National Bureau of Standards Library, E-01 Admin. Bldg. OCT 2 5 W. AlillDE 14 bE34 NSRDS-NBS Tables of Molecular Vibrational Frequencies Part 2. U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS 14 5 73 Vo. i I /? 6 7 £, JK 11 National Standard Reference Data SeriesNational Bureau of Standards National Standard Reference Data System, Plan of Operation NSRDS-NBS 1 — 15 cents* Thermal Properties of Aqueous Uni-univalent Electrolytes NSRDS-NBS 2 — 45 cents* Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables — Si Si III, Si II, IV NSRDS-NBS 3, Section 1 — 35 cents* Atomic Transition Probabilities, Volume NSRDS-NBS 4-12.50* The Band Spectrum of NSRDS-NBS 5-70 I, Hydrogen Through Neon Carbon Monoxide cents* Tables of Molecular Vibrational Frequencies. NSRDS-NBS 6 — 40 cents* Part 1. Data High Temperature Properties and Decomposition of Inorganic NSRDS-NBS 7 — 35 for Fifty-Nine Salts. Part 1. Molecules Sulfates cents* Thermal Conductivity of Selected Materials NSRDS-NBS 8 — $1.00* Tables of Bimolecular Gas Reactions NSRDS-NBS 9Selected Values of Electric Dipole Moments for Molecules in the Gas Phase NSRDS-NBS 10Tables of Molecular Vibrational Frequencies. Part 2 NSRDS-NBS 11*Send orders with remittance ington, D.C. 20402. to: Superintendent of Documents, U.S. Government Printing Office, WashRemittances from foreign countries should include an additional one-fourth of the purchase price for postage. UNITED STATES DEPARTMENT OF COMMERCE Alexander B. Trowbridge, Secretary, NATIONAL BUREAU OF STANDARDS A. V Astin, Director Tables of Molecular Vibrational Frequencies Part 2. Takehiko Shimanouchi University of Tokyo Tokyo, Japan NSRDS NSRDS-NBS 11 National Standard Reference Data SeriesNational Bureau of Standards 11 (Category 3 — Atomic and Molecular Properties) Issued October 1967 For sale by the Superintendent of Documents. L .S. Government Printing Office Washington, D.C. 20402— Price 30 cents NATIONAL BUREAU Of STANDARDS 9 J'JN DC. 197(1 oo I .U6 73 no. / 9<*7 G.op Library of Congress Catalog Card Number: 66-60085 II . Xj I ! Foreword The National Standard Reference Data System is a government-wide effort to give to the community of the United States optimum access to the quantitative data of physical The program was established in science, critically evaluated and compiled for convenience. 1963 by the President’s Office of Science and Technology, acting upon the recommendation of the Federal Council for Science and Technology. The National Bureau of Standards has been assigned responsibility for administering the effort. The general objective of the System is to technical coordinate and integrate existing data evaluation and compilation activities into a systematic, com- prehensive program, supplementing and expanding technical coverage when necessary, establish- ing and maintaining standards for the output of the participating groups, and providing mecha- nisms for the dissemination of the output as required. The NSRDS is conducted as a decentralized operation of nation-wide scope with central coordination by NBS. It comprises a complex of data centers and other activities, carried on in government agencies, academic institutions, and nongovernmental laboratories. The independent Data centers is maintained and encouraged. produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. For operational purposes, NSRDS compilation activities are organized into seven categories as listed below. The data publications of the NSRDS, which may consist of monographs, looseleaf sheets, computer tapes, or any other useful product, will be classified as belonging to one operational status of existing critical data projects that are components of the NSRDS or another of these categories. An additional “General” category of include reports on detailed classifications schemes, lists Reference Data, status reports, and similar material. NSRDS publications will of compilations considered to be Standard Thus, NSRDS publications will appear in the following eight categories: Category General 2 Nuclear Properties Atomic and Molecular Properties 3 4 Solid State Properties 5 Thermodynamic and Transport Properties 6 Chemical Kinetics Colloid and Surface Properties Mechanical Properties of Materials 7 8 tion Title 1 The present compilation is in category 3 of the above list. It constitutes the eleventh in a new NBS series known as the National Standard Reference Data Series. publica- A. V. Astin, Director. Contents Page Foreword iii I. Introduction 1 II. Tables of vibrational frequencies 3 List of Tables Page B2 H6 Diborane-c^, 10 B 2 D6 Diborane, n B 2 H 6 10 5 87. 6 88. Chlorobromomethane-<i2 Formaldehyde, H 2 CO 7 89. Formaldehyde-di, SiBr 4 8 90. 2, 64. Silicon tetrachloride, SiCl 4 8 91. 9 92. Methylbromide-<i3 , 9 93. Methylchloride, 60. 61. 62. Diborane, 63. Silicon tetrabromide, 65. Silicon tetrafluoride, SiF 4 SiH 4 Silane-d2 SiH 2 D 2 66. Silane, 67. 94. 10 , 68. Silane-<73 , SiHD 3 10 95. 69. Silane-d4 , SiD 4 11 96. C 3 H6 C3D6 Cyclobutane, C 4 H 3 Cyclobutane-c^g, C 4 Dg 33 GeH 4 GeH 3 D Germane-d2 GeH D 2 Germane-c/3 GeHD 3 Germane-^, GeD 4 Nitrogen trifluoride, NF 3 12 98. 12 99. 13 100. 13 101. 14 102. 14 103. 15 15 104. 113. 105. 16 106. 80. Phosphorus trichloride, PC1 3 Phosphorus trifluoride, PF 3 Tribromochloromethane, CBr 3 Cl.. Dibromodichlorometh&ne, CBr 2 Cl 16 107. 81. Bromotrichloromethane, CBrCl; 17 108. Cyclopropane, 82. Dibromomethane, 17 109. Cyclopropane-<76 83. Dibromomethane-c?i, 18 110. 76. 77. 78. 79. ; CH^r CHDBr 2 CD 2 Br 2 85. Dibromomethane-<72 Chlorobromomethane, 86. Chlorobromomethane-di, CHDCIBr 84. , CH 2 ClBr 23 23 3 24 24 3 3, 25 25 3 3 26 2 27 2, 3 2 3, 3 2 28 2 29 5, 3 29 3 30 3 , 30 2 2 111. 112. Polyethylene, 31 4 2 , 19 IV 3 3 3 18 19 22 3 Germane, , 21 3 3, Germane-<7i, 74. 20 2 3, 71. 75. 20 22 11 2 ClBr CD Br CH C1 Methylchloride-d CD C1 Methylfluoride, CH F Methylfluoride-d CD Br Methyliodide, CH 1 Methyliodide-d CD 1 Methylamine, CH NH Methylamine-G? CH ND (gas) Methylamine-G? CD NH (gas) Methylamine-o? CD ND (gas) Methylcyanide, CH CN Methylcyanide- ds CD CN Ethylene oxide, C H 4 0 Ethylene oxide-t/4 C D 0 Ethylene imine, C H N 97. , 2 21 Sibcon tetraiodide, Sil 4 73. CD HDCO Formaldehyde-d D CO Methylbromide, CH Br 70. 72. , 32 5 34 , 35 36 — (CH 2 n — 37 ) Perdeuterated Polyethylene, — (CD 2) n — ... 