrá es: CI(Q) = e – D Q 300.000 6.000 (a Pi) = 200 3 = 19.000 Q 2 6.000 2 Considerando rotura de stocks, el coste total anual que estamos teniendo en realidad es: CI(Q*) = e D (S*) 2 (Q * S*) 2 (a Pi) Q* 2Q * 2Q * CI(Q*) 200 300.000 (5.547) 2 (7.211 5.547) 2 3 10 = 16.641 7.211 2 7.211 2 7.211 Ejemplo 39 • La empresa mayorista DUERMEVELA compra partidas de muelles para atender la demanda de 300.000 muelles al año de sus clientes fabricantes de colchones. La demanda se produce a un ritmo aproximadamente constante. El precio unitario de compra de los muelles es de 30 euros, además de unos gastos fijos de pedido y puesta a domicilio estimados en 200 euros por pedido. La empresa estima, por otra parte, en un 10% sobre el coste del producto, las cargas por almacenaje de una unidad durante un año y en 10 euros los perjuicios que le ocasionaría al año cada unidad deficitaria de stock. El año laboral de la empresa es de 250 días. ----------------b. Es decir, considerando rotura de stocks con un coste de 10 €/unidad y año, tenemos un menor gasto que si no consideramos rotura de stocks igual a 19.000 – 16.641 = 2.359 €. Para que nuestra política siga siendo mejor, el valor que puede alcanzar será: 19.000 200 300.000 (5.547)2 (7.211 5.547) 2 3 22.28eur 7.211 2 7.211 2 7.211 Es decir, el coste de rotura podría aumentar de 10 a 22,28 euros sin que por ello los costes fuesen superiores a los de no admitir rotura de stock. Modelos de suministro gradual sin rotura Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. – El modelo de suministro gradual sin rotura, llamado también de reabastecimiento uniforme, suele utilizarse en empresas transformadoras y que producen en lotes o series de forma que, las materias primas se van incorporando al proceso productivo a un ritmo constante, a la vez que se van obteniendo productos terminados y que llegan al almacén también a un ritmo constante. Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. – En este caso, el ritmo de producción, y que vamos a denominar con la letra L, es mayor al de la demanda (D). – Nunca llega a estar la cantidad total de pedido (Q) ya que al ser el consumo gradual, a la vez que se van fabricando artículos se van consumiendo, por lo que el inventario crece a una tasa de (L-D) unidades – Con el fin de no acumular productos terminados de manera indefinida, la empresa irá alternando la fabricación de series o lotes de diferentes tipos de productos (por ejemplo, la empresa Balay alternará la producción de lavadoras, lavavajillas, microondas, frigoríficos, etc). Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. – Así, durante un tiempo, t1, la empresa fabrica un lote de producto hasta alcanzar el stock máximo . – A partir de este momento, se inicia la fabricación de un nuevo lote pero de otro producto, con lo que el stock del primero se irá reduciendo paulatinamente hasta desaparecer debido a que la demanda sigue siendo constante a lo largo del tiempo. – Cada vez que se agotan las existencias de un determinado tipo de producto se iniciará una nueva serie del mismo, con el fin de no incurrir en una rotura de stocks. Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. – Respecto a los diferentes intervalos de tiempo que aparecen en este modelo: t1 se refiere al tiempo durante el cual se está fabricando un lote; t2 (t2=T* - t1) es el tiempo durante el cual la empresa tan solo vende las existencias acumuladas del lote fabricado; y T* es el tiempo que media entre dos órdenes de fabricación siendo T*= nº días laborables/N*=Q*/D Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. – Siendo t1 es el tiempo durante el cual se fabrica una serie, el nivel de inventario máximo alcanzado será (L – D)*t1. – A partir del ritmo de la producción y de la demanda podemos calcular el valor de t1, es decir, si en un año la empresa fabrica L unidades, el lote Q lo fabricará en t1 año, 1 año L t1=Q/L t1 – Q Por lo tanto los inventarios máximo y medio serán: Imax (L D) Q D 1 Q L L D Q Im edio 1 L 2 Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. – Gráficamente: Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. El objetivo de la empresa será calcular el volumen óptimo de – producción Q* (el número de unidades que componen cada serie o lote que fabrica )que hace mínimos los costes totales de fabricación. En este modelo, el concepto de los costes unitarios varía, si bien la – nomenclatura que vamos a utilizar es la misma que hemos empleado hasta ahora. Es decir, • el precio, P, será ahora el coste unitario de fabricación; • el coste de emisión, e, será el coste unitario de preparación de las máquinas cada vez que se inicie la producción de un nuevo lote; • y en lugar de lote económico de compra, Q*, haremos referencia al lote económico u óptimo de fabricación que compone la serie de un determinado tipo de producto. Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. La función de costes es: – CT(Q) = P D + e D (a P i) Inventario medio Q siendo, • PD el coste total anual de la producción demandada; • e(D/Q), el coste total anual de preparación de las máquinas para iniciar una nueva serie, • (D/Q) el número de veces que se lanza dicha serie; • (a+Pi) x Inv. medio es el coste total de almacén de la serie. Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. – El lote económico u óptimo de producción se obtiene, al igual que en los anteriores modelos, derivando la función de costes totales respecto de Q: Q* = – 2eD D (a P i) 1 - L El número de veces que se lanza una orden de fabricación o número de lotes fabricados a lo largo del año será: N* D Q* Modelos determinísticos con demanda constante Modelos de suministro gradual sin rotura 3. – La orden de pedido o de fabricación habrá que lanzarla antes de que se agote el stock, a menos que el suministro o la preparación sean inmediatos. – Si llamamos t al tiempo de preparación de las máquinas para iniciar la producción de un nuevo lote, el punto de pedido r vendrá dado por r = td, donde d es el consumo medio del artículo en la misma unidad de tiempo con la que midamos t. FORMULARIO Modelos de suministro instantáneo sin rotura y sistema de revisión continua Q* = 2eD ; a Pi CT(Q*) = P D + e D Q* (a Pi) ; Q* 2 (t < T*) r* = t x d; • • D ; Q* T* nº dias laborales N* r* = (t – T*) x d + Q Modelos de suministro instantáneo sin rotura y sistema de revisión periódica R*= • (t > T*) N* 2e ; (a Pi) D Q* = D R *; S * = Q * D t D (R * +t) Modelos de suministro instantáneo con rotura Q* = 2eD (a P i) + ; (a P i) S* = 2eD ; (a P i) (a P i) + D S2 (Q S ) 2 CT (Q) P D e (a P i) ; Q 2Q 2Q N* D ; Q* T* 360 ; N* S ; D T QS D Modelo de suministro gradual sin rotura Q* = 2eD ; D (a P i) 1 - L Imax (L D) Q D 1 Q; L L CT(Q) = P D + e D Q Im edio 1 L 2 D DQ (a P i)1 - Q L 2 Ejemplo • Supongamos que nuestra empresa fabricase ella misma los rodamientos que precisa para los motores que monta. Consideremos que la empresa pudiese fabricar 12 rodamientos al día, de modo que que, si fabricase durante los 250 días laborables del año, la producción anual L sería de 3.000 rodamientos. Ahora el precio será el coste unitario de producción, es decir 4 euros; el coste de lanzamiento será ahora el coste de preparación de cada lote de fabricación de rodamientos, o sea de 200 euros; y el coste unitario de almacenamiento sigue siendo de 5 euros. La demanda anual D es de 2.000 rodamientos al año. • Calcular el lote económico de producción, el número de lotes al año, el inventario máximo y los costes asociados. Ejemplo • Supongamos que nuestra empresa fabricase ella misma los rodamientos que precisa para los motores que monta. Consideremos que la empresa pudiese fabricar 12 rodamientos al día, y que si fabricase durante los 250 días laborables del año, la producción anual L sería de 3.000 rodamientos. Ahora el precio será el coste unitario de producción, es decir 4 euros; el coste de lanzamiento será ahora el coste de preparación de cada lote de fabricación de rodamientos, o sea de 200 euros; y el coste unitario de almacenamiento sigue siendo de 5 euros. La demanda anual D es de 2.000 rodamientos al año. --------------1. Lote económico de producción Q* = 2. 