MÓDULO DE ELASTICIDAD El módulo de elasticidad es la medida de la tenacidad y rigidez del material del resorte, o su capacidad elástica. Mientras mayor el valor (módulo), más rígido el material. A la inversa, los materiales con valores bajos son más fáciles de doblar bajo carga. En la mayoría de los aceros y aleaciones endurecibles por envejecimiento, el módulo varía en función de la composición química, el trabajado en frío y el grado de envejecimiento. La variación entre materiales diferentes es usualmente pequeña y se puede compensar mediante el ajuste de los diferentes parámetros del resorte, por ejemplo: diámetro y espiras activas. Módulo de elasticidad Un hilo metálico sometido a un esfuerzo de tracción sufre una deformación que consiste en el aumento de longitud y en una contracción de su sección. Supondremos que el aumento de longitud es el efecto dominante, sobre todo en hilos largos y de pequeña sección. Estudiaremos el comportamiento elástico de los hilos, aquél en el que existe una relación de proporcionalidad entre la fuerza F aplicada al hilo y el incremento DL de su longitud o bien, entre el esfuerzo F/S y la deformación unitaria DL/L0. Donde S es la sección del hilo S=p r2, y Y es una constante de proporcionalidad característica de cada material que se denomina módulo de elasticidad o módulo de Young. Metal Módulo de Young, Y·1010 N/m2 Cobre estirado en frío 12.7 Cobre, fundición 8.2 Cobre laminado 10.8 Aluminio 6.3-7.0 Acero al carbono 19.5-20.5 Acero aleado 20.6 Acero, fundición 17.0 Cinc laminado 8.2 Latón estirado en frío 8.9-9.7 Representando el esfuerzo en función de la deformación unitaria para un metal obtenemos una curva característica semejante a la que se muestra en la figura. Durante la primera parte de la curva, el esfuerzo es proporcional a la deformación unitaria, estamos en la región elástica. Cuando se disminuye el esfuerzo, el material vuelve a su longitud inicial. La línea recta termina en un punto denominado límite elástico. Si se sigue aumentando el esfuerzo la deformación unitaria aumenta rápidamente, pero al reducir el esfuerzo, el material no recobra su longitud inicial. La longitud que corresponde a un esfuerzo nulo es ahora mayor que la inicial L0, y se dice que el material ha adquirido una deformación permanente. El material se deforma hasta un máximo, denominado punto de ruptura. Entre el límite de la deformación elástica y el punto de ruptura tiene lugar la deformación plástica. Si entre el límite de la región elástica y el punto de ruptura tiene lugar una gran deformación plástica el material se denomina dúctil. Sin embargo, si la ruptura ocurre poco después del límite elástico el material se denomina frágil. En la figura, se representa el comportamiento típico de esfuerzo - deformación unitaria de un material como el caucho. El esfuerzo no es proporcional a la deformación unitaria (curva de color rojo), sin embargo, la sustancia es elástica en el sentido que, si se suprime la fuerza sobre el material, el caucho recupera su longitud inicial. Al disminuir el esfuerzo la curva de retorno (en color azul) no es recorrida en sentido contrario. La falta de coincidencia de las curvas de incremento y disminución del esfuerzo se denomina histéresis elástica. Un comportamiento análogo se encuentra en las sustancias magnéticas. Puede demostrarse que el área encerrada por ambas curvas es proporcional a la energía disipada en el interior del material elástico. La gran histéresis elástica de algunas gomas las hace especialmente apropiadas para absorber las vibraciones. MOMENTO DE INERCIA El Momento de Inercia también denominado Segundo Momento de Área; Segundo Momento de Inercia o Momento de Inercia de Área, es una propiedad geométrica de la sección transversal de los elementos estructurales. Tomando en cuenta, un cuerpo alrededor de un eje, el momento de inercia, es la suma de los productos que se obtiene de multiplicar cada elemento de la masa por el cuadrado de su distancia al eje. El momento de inercia refleja la distribución de masa de un cuerpo o de un sistema de partículas en rotación, respecto a un eje de giro El momento de inercia desempeña un papel análogo al de la masa inercial en el caso del movimiento rectilíneo y uniforme. Es el valor escalar del momento angular longitudinal de un sólido rígido. El momento de inercia de un cuerpo depende de su forma (más bien de la distribución de su masa), y de la posición del eje de rotación. Aun para un mismo cuerpo, el momento de inercia puede ser distinto, si se considera ejes de rotación ubicados en distintas partes del cuerpo. Un mismo objeto puede tener distintos momentos de inercia, dependiendo de dónde se considere el eje de rotación. Mientras más masa está más alejada del eje de rotación, mayor esel momento de inercia. El momento de inercia tiene unidades de longitud al cuadrado. Ejemplo: cm4 , m4 , pulg4. Momento de inercia y sus propiedades El momento de inercia de un área respecto al eje polar, momento polar de inercia Jo, es igual a la suma de los momentos de inercia respecto a dos ejes perpendiculares entre sí, contenidos en el plano del área y que se intercepta en el eje polar. El momento polar de inercia es de gran importancia en los problemas relacionados con la torsión de barras cilíndricas y en los problemas relacionados con la rotación de placas. En ingeniería y arquitectura se denomina viga a un elemento constructivo lineal que trabaja principalmente a flexión.En las vigas, la longitud predomina sobre las otras dos dimensiones y suele ser horizontal. El esfuerzo de flexión provoca tensiones de tracción y compresión, produciéndose las máximas en el cordón inferior y en el cordón superior respectivamente, las cuales se calculan relacionando el momento flector y el segundo momento de inercia