38 Tables of Molecular Vibrational Frequencies Part 2. T. Shimanouchi A compilation of vibrational freauencv data for selected molecules is being conducted at the University of Tokyo in cooperation with the National Standard Reference Data Program of the National Bureau of Standards as a part of an international effort to compile and evaluate physical and chemical This report, as a continuation of Part I published as NSRDS—NBS—6, contains fundamental data. vibrational frequencies of 54 molecules together with vibrational assignments, sources of data, brief comments, and citations of references. The procedures used for the preparation of tables are the same The fundamental frequencies are obtained mainly from the infrared and Raman as given in Part I. When these are not avialable, other experimental data such as microwave results are taken spectra. The selection of vibrational fundamentals from observed data is based upon careful into account. These tables were designed studies of the spectral data and comprehensive mathematical analyses. to provide a concise summary needed for the computation of ideal gas thermodynamic properties. They may also provide a convenient source of information to those who require vibrational energy levels and related properties in molecular spectroscopy, analytical chemistry, and other fields of physics and chemistry. force constants, infrared spectra, modes of vibration, molecular vibrational frequencies, molecular spectra, Raman spectra. Key Words: Data, 1. Introduction A compilation of vibrational frequency data for selected molecules is being conducted as a part of a broad program on the compilation and critical evaluation of physical and chemical data of many substances. Vibrational frequency data of molecules are not only useful in research on molecular structure, but are also essential to accurate computation of ideal gas thermodynamic properties. These tables will be a convenient source of information in any field of physics or chemistry in which the vibrational energy levels and related properties are needed. These data may also be useful to those who utilize infrared or Raman spectra as a technique in analytical chemistry. This is the second of a series of annual reports being prepared in cooperation with the National Standard Reference Data Program of the National Bureau of Standards. The first report, which has been published as NSRDS-NBS 6, contains data for 59 molecules. This second report contains another 54 molecules with the serial numbers 60 The author expresses his sincere thanks to many members of the National Bureau of Standards, especially C. W. Beckett, D. R. Lide, Jr., E. L. Brady, and S. A. Rossmassler who helped me in the planning, the preparation, and the publication of the tables. The author also acknowledges the assistance of his colleagues at the University of Tokyo: I. Nakagawa, A. Hirakawa, I. Suzuki, M. Tasumi, T. Fujiyama, I. Harada, M. Ishii, T. Ueda, H. Yoshioka, and K. Ishii. Table These molecules have been selected from compounds for which experimental data are available and normal coordinate treatments have been made in detail. General comments on the procedures by which the tables are prepared and on the explanations of notation and abbreviations are given in Part 1 (NSRDS-NBS 6). Only the important notation and abbreviations are reproduced in the following tables. 1. Abbreviations for approximate type of mode 113. 1 stretch. stretching twist. twisting deform. rock. deformation rocking wag. bend. wagging bending sym. symmetric deg. degenerate anti. antisymmetric ” Table Notation Uncertainty for the selective values of frequencies 2. Basis* Uncertainty cm~ 0- A l 1 Gas, grating spectrometer, rotational fine structure accurately analyzed. Gas, grating spectrometer, a sharp Q branch. (i) (ii) B ~3 1 Gas, grating spectrometer, rotational fine structure partly analyzed. Gas, prism spectrometer, fairly high resolution (e.g., 700 — 1000 cm -1 for (i) (ii) NaCl C 3 —6 6-15 D 15-30 E prism). (i) Gas, prism spectrometer, low resolution (ii) prism). Solid, liquid or solution, accurate (i) Gas prism spectrometer, very low resolution (ii) prism). Solid, liquid or solution, inaccurate (e.g., 1000 — 2000 cm -1 for NaCl > 2000 cm -1 for NaCl measurement. (e.g., measurement, (ii) Value estimated from Fermi resonance doublet. Value estimated from overtone or combination tone. (iii) Calculated frequency. (i) *The uncertainty assigned here to each method of measurement is a typical value; greater accuracy is often achieved with some of the methods. Table 3. VS s M W VW Abbreviations used with “ infrared ” very strong strong ia inactive b medium weak very weak vb sh broad very broad shoulder The Raman may also be indicated by which gives a rough estimation of relative intensity. intensity — (10), of a line Table FR 4. Abbreviations used in “Comments Fermi Resonance with an overtone or combination tone indicated a in the paren- theses which follow. OC polarized depolarized P dp (1) and “Raman” Frequency estimated from an overtone or a combination parentheses. tone in the CF Calculated frequency. SF Calculation shows that the frequency approximately equals that of the vibration indicated in the parentheses. TA Tentative assignment. OV Overlapped by the band indicated parentheses. Depolarization degree. 2 indicated in the II. Tables of Vibrational Frequencies Pages 5 to 38 ' ! Symmetry BH 2 No. 60 6 D 2n Symmetry number Approximate type Sym. class 10 Diborane Molecule: No. of mode Selected value of frequency cr =4 Raman Infrared [ 6 ] cm ~ V2 V3 BH BH BH v± Ring deform Vi 2 sym. stretch ring stretch scissors 2 2537 C 2110 C 1186 C ia 816 C ia 829 1768 1044 2625 955 368 2640 930 D Comments 8] cm -1 1 (Gas) (Gas) ag [ 2537 VS 2110 S 1186 816 S b 820 ( 2 ) ia ia M | (liquid) CLu big v» Vq BH 2 twist BH ring stretch BH 2 wag BH anti, stretch BH rock Vio Ring puckering Vi, V6 V7 bin b'2g & 2u b*iu 2 Vu BH V\2 BH? BH Vis 2 anti, stretch rock b ring stretch BH? wag V 14 l> bsu 2 BH twist BH 2 sym. stretch BH ring stretch, and 15 2 V 16 Vn C E C E C E E 1920 E a 829 1 VW ia 1768 ia W OC(^5+V7) ia 2625 VS 2640 ia W, (1992 W) BH a b c 2 scissors ^ 977 1012 2528 1606 C E C C 2528 1606 VS ia VVS ia 1181 C 1181 VS ia 977 S ia CF. C ia References Anderson and A. R. T. F. [2] F. Stitt, J. [3] IR.R. Th. [4] IR. [5] [6] IR.R. IR.R. [7] IR. [8] R. Th. [9] B. Burg, Chem. Phys. 9, 780 J. Chem. Phys. 6, 586 (1938). (1941). R. P. Bell and H. C. Longuet-Higgins, Proc. Roy. Soc. (London) A183, 357 (1945). W. C. Price, J. Chem. Phys. 16, 894 (1948). A. N. Webb, J. T. Neu, and K. S. Pitzer, J. Chem. Phys. 17, 1007 (1949). R. C. Lord and E. Nielsen, J. Chem. Phys. 19, 1 (1951). W. J. Lehman, J. F. Ditter, and J. Shapiro, J. Chem. Phys. 29, 1248 (1958). R. C. Taylor and A. R. Emergy, Spectrochim. Acta 10, 419 (1958). T. Ogawa and T. Miyazawa, Spectrochim. Acta 20 , 557 (1964). 