2eD 2 200 2.000 = = 693 rodamientos D 2.000 (a P i) 1 - 5 1 L 3.000 El número de lotes N* D 2000 2,88 3 lotes al año Q * 693 Ejemplo • Supongamos que nuestra empresa fabricase ella misma los rodamientos que precisa para los motores que monta. Consideremos que la empresa pudiese fabricar 12 rodamientos al día, y que si fabricase durante los 250 días laborables del año, la producción anual L sería de 3.000 rodamientos. Ahora el precio será el coste unitario de producción, es decir 4 euros; el coste de lanzamiento será ahora el coste de preparación de cada lote de fabricación de rodamientos, o sea de 200 euros; y el coste unitario de almacenamiento sigue siendo de 5 euros. La demanda anual D es de 2.000 rodamientos al año. --------------3. Inventario máximo Im ax L D 4. Q 231 rodamientos L Costes totales CT(Q) = P D + e D 2000 2000 693 DQ (a P i)1 - 4 2000 200 51 9.154eur Q 693 L 2 3000 2 Ejemplo • Interpretación de los resultados Realizaremos unos cálculos adicionales: t1 • • • • Q 693 250 57,75 58 días L 3000 T* 250 250 86 días N * 2,88 t2 28 días La empresa va a fabricar lotes de 693 rodamientos de forma que, cada lote tardará en fabricarse 58 días laborables. Al cabo de estos 58 días se habrá alcanzado un nivel de inventarios de 231 rodamientos. En este momento, la empresa dejará de fabricar rodamientos, pasando a fabricar una serie de otro producto, y pasados 28 días los fabricará de nuevo. De esta forma, el tiempo cíclico de fabricación o tiempo entre los inicios de dos series de fabricación consecutivas será 86 días laborables. Si el tiempo de preparación t del lote de fabricación fuese de 3 días, el punto de pedido sería r = td = 38 = 24 rodamientos, siendo d el consumo diario de rodamientos (d = D/250 = 2.000/250 = 8). Ejemplo 41 • La empresa MUSICALIA fabrica guitarras y comercializa además todos los años 1.800 cuerdas de guitarra. En la actualidad se plantea la decisión de fabricarlas ella misma. En ese caso incurriría en un coste de lanzamiento de la serie de fabricación de 100 euros. La capacidad productiva instalada sería de 2.500 unidades anuales y el coste unitario de fabricación dependería del tamaño del lote: p = 10 euros 0 < Q < 500 p´= 8 euros Q > 500 Actualmente, las cuerdas se compran a un precio de 12 euros, y los costes de gestión y de transporte de un pedido ascienden a 80 euros. Conociendo que el coste de tenencia es de un 20% sobre el precio del producto puesto en almacén, y el coste de capital es del 10%: a) Determinar el lote óptimo de compra b) Determinar el lote óptimo de fabricación c) ¿Debe fabricar o debe seguir comprando las cuerdas? d) Calcular el tiempo entre el lanzamiento de dos ordenes consecutivas si la empresa trabaja 300 días al año. e) Calcular el punto de pedido para un tiempo de aprovisionamiento de 10 días. f) Si una vez tomada la decisión del apartado c aumentasen los costes de lanzamiento de la orden de fabricación hasta el doble de los previstos y los costes unitarios de fabricación hasta 9 euros, ¿cuánto podría perder la empresa si mantuviera su decisión? Ejemplo 41 • La empresa MUSICALIA fabrica guitarras y comercializa además todos los años 1.800 cuerdas de guitarra. En la actualidad se plantea la decisión de fabricarlas ella misma. En ese caso incurriría en un coste de lanzamiento de la serie de fabricación de 100 euros. La capacidad productiva instalada sería de 2.500 unidades anuales y el coste unitario de fabricación dependería del tamaño del lote: p = 10 euros 0 < Q < 500 p´= 8 euros Q > 500 Actualmente, las cuerdas se compran a un precio de 12 euros, y los costes de gestión y de transporte de un pedido ascienden a 80 euros. Conociendo que el coste de tenencia es de un 20% sobre el precio del producto puesto en almacén, y el coste de capital es del 10%: a) Determinar el lote óptimo de compra -------------a) Suministro instantáneo sin rotura Con Q* = 2eD 2 80 1800 283cuerdas a Pi 3.6 D= 1800 uds e= 80 a + Pi= 20%*12 + 12*10%=3.6 Ejemplo 41 • La empresa MUSICALIA fabrica guitarras y comercializa además