5 258-524 0-67 2 b } Forbidden by the selection rule, observed very weakly, and also confirmed by a combination band. Corrected for a presumed shift due to Fermi resonance. Expected frequency from vi 5 of n B 2 H6. [1] [9]. OC(l^i 0 +^ 12 )[ 6 ]. ia M 6 ]. ia deform. Vis CF ia 368 S 1882 [ ia Diborane-d6 Molecule: Symmetry B D6 No. 61 2 D 2h Symmetry number cr= 4 Approximate type Sym. class 10 No. of mode Selected value of frequency Raman Infrared [ 2 ] cm - cm~ 1 (Gas) ag Vs BD BD BD Va Ring deform V\ V2 v9 Ring puckering VG bin Vs V7 V11 V\2 V\s bin. Via bsg V15 bsu Vie V17 a 2 BD anti, stretch BD rock BD ring stretch BD wag BD twist BD sym. stretch BD ring stretch, and a 2 9 2 ia C C C ia 929 726 592 D 1273 870 1999 705 262 C E C E C 1980 E 740 2 2 E 1860 1511 ring stretch scissors Vio big bsu 2 sym. stretch BD twist BD ring stretch BD 2 wag BD 2 anti, stretch BD 2 rock Vs big 2 a 1465 728 730 1845 E E C C C 1205 C 881 C S, p p VS, p OC(l'5 ia 1273 (2) a b BD 2 scissors OC(v 9 +Vio). ia 1975 (2000 ia (9) (5)) dp dp M FR(^5+ ia [1] IR. [2] IR. R. [3] R. [4j Th. A. N. Webb, J. T. Neu, and K. S. Pitzer, J. Chem. Phvs. 17, 1007 (1949). R. C. Lord and E. Nielsen, J. Chem. Phys. 19, 1 (1951). R. C. Taylor and A. R. Emergy, Spectrochim. Acta 10, 419 (1958). T. Ogawa and T. Miyazawa, Spectrochim. Acta 20, 557 (1964). 6 j/i 2 ). V 7). ia 730 (4) dp ia 1 ia ia Corrected for a presumed shift due to Fermi resonance. Forbidden, by the selection rule, observed very weakly, and also confirmed by a combination band. References ). 1 ia VS |FR (^6 + ^ 15 OC(^io + ia 881 7 ). ia deform. Vis +V ia 262M 1857 VS (1799 S) 1205 VVS b 7 ). 0C(V 5 +Vi 5 ). OC(l' 5 VS +v dp ia 1491 1459 MS 728 S |fR(2i/ 3 ). VS, p WW ia 1999 Comments l VS, p 1880 1833 1511 929 726 ia 592 2] (Liquid) ia » [ FRte + vis). 1 Diborane Molecule: No. 62 Symmetry D 2h Symmetry number cr— 4 Approximate type Sym. class 1 No. of Selected value of frequency mode Infrared [6] Raman cm (Gas) vz BH 2 sym. stretch BH ring stretch BH scissors 1^4 Ring deform CL U V5 BH big V6 BH ring stretch BH wag BH anti, stretch BH rock Vi V2 829 twist b 2 950 E Ring puckering BH anti, stretch BH rock BH ring stretch BH wag BH twist BH sym. stretch BH ring stretch, and 2 Vi 5 bzu Vi 6 b 2 2 2 vn ia ia a 1768 368 2591 920 2 V 14 bzg D 2 Vio Vi 3 ia ia C C E 1035 E 2612 C vn V 12 &2u 1180 794 2 vs v9 b2g 2 C 2104C 2 Vi b\u 2524 E 973 1012 2525 1602 C C C C 1177 C cm 2524 2104 1180 794 (10) (10) (7) (10) BH a b 2 scissors 1788 1747 (1) (1) B. Burg, J. Chem. Phys. 6, 586 368 S ia (9) OC(ri 0 + ^ 12 ). M 1887 (1999 W) 973 S ia 1 a ia 1012 (5) 2525 1602 VS VVS ia 1177 VS ia F. Stitt, [3] Th. R. P. Bell and H. C. Longuet-Higgins, Proc. Roy. Soc. (London) A183, 357 (1945). W. C. Price, J. Chem. Phys. 16, 894 (1948). A. N. Webb, J. T. Neu, and K. S. Pitzer, J. Chem. Phys. 17, 1007 (1949). R. C. Lord and E. Nielsen, J. Chem. Phys. 19, 1 (1951). W. J. Lehman, J. F. Ditter, and J. Shapiro, J. Chem. Phys. 29, 1248 (1958). R. C. Taylor and A. R. Emergy, Spectrochim. Acta 10, 419 (1958). T. Ogawa and T. Miyazawa, Spectrochim. Acta 20, 557 (1964). [8] [9] Th. [7] (1938). (1941). 7 dp ia T. F. [5] ). ia 2591 R. [6] 9 ). ). IR. R. IR. IR. R. IR. R. IR. R. 1^ OC(v 5 + v 9 OC(r 9 + rio). ia [2] [4] FR(r 5 + ia [1] Chem. Phys. 9, 780 dp dp OC(r 5 + v 7 VS References J. OC(r 5 + r 7 a OC(r 5 + v 9 ). ). ia Forbidden by the selection rule, observed very weakly, and also confirmed by a combination band. Corrected for a presumed shift due to Fermi resonance. Anderson and A. p ia deform. Vis p p ia 2612 Comments (Liquid) VW ia C C E 1915 829 [6], dp 2 Silicon tetrabromide Molecule: Approximate type Sym. No. class SiBr4 No. 63 Symmetry number Symmetry T d of mode 1 Selected value of frequency cr = 12 Infrared cm ~ Raman cm ~ 1 Comments 1 (Liquid) ai V\ e V'2 h GO 4. sym. stretch SiBr 4 SiBr 4 SiBr 4 SiBr 4 deg. deform deg. stretch deg. deform 249 90 487 137 C C C C ia ia 249 90 487 (4) 137 (3) p (3) (1) 1 References [1] [2] [3] [4] [5] Trumpy, B. Z. Physik 68 , 675 (1931). G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945). M. L. Delwaulle, J. Chem. Phys. 56, 355 (1952). D. A. Long, T. V. Spencer, D. N. Waters, and L. A. Woodward, Proc. Roy. Soc. (London) A240, 499 (1957). M. Radhakrishnan, Z. Physik. Chem. (Frankfurt) 35, 247 (1962). Molecule: Silicon tetrachloride Symmetry T d Sym. class No. 64 Symmetry number Approximate type No. SiCl 4 of mode Selected value of frequency cr =1 Infrared cm ~ 1 Raman Comments cm (Liquid) ai V\ e Vi h SiCl 4 sym. stretch SiCl 4 deg. deform ^3 SiCR deg. ^4 SiCl 4 deg. deform stretch 424 150 621 221 C C C C ia ia 621 VS 424 (5) p 150 (4) 610 (2b) 221 (4) References [1J [4] R. R. IR. R. [5] Th. [2] [3] G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945). L. Delwaulle, J. Phys. Chem. 56, 355 (1952). A. L. Smith, J. Chem. Phys. 21, 1997 (1953). D. A. Long, T. V. Spencer, D. N. Waters, and L. A. Woodward, Proc. Roy. Soc. (London) A240, 499 (1957). M. Radhakrishnman, Z. Physik. Chem. (Frankfurt) 41, 197 (1964). M. 8 Molecule: Silicon tetrafluoride Symmetry T d Symmetry number cr= 12 Approximate type Sym. No. class No. 65 SiF 4 mode of Selected value of frequency Infrared cm~ l Raman Comments cm -1 (Liquid) ax V\ e V-2 h V* SiF 4 SiF 4 SiF 4 SiF 4 V4 a 28 Si 23 F4 sym. stretch deg. deform deg. stretch deg. deform C C B 389 B 801 264 1032 ia ia a 1031.8 S a 389.35 S 800 S 268 1010 390 W W W . References J. S. Kirby-Smith, P. J. H. Woltz, and A. H. Nielsen, Heicklen and V. Knight, Spectrochim. Acta 20, 295 (1964). L. Duncan and I. M. Mills, Spectrochim. Acta 20, 1089 (1964). [1] R.IR. E. A. Jones, [2] IR. J. [3] Th. J. Molecule: (1951). No. 66 Symmetry T d class Chem. Phys. 19, 242 SiH 4 Silane Sym. J. Symmetry number cr= 12 Approximate type No. of mode Selected value of Infrared Raman cm~ cm -1 frequency Ul Vi e V-I ft Vz V4 a SiH 4 SiH 4 SiH 4 SiH 4 Coriolis interaction sym. stretch deg. deform deg. stretch deg. deform between v-z and v4 2187 B 975 C 2191 A 914 B x ia a 974.6 2190.6 914.2 2187.0 S 978 W . References [1] [2] R. IR. [3] [4] IR. [5] IR. and D. M. Yost, J. Chem. Phys. 4, 82 (1936). C. H. Tindal, J. W. Straley, and H. H. Nielsen, Phys. Rev. 62, 151 (1942). G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, D. F. Ball and D. C. McKean, Spectrochim. Acta 18, 1019: 1029 (1962). I. W. Levin and W. T. King, J. Chem. Phys. 37, 1375 (1962). F. B. Stitt 9 New York, 1945). Comments Molecule: SiH 2 D 2 Silane-di No. 67 Symmetry C 2v Approximate type Sym. No. class a Symmetry number cr= 2 V\ x v> Vz V\ of mode SiH> sym. stretch SiD? sym. stretch SiH 2 scissors SiD 2 scissors SiH? twist do b\ V6 v-i b2 ^9 SiH 2 anti, stretch SiH 2 rock SiD 2 anti, stretch SiH 2 wag Selected value of frequency Infrared Raman cm~ cm~ x 2189 C 1587 C 944 B 683 B 844 E 2183 C 743 B 2189 1587 944 C B 1601 S S S 862 M 1601 862 Comments x S S W M 682.5 CF ia 2183 743 [1]. Reference [1] IR.Th. J. H. Meal and M. K. Wilson, Molecule: J. Chem. Phys. 24, 385 SiHD 3 Silane-<i 3 Symmetry C 3v Sym. No. 68 Symmetry number Approximate type No. class (1956). of mode Selected value of cr —3 Infrared Raman Comments frequency cm~ a Vx x V2 r3 e Va ve SiH stretch SiD 3 sym. stretch SiD 3 sym. deform SiD 3 deg. stretch SiH bend SiD 3 deg. deform 2182 C 1573 C 683 C 1598 C 851 B 683 C References [1| IR. J. [2J IR. I. H. Meal and W. K. Wilson, J. Chem. Phys. 24, 385 W. Levin and W. T. King, J. Chem. Phys. 37, 1375 (1956). (1962). 10 2182 1573 683 1598 851 683 x cm~ l M S S S S S SF(r 6 ). SF(r 3 ). Molecule: No. 69 SiD 4 Silane-d 4 Symmetry number cr= 12 Symmetry T d Approximate type Sym. No. class of Selected value of mode Infrared Raman Comments frequency cm ~ SiDj <sym streteh l/o h Vz r4 1558 700 1597 681 SiD deg. deform SiD 4 deg. stretch SiD 4 deg. deform j E E B C cm~ 1 x CF CF [41. [4]. 1597 S 681 S References [3] IR. IR. IR. [4] Th. [1] [2] H. Meal and M. K. Wilson, J. Chem. Phys. 24, 385 (1956). D. F. Ball and D. C. McKean, Spectrochim. Acta 18, 1019; 1029 (1962). I. W. Levin and W. T. King, J. Chem. Phys. 37, 1375 (1962). T. Shimanouchi, I. Nakagawa, J. Hiraishi, and M. Ishii, J. Mol. Spectry. 19, 78 (1966). J. Silicon tetriodide Molecule: Symmetry number cr= 12 Symmetry T d Approximate type Sym. No. class No. 70 Sil 4 of mode Selected value of frequency Infrared cm ~ Sil 4 e V2 Sil 4 deg. h Vz Sil 4 deg. stretch V4 Sil 4 deg. ai 168 63 405 94 sym. stretch V\ deform deform C C C C Reference [1] R. M. L. Delwaulle, J. Phys. Chem. 56 , 355 (1952). 11 ia ia 1 Raman cm~ l 168 S, p 63 M, dp 405 W, dp 94 S, dp Comments 1 GeH Germane Molecule: No. 71 4 Symmetry T d Symmetry number cr= 12 Approximate type Sym. No. class of v3 GeH 4 GeH 4 GeH 4 sym. stretch deg. deform deg. stretch v4 GeH 4 deg. deform Cll V\ e V-2 ft Selected value of frequency mode 2106 B 931 D 2114 B 819 B Infrared Raman cm~ cm ~ x Comments 1 2106 S, p 920 2106 ia W W (liquid) 816 W a 930.9 2113.6 819.3 (liquid) a Coriolis interaction between v-z and v 4 . References [1] IR. [2] R. [3] [4] IR.R. [5] IR. W. Straley, C. H. Tindal, and H. H. Nielsen, Phys. Rev. 62, 161 (1942). K. Schafer and J. M. Gonzalez Barredo, Z. Physik. Chem. 193 , 334 (1944). G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, L. P. Lindeman and M. K. Wilson, Z. Physik. Chem. (Frankfurt) 9, 29 (1956). A. A. Chalmers and D. C. McKean, Spectrochim. Acta 21, 1941 (1965). J. Molecule: Germane-c/i class Ul Approximate type V\ v-i Vi e v4 Vi va No. 72 3 Symmetry number No. of GefG sym. Selected value of frequency mode stretch GeD stretch GeH sym. deform GeH deg. stretch GeH 3 deg. deform GeH 3 rock .3 .3 =3 Infrared Raman cm - cm - 2106 C 1520 B 820 C 2112 B 820 2112 C C 901 706 901 706 cr 1 2106 1520.4 M S S W S References [1 ) [2 J IR. L. P. IR.R. L. P. York, 1945). GeH D Symmetry C 3v Sym. New Lindeman and M. K. Wilson, Lindeman and M. K. Wilson, J. Chem. Phys. 22, 1723 (1954). Chem. (Frankfurt) 9, 29 Z. Physik. 12 (1956). Comments 1 Germane-d 2 Molecule: GeH D 2 No. 73 2 Symmetry number cr= 2 Symmetry C 2v Approximate type Sym. No. class Gl V\ a2 V2 v3 V4 v5 vG V7 V8 bt b2 of Selected value of frequency mode GeH sym. stretch GeD 2 sym. stretch GeH 2 scissors GeD 2 scissors GeH 2 twist GeH 2 anti, stretch GeH 2 rock GeD 2 anti, stretch GeH wag 2112 1512 2 V9 881 620 807 2112 657 1522 770 2 C C B C E C C C C Infrared Raman cm ~ cm -1 1 Comments 2112 1512 881 620 807 2112 657 1522 770 Reference [1] IR. L. P. Lindeman and M. K. Wilson, Germane-d3 Molecule: Symmetry Sym. class Z. Physik. GeHD (Frankfurt) 9, 29 (1956). No. 74 3 Symmetry number a — 3 C.3 V Approximate type No. Chem. of Selected value of frequency mode Infrared cm ~ ai GeH stretch GeD 3 sym. stretch GeD 3 sym. deform GeD 3 deg. stretch GeH bend GeD 3 deg. deform Vi l>2 e v3 v4 V5 V6 2112 B 1504 B 593 C 1522 C 792 B 625 C cm - 1 2112.4 1504 595 1522 792.3 625 References [1] IR. L. P. [2] IR.R. L. P. Lindeman and M. K. Wilson, Lindeman and M. K. Wilson, J. Chem. Phys. 22, 1723 (1954). Chem. (Frankfurt) 9, 29 Z. Physik. 13 258-524 0 - 67—3 Raman (1956). Comments 1 1 GeD Germane-d 4 Molecule: Symmetry T d Symmetry number Approximate type Sym. No. class No. 75 4 of mode Selected value of frequency <x Vi ft V3 GeD 4 GeD 4 GeD 4 GeD 4 V-2 Va a Coriolis interaction 1504 665 1522 596 sym. stretch deg. deform deg. stretch deg. deform between v2 and C ia W a B 1522.2 S 665 Raman cm ~ 1 D C 12 Infrared cm ~ ai e = Comments 1 1504 S 596 v*. Reference [1J IR.R. L. P. Molecule: Lindeman and M. K. Wilson, Z. Physik. Nitrogen trifluoride NF3 Symmetry Sym. class a x e Approximate type of mode V\ NF 3 Vt NF3 sym. deform V\ (Frankfurt) 9, 29 (1956). No. 76 Symmetry number C,3 V No. Vz Chem. NF 3 NF 3 sym. stretch deg. stretch deg. deform Selected value of frequency 1032 647 905 493 C C C C <j =3 Infrared cm - cm - (Gas) (Liquid) 1032 S 647 905 S 493 1050 667 905 515 W W References [2] IR. IR. [3] IR.R. [1] [4] IR. [5] Th. C. R. Bailey, S. C. Carson, and J. W. Thompson, J. Chem. Phys. 5, 274 (1937). M. K. Wilson and S. R. Polo, J. Chem. Phys. 20, 1716 (1952). E. L. Pace and L. Pierce, J. Chem. Phys. 23, 1248 (1955). P. N. Schatz and I. W. Levin, J. Chem. Phys. 29, 475 (1958). P. N. Schatz, J. Chem. Phys. 29, 481 (1958). 14 Raman Comments Phosphorus trichloride Molecule: Symmetry number a = 3 Symmetry C 3v Approximate type Sym. No. class No. 77 PCI3 of mode Selected value of Raman Infrared Comments frequency cm ~ cm -1 1 (Liquid) (Gas) V\ ai V-I e Vz VA PC1 3 sym. stretch PC1 3 sym. deform PC1 3 deg. stretch PC1 3 deg. deform 504 C 252 C 482 C 198 C 504 252 482 510 257 480 190 198 (10) (6) (3) p p dp dp (10) References [3] R. IR. IR. [4] Th. [1J [2] K. P. W. F. Kohlrausch, Der Smekal-Raman Effekt, Erganzungsband, 1931-1937, W. Davais and R. A. Oetzen, J. Mol. Spectry. 