todos los años 1.800 cuerdas de guitarra. En la actualidad se plantea la decisión de fabricarlas ella misma. En ese caso incurriría en un coste de lanzamiento de la serie de fabricación de 100 euros. La capacidad productiva instalada sería de 2.500 unidades anuales y el coste unitario de fabricación dependería del tamaño del lote: p = 10 euros 0 < Q < 500 p´= 8 euros Q > 500 Actualmente, las cuerdas se compran a un precio de 12 euros, y los costes de gestión y de transporte de un pedido ascienden a 80 euros. Conociendo que el coste de tenencia es de un 20% sobre el precio del producto puesto en almacén, y el coste de capital es del 10%: b) Determinar el lote óptimo de fabricación -------------b) Suministro gradual sin rotura y descuento por cantidad Q( p 8) 2eD 2 100 1.800 = 731 cuerdas 500 óptimo D 1.800 (a Pi)1 (0,3 8)1 L 2.500 Con D= 1800 uds L= 2500 uds e= 100 a + Pi= 20%*8 + 8*10% Ejemplo 41 • La empresa MUSICALIA fabrica guitarras y comercializa además todos los años 1.800 cuerdas de guitarra. En la actualidad se plantea la decisión de fabricarlas ella misma. En ese caso incurriría en un coste de lanzamiento de la serie de fabricación de 100 euros. La capacidad productiva instalada sería de 2.500 unidades anuales y el coste unitario de fabricación dependería del tamaño del lote: p = 10 euros 0 < Q < 500 p´= 8 euros Q > 500 Actualmente, las cuerdas se compran a un precio de 12 euros, y los costes de gestión y de transporte de un pedido ascienden a 80 euros. Conociendo que el coste de tenencia es de un 20% sobre el precio del producto puesto en almacén, y el coste de capital es del 10%: c) ¿Debe fabricar o debe seguir comprando las cuerdas? ----------------c) Comparamos los costes de gestión de inventarios con compra y con fabricación El coste actual de compra es: CT = P D + e D Q* 283 1.800 (a Pi) [12 1.800] + 80 + (0,3 12) = 22.618,23 euros Q* 2 283 2 El coste de fabricación sería: CT = P D + e D Q* D 1.800 731 1.800 (a Pi) + (0,3 8) 1 1 [8 1.800]+ 100 = 14.891,85 Q* 2 L 731 2 2.500 En consecuencia, lo más económico es fabricar las cuerdas. Ejemplo 41 • La empresa MUSICALIA fabrica guitarras y comercializa además todos los años 1.800 cuerdas de guitarra. En la actualidad se plantea la decisión de fabricarlas ella misma. En ese caso incurriría en un coste de lanzamiento de la serie de fabricación de 100 euros. La capacidad productiva instalada sería de 2.500 unidades anuales y el coste unitario de fabricación dependería del tamaño del lote: p = 10 euros 0 < Q < 500 p´= 8 euros Q > 500 Actualmente, las cuerdas se compran a un precio de 12 euros, y los costes de gestión y de transporte de un pedido ascienden a 80 euros. Conociendo que el coste de tenencia es de un 20% sobre el precio del producto puesto en almacén, y el coste de capital es del 10%: d) Calcular el tiempo entre el lanzamiento de dos ordenes consecutivas si la empresa trabaja 300 días al año. --------------d) Tiempo entre lanzamientos si la empresa trabaja 300 días al año: N* D 1.800 2,46 pedidos Q* 731 T* 300 300 121,8 días N * 2,46 Ejemplo 41 • La empresa MUSICALIA fabrica guitarras y comercializa además todos los años 1.800 cuerdas de guitarra. En la actualidad se plantea la decisión de fabricarlas ella misma. En ese caso incurriría en un coste de lanzamiento de la serie de fabricación de 100 euros. La capacidad productiva instalada sería de 2.500 unidades anuales y el coste unitario de fabricación dependería del tamaño del lote: p = 10 euros 0 < Q < 500 p´= 8 euros Q > 500 Actualmente, las cuerdas se compran a un precio de 12 euros, y los costes de gestión y de transporte de un pedido ascienden a 80 euros. Conociendo que el coste de tenencia es de un 20% sobre el precio del producto puesto en almacén, y el coste de capital es del 10%: e) Calcular el punto de pedido para un tiempo de aprovisionamiento de 10 días. -----------e) Punto de aprovisionamiento – La demanda diaria de cuerdas es d = D/300=1.800/300 = 6 cuerdas. – El punto de pedido será entonces r = d x t = 6 x 10 = 60 cuerdas. Ejemplo 41 • La empresa