2, 253 (1958). Lorenzelli, Compt. Rend. 252, 3219 (1961). Springer, Berlin, 1938. V. A. M. Mirri, F. Scappini, and P. G. Favero, Spectrochim. Acta 21, 965 (1965). Phosphorus Molecule: trifluoride Sym. Approximate type No. PF No. 78 3 Symmetry number Symmetry C 3v class J. of mode Selected value of <x =3 Infrared Raman frequency cm~ CLl V\ V2 e Vz V4 PF 3 sym. stretch PF 3 sym. deform PF 3 deg. stretch PF 3 deg. deform 892 487 860 344 C C D C l (Liquid) 892 S 487 860 S 344 890 486 840 M M References [3] R. IR. IR. [4] Th. [1] [2] D. M. Yost and T. F. Anderson, J. Chem. Phys. 2, 624 (1934). H. S. Gutowsky and A. D. Liehr, J. Chem. Phys. 20, 1652 (1952). M. K. Wilson and S. R. Polo, J. Chem. Phys. 20, 1716 (1952). A. M. Mirri. F. Scappini, and P. G. Favero, Spectrochim. Acta 21, 965 (1965). 15 cm -1 (Gas) (10) (3) (10) Comments CBr3 Cl Tribromochloromethane Molecule: Symmetry number a = 3 Symmetry C 3v Approximate type Sym. No. class No. 79 of Selected value of frequency mode Infrared cm _1 Raman cm~ Comments l (CeHe CCI4 ai V\ CC1 V-1 CBr 3 sym. stretch 745 C 327 C 747 S (CS 2 stretch soln.) 748 (1) 326 (10) p 210 677 (10) p (4) dp 141 (7) dp soln.) 329 W (C 7 H 14 soln.) Vz e Va CBr 3 sym. deform CBr3 deg. stretch 211 677 C C CC1 bend, (vq) CBr 3 deg. deform. 211 140 E 675 S (CS 2 1/5 (v 5 ) SF(r5 ). soln.) SF(lAj). C References [1] R.IR. [2] IR. [3] R. R. [4] A. G. Meister, S. E. Rosser, and F. F. Cleveland, J. Chem. Phys. 18, 346 (1950). E. K. Plyler, W. H. Smith, and N. Acquista, J. Res. NBS 44, 503 (1950), RP2097. M. L. Delwaulle, M. B. Buiss^t, and M. Delhaye, J. Am. Chem. Soc. 74, 5768 (1952). R. H. Krupp, S. M. Ferogle, and A. Weber, J. Chem. Phys. 24, 355 (1956). Dibromodichloromethane Molecule: class Approximate type No. No. 80 Symmetry number Symmetry C 2v Sym. CB^CL of mode Selected value of frequency cr =2 Infrared cm ~ cm ~ 1 (Liquid) ai V\ V2 l>3 CCI 2 sym. stretch CBr 2 sym. stretch CCI 2 scissors V 4 ) ( V4 CBr? scissors a2 r 5 b ^6 CCI 2 twist CBr 2 anti, stretch CCI 2 wag CCI 2 anti, stretch CCI 2 rock ! > P7 62 ^8 ^9 (v^) 733 380 242 154 175 683 230 768 262 C C C C C C C C C VS 733 377 W 683 VS 768 VS References [1] IR. [2J R. IR. E. K. Plyler and W. S. Benedict, J. Res. NBS 47, 202 (1951), A. Davis, F. F. Cleveland, and A. G. Meister, J. Chem. Phys. 16 RP 2245. 20, 454 Raman (1952). 1 (Liquid) 734 (1) p 380 (10) p 242 ( 6 ) p 154 (4) p 175 (2) dp 684 (3) dp 229 (2) dp 771 (0) dp 262 ( 1 ) dp Comments p CBrCl 3 Bromotrichlromethane Molecule: Symmetry number <x= 3 Symmetry C 3v Approximate type Sym. No. class No. 81 of Selected value of frequency mode Infrared cm ~ 1 (Liquid) VQ CC1 3 sym. stretch CBr stretch CC1 2 sym. deform V\ ai Vt € Vi CCI3 deg. stretch V5 CBr bend, V6 CCI3 deg. deform. 716 422 247 775 295 193 (i^) (r 5 ) C C C C C C 719 420 VS 773 294 VS W W Raman cm ~ Comments 1 (Liquid) 716.3 (2) p 422.3 (10) p 247.3 (5) p 775.3 (1) dp 295.0 (3) dp 193.3 (4) dp References and A. G. Meister, J. Chem. Phys. 18, 1076 (1950). R. Madigan and F. F. Cleveland, J. Chem. Phys. 19, 119 (1951). E. K. Plyler and W. S. Benedict, J. Res. NBS 47, 202 (1951), RP 2245. [1] R. J. [2] IR. J. [3] IR. P. Zietlow, F. F. Cleveland, Dibromomethane Molecule: Approximate type No. class 2 No. 82 2 Symmetry number Symmetry C 2v Sym. CH Br of mode Selected value of frequency a— 2 Infrared cm~ l (Liquid) V\ fli V2 Vz l>4 sym. stretch scissors CBr 2 sym. stretch CBr 2 scissors 2 twist 2 anti, stretch Vs V9 CBr 2 r5 b1 ^6 V7 a 2 2 CH CH CH rock CH wag a2 b-2 CH CH Apparently the 2 2 C 2V anti, stretch C C C C C C C 1192 C 638 C 2989 1389 579 174 1096 3065 813 2989 1389 579 a W [2] [3] [4] R. R. IR. IR. M. Wagner, W 174 S, p 1089 W. dp 3061 W, dp 1096 3065 S 813 1192 S 638 S M selection rule does not hold in the liquid state. Z. Physik. L. Delwaulle 17 1 2988 M, p 1387 M, 577 S, p Chem. B45, 69 (1939). and F. Francois, J. Phys. Radium 7, 15 (1946). E. K. Plyler, W. A. Smith, and N. Acquista, J. Res. NBS 44, 503 (1950) RP2097. I. Suzuki, unpublished work. J. cm ~ (Liquid) M M References [1] Raman 1183 639 W, dp W, dp Comments Dibromomethane-di Molecule: Symmetry C No. 83 2 Symmetry number s Approximate type Sym. No. class CHDBr mode of Selected value of frequency = cr 1 Raman Infrared cm~ cm~ 1 (Liquid) v4 CH CD CH CD V5 CBr 2 sym. t a V\ V2 Vi stretch stretch bend bend stretch 3030 2247 1245 702 563 a n a CH CD V7 Vs V9 a Assumed to bend bend CBr 2 anti, stretch 174 1151 836 622 C C C C C 3030 2247 1245 702 563 Comments 1 (Liquid) M W W M M D C C C 1151 S 836 622 M W have the same value as the corresponding frequencies of CILBrz and CD 2 Br 2 . References [1J IR. I. Suzuki, unpublished work. Dibromomethane-</ 2 Molecule: Symmetry C 2v 2 No. 84 2 Symmetry number Sym. Approximate type No. class CD Br of mode Selected value of frequency cr —2 Infrared cm ~ 1 (Liquid) a Vi i V2 Vs V4 <22 v5 6, Vs V7 b2 a Vs V9 Apparently the CD CD 2 sym. stretch scissors CBr 2 sym. stretch CBr 2 scissors CD 2 twist CD 2 anti, stretch 2 CD rock CD wag 2 2 CBr 2 C 2v anti, stretch 2192 1028 553 174 779 2313 637 901 779 C C C C C C C C C selection rule does not hold in the liquid state. References [1] [2] R. IR. B. I. Trumpy, Z. Physik. 100 , 250 (1936). Suzuki, unpublished work. 18 2192 1028 553 a M W W 779 W 2313 S 637 901 S 779 S M Raman cm ~ 1 (Liquid) 2195 1023 548 174 2235 Comments p CH Chlorobromomethane Molecule: Symmetry C Approximate type No. class ClBr No. 85 Symmetry number cr= s Sym. 2 of Selected value of mode 1 Raman Infrared Comments frequency cm ~ cm ~ 1 1 (Liquid) a V-1 Vz V\ CC1 CBr stretch stretch CCL scissors 2 anti, stretch 2 twist v5 a a It 3003 A 1482 D 1231 B 744 B 614 B 229 C 3066 B 1128 C CHo sym. stretch CHo scissors CH> wag V\ Vs CH CH V9 CH> v7 in the liquid state is found at 1407 M W W (liquid) 852 W 3066 1127 852 B rock The corresponding frequency a 3003 S 1482 1231 S 744 VS 614 S cm -1 . This band 2986 M. p 1410 M, 1229 W, p 731 M, p 606 S, p 229 S. p 3055 M, dp 1130 W 848 W may be assigned to the overtone of the CC1 stretching vibration. References [lj IR. [2j [3J IR.R. IR.R. [4J IR. E. K. Plyler. W. A. Smith, and W. Acquista. J. Res. NBS 44, 503 (1950) RP2097. A. Weber, A. G. Meister. and F. F. Cleveland. J. Chem. Phys. 21, 930 (1953). A. N. Tanaka. K. V. Narasimham, A. G. Meister. J. M. Dowling. F. F. Cleveland. S. Sundaram. E. A. Piotrowski. R. B. Bernstein, and S. I. Miller, J. Mol. Spectry. 15, 319 (1965). I. Suzuki, unpublished work. Chlorobromomethane-cC Molecule: Symmetry class Approximate type No. No. 86 Symmetry number Ci Sym. CHDCIBr of Selected value of frequency mode Infrared cm~ a V\ V2 V3 Vi V5 V6 V7 Vs V9 CH CD CH CH CD CD stretch stretch bend bend bend bend CC1 stretch CBr stretch CBrCl scissors :. 3031 C 2252 C 1262 C 1188 B 868 B 746 B 711 B 607 C 228 C = cr a a a l 3031 S 2252 1262 S 1188 868 746 711 S 607 M M M W W 1 Raman cm~ Comments 1 (Liquid) S, p S, p 3024 2245 1264 1179 867 743 707 586 228 W, W, W p p VW M, p S, p S, p 1 a The value in the liquid state. References r 1 1 IR.R. A. N. Tanaka. K. V. Narasimham. A. G. Meister. F. F. Cleveland. S. Sundaram. F. A. Piotrowski. R. B. Bernstein, and S. Miller, J. Mol. Spectry. 15, 319 (1965). 19 I. Symmetry C No. 87 Symmetry number a — s Approximate type Sym. No. class CD?ClBr Chlorobromomethane-d? Molecule: of mode Selected value of 1 Raman Infrared Comments frequency cm~ cm ~ 1 1 (Liquid) v5 CD? sym. stretch CD? scissors CD? wag CC1 stretch CBr stretch V7 CRrCl scissors CD? anti, stretch Vs V9 CD? twist CD? rock t a V\ V2 V3 V4 a n [1] a The value 2208 1050 936 717 582 226 2305 B B B B B 811 667 B C C C 2208 1050 936 717 582 a 2196 1042 922 702 574 226 2305 809 667 S W S S S 2305 S 811 a 668 W W M, p M, p W, p M, p S, p S, p W, dp W, dp W, dp in the liquid state. References IR.R. A. N. Tanaka, K. V. Narasimham, A. G. Meister, J. M. Dowling, F. F. Cleveland, S. Sundaram, E. A. Piotrowski, R. B. Bernstein, and S. I. Miller, J. Mol. Spectry. 15, 319 (1965). H?CO Formaldehyde Molecule: Symmetry number cr— 2 Symmetry C 2v Sym. Approximate type No. class No. 88 of mode Selected value of frequency cm ~ o. V\ l V'l Vs V4 v5 V6 6, 62 a CH sym. stretch CO stretch CH scissors CH anti, stretch CH rock CH wag 2766 E 1746 A 2 1501 2 2 2 2 The frequency has uncertainty due to the a A 2843 E 1247 B 1164 B Raman Infrared cm ~ 1 2766.4 S 1746.1 VS 1500.6 S 2843.4 VS 1247.4 S 1163.5 S Fermi resonance between v 4 and vi +v 2866 5 . References [1] R. IR. [3] IR. [2] W. Davidson, B. P. Stoicheff, and H. J. Bernstein, J. Chem. Phys. 22, 289 (1954). H. H. Blau, Jr. and H. H. Nielsen, J. Mol. Spectry. 1, 124 (1957). K. B. Harvey and J. F. Ogilvie, Can. J. Chem. 40, 85 (1962). D. 20 1 2781.6 S 1742.3 1499.7 W M W Comments 1 HDCO Formaldehyde-di Molecule: Symmetry C Symmetry number cr= s Sym. Approximate type No. class No. 89 of Selected value of frequency mode V\ Vo V3 vA V-o a // a b 2844 E 2121 B a The frequency has uncertainty due to the b The frequency has uncertainty due to the 2844.1 2120.7 1723.4 1400.0 1041 A A 1723 1400 1041 1074 Raman Infrared cm ~ CH stretch CD stretch CO stretch CHD scissors CHD rock CHD wag r a 1 E E 1074 cm ~ 1 S S Comments 1 2846.2 S 2120.3 S 1723.2 VS 1397.4 VS M S S S Fermi resonance between and v a +v 5 Fermi resonances among v>. 2i? 6 and 2z? 5 . . . References [1] IR.R. D. . Davidson. B. P. Stoicheff. and H. J. Chem. Phys. 22, 289 No. 90 Symmetry number cr— Approximate type class No. «i V\ CD? sym. Vo CO of mode Selected value of frequency Infrared cm - Vj, 6, Va V* b-z V6 a a stretch stretch CD 2 scissors CD 2 anti, stretch CD 2 rock CD? wag The frequency has uncertainty due to the 2056 E 1700 C 1106 C 2160 E 990 E 938 E Fermi resonance between References [1] IR. E. S. Ebers and H. H. Nielsen. J. (1954). 2 Symmetry C 2v Sym. Bernstein. D CO Formaldehyde-eb Molecule: J. Chem. Phys. 6, 311 (1938). 21 v\ Raman cm~ 2056.4 S 1700 VS 1106.0 S 2160.3 VS 990.2 S 938 2 S and 2va . l Comments Methylbromide Molecule: CH Br Symmetry number Symmetry C 3v Approximate type Sym. No. class No. 91 3 of Selected value of frequency mode cr =3 Infrared cm ~ cm ~ 1 (Gas) V-1 CH 3 CH Vz CBr V\ 0-1 e Va V5 3 CH CH CH sym. stretch 2935 E sym. deform 1305 611 3057 1443 954 3 stretch deg. stretch deg. deform 3 rock 3 A A A A A S S 3056.7 S 1442.8 954.3 Comments 1 (Liquid) M M 2972 2861 1305 611 Raman M M 2972 VS 2862 1309 609 S 3068 VS 1456 956 W W FR(2^ 5 ). M VW References [1J R. [2] IR. [3] IR. IR. IR. [4] [5J H. L. Welsh, M. F. Crawford, T. R. Thomas, and G. R. Love, Can. J. Phys. 30, 577 (1952). H. B. Weissman, R. B. Bernstein, S. E. Rosser, A. G. Meister, and F. F. Cleveland, J. Chem. Phys. Y. Morino and J. Nakamura, Bull. Chem. Soc. Japan 38, 443 (1965). Y. Morino, J. Nakamura, and S. Yamamoto, Bull. Chem. Soc. Japan 38 , 459 (1965). E. W. Jones, R. J. L. Popplewell, and H. W. Thompson, Spectrochim. Acta 22, 647 (1966). Methylbromide-d 3 Molecule: class , (1955). CD Br N 0> 3 Symmetry number a = 3 Symmetry C 3v Sym. 23 544 Approximate type No. of mode Selected value of frequency Infrared cm ~ Raman cm ~ 1 Comments 1 (Gas) 0\ V\ v-l t'S e Va V5 Va CD 3 CD 3 sym. stretch sym. deform CBr stretch deg. stretch deg. deform CD CD 3 CD 3 3 rock 2157 E 993 A 578 A 2296 A 1056 A 713 A 2157 VS FR(2r' 5 ). 993.4 VS 577.9 S 2296.3 1055.6 S 713.1 M M References [1] IR. [2J IR. [3] IR. H. B. Weissman, R. B. Bernstein, S. E. Roser, A. G. Meister, and F. F. Cleveland, J. Chem. Phys. 23, 544 (1955). Y. Morino and J. Nakamura, Bull. Chem. Soc. Japan 38, 443 (1965). E. W. Jones, R. J. L. Popplewell, and H. W. Thompson, Spectrochim. Acta 22, 639 (1966). 22 92 1 Methylchloride Molecule: CH 3 C1 No. 93 Symmetry number a = 3 Symmetry C 3v Selected value of frequency Approximate type Sym. No. class of mode cm ai CH 3 CH i>\ Vo 3 CC1 V3 vA e CH 3 CH 3 CH 3 Vj V6 sym. stretch 2937 E svm. deform 1355 732 3042 1452 1017 stretch deg. stretch deg. deform rock A A A A A Raman Infrared cm ~ 1 (Gas) 2966.7 2878.7 1354.9 S 732.1 S 3042.4 S 1452.1 1017.3 M M M M Comments 1 (Liquid) 2955 VS, p 2861 1370 VW, p 709 VS, p 3036 M, dp 1446 W, dp 1016 W, dp M FR(2r- 5 ). References Z. Physik. Chem. B40 , 439 (1938). Pickworth and H. W. Thompson. Proc. Roy. Soc. (London) A2 2 2 , 443 (1954). W. T. King. I. M. Mills, and B. Crawford. Jr.. J. Chem. Phys. 27, 455 (1964). Y. Morino and J. Nakamura. Bull. Chem. Soc. Japan 38 , 443 (1965). E. W. Jones. R. J. L. Popplewell, and H. W. Thompson, Spectrochim. Acta 22, 669 [1] R. J. (2] IR. J. 13] [4] IR. IR. [5] IR. Wagner, Molecule: Methylchloride-d 3 Symmetry C 3v Sym. 3 C1 No. 94 Symmetry number Approximate type No. class CD of mode (1966). Selected value of frequency cr —3 Infrared cm Raman Comments cm - 1 (Gas) a sym. stretch 2141 Vo CD 3 CD 3 sym. deform v* CC1 Va CD 3 CD 3 CD 3 stretch deg. stretch deg. deform 1029 695 2283 1060 768 V\ 1 e Vo V6 rock E A A A A A 2161 2103 1029 695 2283.4 1059.9 767.7 S M S S S M M References [1] [2] [3] [4] IR. IR. IR. IR. Pickworth and H. W. Thompson. Proc. Roy. Soc. (London) A2 2 2 , 443 (1954). T. King, I. M. Mills, and B. Crawford. Jr.. J. Chem. Phys. 27, 455 (1964). Y. Morino and J. Nakamura. Bull. Chem. Soc. Japan 38, 443 (1965). E. Jones. R. J. L. Popplewell. and H. W. Thompson. Spectrochim. Acta 22, 659 (1966). J. W. . 