MUSICALIA fabrica guitarras y comercializa además todos los años 1.800 cuerdas de guitarra. En la actualidad se plantea la decisión de fabricarlas ella misma. En ese caso incurriría en un coste de lanzamiento de la serie de fabricación de 100 euros. La capacidad productiva instalada sería de 2.500 unidades anuales y el coste unitario de fabricación dependería del tamaño del lote: p = 10 euros 0 < Q < 500 p´= 8 euros Q > 500 Actualmente, las cuerdas se compran a un precio de 12 euros, y los costes de gestión y de transporte de un pedido ascienden a 80 euros. Conociendo que el coste de tenencia es de un 20% sobre el precio del producto puesto en almacén, y el coste de capital es del 10%: f) Si una vez tomada la decisión del apartado c aumentasen los costes de lanzamiento de la orden de fabricación hasta el doble de los previstos y los costes unitarios de fabricación hasta 9 euros, ¿cuánto podría perder la empresa si mantuviera su decisión? ---------------- f) Nuevos datos: Decisión del apartado c: fabricar Q=731 cuerdas; nuevo coste de emisión: e=2100=200€; nuevo precio: P=9€ El coste de gestión de inventarios sería ahora: 1.800 731 1.800 C(731) = [9 1.800] + 200 (0,3 9) 1 = 16.968,79 euros 731 2 2.500 No perdería nada, pues seguiría costándole menos fabricar las cuerdas (16.968,79 €) que comprarlas (22.618,23 €). Lo que sucede es que los costes habrían aumentado en 2.076.94 € (16.968,79 €-14.891,85 €) Ejemplo 44 • La Agencia “Misión Imposible S.A.” utiliza 10.000 encriptógrafos cósmicos al año con un consumo constante y continuo. Hasta ahora compraba estos productos a la empresa Talleres T. Cruise a un precio de 110 euros cada uno, ocasionándole cada pedido un coste de 729 euros. La Sra. Kidman, Directora de “Misión Imposible”, está estudiando la viabilidad de fabricarlos en una nave espacial infrautilizada y ha estimado que se podrían fabricar hasta un total de 100.000 unidades al año. Ha calculado también que el coste de puesta a punto de las instalaciones para cada lote de producción sería de 144 euros, y que el coste de fabricar una unidad de producto sería de 100 euros si los lotes son inferiores a 800 unidades, y de 90 euros si fuesen mayores o iguales de 800 unidades. La Agencia “Misión Imposible” aplica actualmente una tasa de interés del 10% anual para su coste de almacenamiento y trabaja 250 días al año. Se pide: a) Determinar el lote óptimo de fabricación b) Razonar si es más ventajoso para Misión Imposible seguir comprando los encriptógrafos o fabricarlos. c) En la opción de fabricación, ¿cuántos días deben dedicarse a fabricar encriptógrafos y cada cuanto tiempo habrá que fabricar un nuevo lote?. ---------------- Ejemplo 44 • La Agencia “Misión Imposible S.A.” utiliza 10.000 encriptógrafos cósmicos al año con un consumo constante y continuo. Hasta ahora compraba estos productos a la empresa Talleres T. Cruise a un precio de 110 euros cada uno, ocasionándole cada pedido un coste de 729 euros. La Sra. Kidman, Directora de “Misión Imposible”, está estudiando la viabilidad de fabricarlos en una nave espacial infrautilizada y ha estimado que se podrían fabricar hasta un total de 100.000 unidades al año. Ha calculado también que el coste de puesta a punto de las instalaciones para cada lote de producción sería de 144 euros, y que el coste de fabricar una unidad de producto sería de 100 euros si los lotes son inferiores a 800 unidades, y de 90 euros si fuesen mayores o iguales de 800 unidades. La Agencia “Misión Imposible” aplica actualmente una tasa de interés del 10% anual para su coste de almacenamiento y trabaja 250 días al año. Se pide: a) Determinar el lote óptimo de fabricación ---------------- a) Lote óptimo de fabricación suministro gradual sin rotura y descuento por cantidad Q * ( p 90) Q * ( p 100) 2eD 2 144 10.000 596 uds 800 no óptimo D 10.000 (a Pi)1 - (0,1 90) 1 L 100.000 2eD 2 144 10.000 566 uds óptimo D 10.000 (a Pi)1 - (0,1100) 1 L 100.000 Ejemplo 44 • La Agencia “Misión Imposible S.A.” utiliza 10.000 encriptógrafos cósmicos al año con un consumo constante y