23 FR(2f s ). Methylfluoride Molecule: CH F Symmetry number Symmetry C 3v Approximate type Sym. No. class No. 95 3 of mode Selected value of frequency cr =3 Infrared cm~ Raman cm ~ 1 Comments 1 (Gas) Vo CH CH V* CF V5 vs CH CH CH V\ at e 3 sym. stretch 2930 E 3 sym. deform 1464 1049 3006 1467 1182 stretch 3 deg. stretch 3 deg. deform 3 rock A A A A A VS 2964 2863 1464 FR(2^ 5 ). S S 1048.6 S 3005.8 S M M 1466.5 1182.4 References [1] IR. [2] IR. [3] IR. [4] IR. IR. [5] K. P. Yates and H. H. Nielsen. Phys. Rev. 71 , 349 (1947). Pickworth and H. W. Thompson, Proc. Roy. Soc. (London) A222, 443 (1954). F. A. Anderson, B. Bak, and S. Brodersen, J. Chem. Phys. 24, 989 (1956). W. L. Smith and I. M. Mills, J. Mol. Spectry. 11, 11 (1963). E. W. Jones, E. J. L. Popplewell, and H. W. Thompson, Proc. Roy. Soc. (London) J. Molecule: Methylfluoride-d 3 Sym. Approximate type No. class of mode (1966). CD F N 0< 3 Symmetry number Symmetry C 3v A290, 490 Selected value of cr —3 Infrared Comments Raman frequency cm ~ 1 cm ~ 1 (Gas) at V\ CDs sym. V<1 CD 3 v3 v4 e stretch sym. deform CF Vb stretch CD 3 deg. stretch CD 3 deg. deform v6 CD 3 rock 2110 E 1136 991 2258 1072 903 A A A A A 2090 2150 1136 FR(2r 5 ). 991 2258 1072 903 References Pickworth and H. W. Thompson, Proc. Roy. Soc. (London) A2 2 2 , 443 (1954). F. Edgell and L. Parts, J. Am. Chem. Soc. 78 , 2358 (1956). E. W. Jones, E. J. L. Popplewell, and H. W. Thompson, Proc. Roy. Soc. (London) [1J IR. J. [2] IR. W. [3 IR. j 24 A2 90, 490 (1966). 96 CH Methyliodide Molecule: ? I No. 97 Symmetry number cr= 3 Symmetry C 3v Approximate type Sym. No. class of Selected value of frequency mode Infrared cm~ Raman cm~ x Comments 1 (Gas) Vo CH CH Vz Cl stretch 1252 533 V4 CH 3 CH CH 3 3060 1437 882 V\ at e ^5 3 sym. stretch 2933 E 3 sym. deform deg. stretch deg. deform 3 V6 rock M M 2969 8 FR(2i/ 5 ). 2861.0 1251.5 S 532.8 S 3060.3 S 1437.4 882.4 A A A A A M M References [1] Th. [2] IR. [3] IR. [4] IR. W. J. Chem. Phys. 27, 455 (1957). Proc. Roy. Soc. (London) A288, 50 (1965). Y. Morino and J. Nakamura. Bull. Chem. Soe. Japan 38, 443 (1965). Y. Morino, J. Nakamura, and S. Yamamoto, to be published. T. King. I. M. W. Jones and E. Molecule: Mills, H. and B. Crawford. Jr., W. Thompson. Methyliodide-eG Symmetry C 3 V CD Symmetry number Sym. Approximate type No. class No. 98 3I of mode cr =3 Selected value of Infrared Raman Comments frequency cm ~ 1 cm~ x (Gas) a V\ x Vo VA e Vo Vfi CD CD 3 sym. stretch 3 sym. deform Cl stretch CD 3 CD CD 3 3 deg. stretch deg. deform rock 2155 2130 E 951 501 2298 1049 656 1 A A 2081.0 950.7 501.4 E 2298 A A 1049.3 655.9 FR(2^ 5 References [1] Th. [2j IR. E. [3) IR. [4) IR. Y. Y. . Jr., J. Chem. Phys. 27, 455 (1957). W. Thompson. Proc. Roy. Soc. (London) A288, 39 Morino and J. Nakamura. Bull. Chem. Soc. Japan 38 443 (1965). Morino, J. Nakamura, and S. Yamamoto, to be published. T. King. W. I. M. Jones. R. Mills, J. L. and B. Crawford. Popplewell. and H. . 25 (1965). ). Methylamine Molecule: Symmetry C 3 No. 99 2 Symmetry number (r= s Approximate type Sym. class CH NH No. mode of Selected value of frequency 1 Infrared cm~ a t V\ Vo V3 v4 ^5 v- V8 Vq a rr V\0 V\\ Vvi NH sym. stretch CH 3 deg. stretch CH 3 sym. stretch NH scissors CH deg. deform CH 3 sym. deform CH rock CN stretch NH wag NH anti, stretch CH deg. stretch CH 3 deg. deform NH twist CH rock CN torsion 3 3361 2961 2820 1623 1473 1430 1130 2 1044.2 780.1 2 2 3 2 3 2 V 14 V\b 3 3427 2985 1485 1419 1195 268 cm ~ 1 W B B B B B B A A A Raman [2] C C D D D A 1 3360 VS 2960 VS 2820 S 3361 2961 VS 2820 VS 1623 S 1473 S 1430 1130 1044 S 780 VS 3427 2985 VS a 1485 1460 M M [3] Comments [1] M 1044 S 781 3470 W W W CF. b a 1195 200 ~ 330 Estimated from R Q branch frequency. Calculated from the force constants which correlate the frequencies of twisting frequency of CD 3 NH 2 a b ND 2 CH NH 3 2 , CH ND 3 . References [1] [2] [3] [4] R. IR. IR. IR. J. S. Kirby-Smith and L. G. Booner, J. Chem. Phys. 7, 880 (1939). A. P. Gray and R. C. Lord, J. Chem. Phys. 26, 690 (1957). M. Tsuboi, A. Y. Hirakawa, T. Ino, T. Sasaki, and K. Tamagake, J. M. Tsuboi, A. Y. Hirakawa, and K. Tamagake, to be published. 26 Chem. Phys. 2 , CD NH 3 2 , and CD 3 ND 2 Including the 1 CH.5ND2 (gas) Methylamine-cC Molecule: Symmetry C No. class No. 100 Symmetry number cr= s Approximate type Sym. 1 of mode Selected value of frequency 1 Raman Infrared [ 2 ] cm a 9 V\ v3 CH CH 3 V4 ND> v-a CH 3 V-2. Vs VV» a" ND> sym. 3 stretch deg. stretch sym. stretch scissors (v 7 v 9 deg. deform . CH> sym. deform Vi) CH 3 rock. CN stretch. ND wag V\0 ND> vu V 12 CH deg. stretch CH deg. deform \D twist. 14 CH 3 rock. 13 CN torsion ( Vu ( 1^ 4 ) 625.4 > anti, stretch 3 3 > vu 1^ 4 ) ^ (1 (1 ) 2479 2961 2817 1234 1468 1430 1117 997 ^ ) ) 2556 2985 1485 1058 1187 228 B B B B B B A A [3] B C D D C a 2479 2961 2817 1234 1468 1430 1117 997 624 2556 2985 1485 1 [ Comments ] cm - W 2450 S 2969 2824 M 1214 1473 M M M VS S S S M S S 995 S VS M 2527 M VS CF. h M 1187 180 ~ 280 S Estimated from K Q branch frequency. Calculated from the force constants which correlate the frequencies of twisting frequency of CD 3 NH 2 . ;1 11 ND 2 CH 3 NH CH AD CD 3 NH 2 References [1] R. IR. |3] IR. 4] IR. 12] 1 T. Edsall and H. Schinberg. J. Chem. Phys. 8. 520 (1940). A. P. Gray and R. C. Lord. J. Chem. Phys. 26. 690 (1957). M. Tsuboi. A. Y. Hirakawa. T. Sasaki, and K. Tamagake. to be published. M. Tsuboi. A. Y. Hirakawa. and K. Tamagake. to be published. J. 27 . 3 2 . 2 . and CD 3 ND 2 including the 1 Methylamine-d!.? Molecule: Symmetry C (gas) No. 101 Symmetry number s Approximate type Sym. class CD3NH2 No. mode of Selected value of frequency cr Infrared cm / V\ Cl Vo v3 Va Vj Vfi v7 V8 V9 a ft ^10 ^11 Vl2 V 13 V 14 V 15 a NH CD CD NH CD CD CD CN NH 2 3 3 2 3 sym. stretch deg. stretch sym. stretch scissors (P9) deg. deform 3 sym. deform 3 rock. (v 9 ) stretch. (v 6 ) 2 NH> CD 3 CD 3 wag. anti, stretch deg. stretch deg. deform NH? twist CD CN rock 3 (v 7 ) torsion 3361 2203 2077 1624 1065 1142 913 973 740.4 3427 2236 1077 1416 926 247 [2] Raman [1] Comments cm - 1 3361 2203 VS 2077 VS 1624 S A B D CF. a A A M B A 1142 S 913 S 973 740 VS 3427 2236 VS 1077 1416 [2] C c c c W W W D D Calculated from the force constants which correlate the frequencies of IR. IR. 1 W B B References [1] = A. F. Cray and R. C. Lord, J. Chem. Phys. 26, 690 (1957). M. Tsuboi, A. Y. Hirakawa, and K. Tamagake, to be published. 