continuo. Hasta ahora compraba estos productos a la empresa Talleres T. Cruise a un precio de 110 euros cada uno, ocasionándole cada pedido un coste de 729 euros. La Sra. Kidman, Directora de “Misión Imposible”, está estudiando la viabilidad de fabricarlos en una nave espacial infrautilizada y ha estimado que se podrían fabricar hasta un total de 100.000 unidades al año. Ha calculado también que el coste de puesta a punto de las instalaciones para cada lote de producción sería de 144 euros, y que el coste de fabricar una unidad de producto sería de 100 euros si los lotes son inferiores a 800 unidades, y de 90 euros si fuesen mayores o iguales de 800 unidades. La Agencia “Misión Imposible” aplica actualmente una tasa de interés del 10% anual para su coste de almacenamiento y trabaja 250 días al año. Se pide: a) Determinar el lote óptimo de fabricación ---------------- a) Comprobamos si nos resulta más económico fabricar lotes superiores a inferior precio: CT(Q*;P*) P D + e D Q* D (a Pi) 1 Q* 2 L 10.000 566 10.000 (0,10 100) 1 1.005.091,2 566 2 100.000 10.000 800 10.000 CT(Q 800; P 90) 90 10.000 144 (0,10 90) 1 905.040 800 2 100.000 CT(Q 566; P 100) 100 10.000 144 Será más económico producir lotes de 800 unidades a un coste de 90 euros/unidad Ejemplo 44 • La Agencia “Misión Imposible S.A.” utiliza 10.000 encriptógrafos cósmicos al año con un consumo constante y continuo. Hasta ahora compraba estos productos a la empresa Talleres T. Cruise a un precio de 110 euros cada uno, ocasionándole cada pedido un coste de 729 euros. La Sra. Kidman, Directora de “Misión Imposible”, está estudiando la viabilidad de fabricarlos en una nave espacial infrautilizada y ha estimado que se podrían fabricar hasta un total de 100.000 unidades al año. Ha calculado también que el coste de puesta a punto de las instalaciones para cada lote de producción sería de 144 euros, y que el coste de fabricar una unidad de producto sería de 100 euros si los lotes son inferiores a 800 unidades, y de 90 euros si fuesen mayores o iguales de 800 unidades. La Agencia “Misión Imposible” aplica actualmente una tasa de interés del 10% anual para su coste de almacenamiento y trabaja 250 días al año. Se pide: b) Razonar si es más ventajoso para Misión Imposible seguir comprando los encriptógrafos o fabricarlos. ---------------- b) Si compramos, tenemos un suministro instantáneo sin rotura Q* CT(Q*) P D + e 2eD a Pi 2 729 10.000 1.151 unidades 0,1 110 D Q* 10.000 1.151 (a Pi) 110 10.000 729 (0,10 110) 1.112.664,1 Q* 2 1.121 2 El coste de comprar (1.112.664,12 euros) es mayor que el coste de fabricar (905.040 euros), por lo que resulta más interesante la opción de fabricar los productos en vez de seguir comprándolos. Ejemplo 44 • La Agencia “Misión Imposible S.A.” utiliza 10.000 encriptógrafos cósmicos al año con un consumo constante y continuo. Hasta ahora compraba estos productos a la empresa Talleres T. Cruise a un precio de 110 euros cada uno, ocasionándole cada pedido un coste de 729 euros. La Sra. Kidman, Directora de “Misión Imposible”, está estudiando la viabilidad de fabricarlos en una nave espacial infrautilizada y ha estimado que se podrían fabricar hasta un total de 100.000 unidades al año. Ha calculado también que el coste de puesta a punto de las instalaciones para cada lote de producción sería de 144 euros, y que el coste de fabricar una unidad de producto sería de 100 euros si los lotes son inferiores a 800 unidades, y de 90 euros si fuesen mayores o iguales de 800 unidades. La Agencia “Misión Imposible” aplica actualmente una tasa de interés del 10% anual para su coste de almacenamiento y trabaja 250 días al año. Se pide: c) En la opción de fabricación, ¿cuántos días deben dedicarse a fabricar encriptógrafos y cada cuanto tiempo habrá que fabricar un nuevo lote?. ---------------- c) Nº de pedidos: N* D 10.000 12,5 13 lotes Q* 800 T*=nº días laborables/N*= 250/12.5= 20 días t1= Q/L= 800/100.000= 0.008 año = 2 días laborables El número total de días necesarios para fabricarlos serán 26 días (= 13x2) Gracias por su atención !!