28 CF. a CF. a CH NH :! 2 , CH 3 ND 2 , CD NH 3 2 , and CD 3 ND 2 . 1 CD Methylamine-eL Molecule: Symmetry C 3 ND2(Gas) Symmetry number cr= s Approximate type Sym. No. class No. 102 Selected value of frequency mode of Infrared 1 Raman [1] cm ~ cm a a V\ ND> sym. Vo V3 CD 3 CD 3 Vi ND v- C.D 3 V6 V7 CD 3 CD 3 Vs V9 CN ND Vio ND> / it I'll V 12 [1] CD CD > Vl5 a , svm. deform rock. (v s v 9 ) stretch ( ve v 7 ) . , > 3 3 NDo Vu stretch deg. stretch sym. stretch scissors ( v 7 v 9 ) deg. deform.. wag (i/|i) B B B B 1065 1123 880 942 601 D B B A A 2556 C 2238 C 1077 C 1072 D 910 B anti, stretch deg. stretch deg. deform twist 2477 2202 2073 1227 - CD 3 rock CN torsion 201 W Comments 1 2477 2202 VS 2073 VS 1227 S CF. a M M 1123 880 942 S 601 VS 2556 2238 VS 1077 W W CF. a 910 M CF. a D Calculated from the force constants which correlate the frequencies of CH 3 NH 2 CH 3 ND 2 CD 3NH 2 . , , and CD 3 ND 2 . References IR. A. P. Gray and R. C. Lord. J. Chem. Phys. 26, 690 Methylcyanide Molecule: CH CN class No. 103 3 Symmetry number <r— Symmetry C 3v Sym. (1957). Approximate type No. of mode Selected value of frequency Infrared cm d\ Vs CH 3 sym. stretch CN stretch CH 3 sym. deform Vi CC V\ Vo e Vo Vs VVs stretch CH 3 deg. stretch CH 3 deg. deform CH 3 rock CCN bend 2965 2267 1400 920 3009 1454 A A 1041 361 A C A A A A 3 cm~ 1 (Gas) 2965.3 2267.3 1400.0 S 919.9 S 3009.0 S 1454.0 S 1041.0 361.0 S M M M References [1] R. [2] R. [3] IR.R. IR.R. [4] [5] [6] IR. IR. A. Dadieu. Monatsh. 57, 437 (1931). A. W. Reitz and R. Skrabel. Monatsh. 70. 398 (1937). P. Yenkatesvarlu. J. Chem. Phys. 19, 293 (1951). H. W. Thompson and R. L. Williams. Trans Faraday Soc. 48, 502 (1952). F. W. Parker. A. H. Nielsen, and W. H. Fletcher. J. Mol. Speetry. 1. 107 (1957). 1. Nakagawa and T. Shimanouchi. Speetrochim. Acta 18, 513 (1962). 29 Raman x (Liquid) 2942 2249 1376 918 2999 1440 1124 380 VS S M S S M. b VW S Comments CD CN Methylcyanide-cG Molecule: Symmetry Symmetry number <j= 3 C3 V Sym. Approximate type No. class No. 104 3 of Selected value of frequency mode Infrared cm ~ Raman cm~ 1 Comments 1 (Gas) V2 v3 VA V5 V6 V7 CD 3 sym. stretch CN stretch CD 3 sym. deform CC stretch CD 3 deg. stretch CD 3 deg. deform CD 3 rock Vs CCN V\ <2l e 2107 2278 1112 831 2258 1046 847 333 bend A A A A A A A A 2106.9 2277.5 1112.2 831.4 2258.4 1045.7 846.6 333.2 References [1] IR. Y. Morino and to be published. C2H4O Ethylene oxide Molecule: Symmetry No. 105 Symmetry number C2 V Sym. class Nakamura, J. Approximate type No. of mode Selected value of frequency cr =2 Infrared cmr Raman cm ~ 1 Comments 1 (Liquid) ai CH CH V\ V2 2 sym. stretch Vs scissors Ring stretch, (ring breath) V4 CH wag 2 2 3006 C 1498 B 3006 S 1498 3005 S, p 1490 W, p B 1271 S 1118 1266 S, p 1120 M, p 1271 1130 D W W (CS 2 a2 bi Ring stretch+ deform V5 V6 v7 V8 V9 Vio Vn b2 V 12 V 13 V 14 62 Vl5 CH CH CH CH CH CH 2 anti, stretch 2 twist 2 rock sym. stretch 2 scissors 2 wag 2 Ring stretch - - deform 1 CH CH CH 2 anti, stretch 2 twist 2 rock 877 3065 1300 860 3006 1472 B 1151 soln.) 877 VS D ia E E C B ia 3006 S 1472 D 1151 890 E 3065 B 1142 D 822 B SF(p 9 ). 867 M, dp 3063 W, dp SF(pi 3 ). 3005 S, p SF(iq). ia W M 1150 W, dp CF 3065 S 1142 822 M M 3063 W, dp 1150 W, dp 807 M, dp [41. SF(p 6 ). References [1] R.IR. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York cited there. [3] IR.Th. R.IR. [4] IR. [5] R.IR. [2] Hs. H. Gunthard, B. Messikommer, and M. Kohler, Helv. Chim. Acta 33, 1809 (1950). H. W. Thompson and W. T. Cave, Trans. Faraday Soc. 47, 946 (1951). R. C. Lord and B. Nolin, J. Chem. Phys. 24, 656 (1956). W. J. Potts, Spectrochim. Acta 21, 511 (1965). 30 1945), and the references Ethylene oxide-cL Molecule: Symmetry C No. 106 2 Symmetry number cr—2 2V Approximate type Sym. class c d,o No. of mode Selected value of frequency Infrared cm~ 1 Raman cm ~ 1 (Liquid) a x Vl CD> sym. V2 V3 CD Va v5 V6 V7 CD wag stretch scissors 2 Ring stretch, bx CD> anti, stretch CD twist V\x V 12 Ring V 13 V 14 CD> CDo twist Vxo CD rock ^10 b-z Ring stretch. + deform CD> rock CD> sym. stretch CD> scissors CDi wag Vs V9 2 C C C C D 581 C 2174 C 1013 2 2 1311 C C stretch. 2204 S 1311 M 1014 970 755 VS VS (ring breath) a2 2204 + deform anti, stretch 970 755 2250 1083 1145 952 809 2317 896 577 D D C C C C W. Arnold and IR. C. [2] R.IR. R. C. Lord and F. A. Bull. Am. Phys. Soc. 29, Chem. Phys. 24, 656 (1956). Matsen. B. Nolin, J. 31 M M ia 2250 1083 581 2157 ia 2174 1145 VS VW 809 S 2317 VS 896 S 577 W 8 (1954). VS 1013 S 952 755 ia References [1] W 1301 W W VW M M M 952 786 2319 S 896 W Comments Ethylene imine Molecule: Symmetry C No. 107 Symmetry number cr= s Approximate type Sym. class C2H5N No. of mode Selected value of frequency Infrared cm~ a r V\ V-2 Vi Va V5 NH CH CH CH stretch anti, stretch 2 sym. stretch 2 scissors 2 // CH twist CH wag NH bend vs Ring stretch. VlQ CH rock Vu CH> V12 CH-? sym. stretch 2 scissors Via a n V 15 V 16 V 17 V \S cm ~ 3302 M, p 3059 M, dp 2999 VS, p 1471 W, p 2 B 1211 S 1095 S 1090 S 998 1212 VS, p 1088 W, p 1088 W, p 1028 855 M, dp 787 W, dp 3059 M, dp 2 CH CH 2 2 NH + deform anti, stretch twist bend CH wag 2 Ring stretch. + deform CH 2 rock D D 998 C 856 B 773 B 3079 D 3015 D 1463 B 1268 C 1237 C 1131 B 904 B 817 D M 856 773 3079 3015 1463 1268 1237 1131 904 VS [1J R.IR. 1R. [3] R.IR. SF(rn). sf(Vi 2 ). S S S W M M M W 2999 VS, p 1452 W, dp 1276 1297 W, p 1130 VW VW S 817 M, dp References [2] 1 3338 3079 S 3015 S 1482 W Comments (Liquid) 3338 B 3079 D 3015 D 1482 B 1211 1095 1090 V6 v7 V8 V 13 W Raman Ring stretch, (ring breath) a 1 1 H. W. Thompson and W. T. Cave, Trans. Faraday Soe. 47, 951 (1951). H. T. Hoffman. Jr., G. E. Evans, and G. Glockler, J. Am. Chem. Soc. 73, 3028 (1951). W. J. Potts, Spectrochim. Acta 21,511 (1965). 32 SF(r 2 ). SF(r 3 ). C3H6 Cyclopropane Molecule: Symmetry D 3h class Symmetry number cr= 6 Approximate type Sym. No. 108 No. of Selected value of frequency mode Infrared cm~ V\ CH) sym. V-z CH f a, V3 > stretch n v4 a2 n a2 V5 V6 ^8 V to CH) wag t e ? ) -2 ia 1188 1133 1078 3101 852 3025 1442 1028 CH> twist CH? wag CH> anti, stretch CH CH CH v7 D cm ~ x 1 3038 S, p 1504 W, p 1453 Comments W, FR(2r'i 4 ). p (ring breath) ai ia 1475 scissors Ring stretch, 3038 C Raman rock sym. stretch scissors C D D C C C C C 1188 S. p ia ia ia ia ia 3101 S 852 S 3025 VS 1442 1028 S M ia ia 3019 VS, p 1443 M. dp 1023 VW (liquid). V\\ Ring stretch. Vvi CH) CH) CH) tr e V 13 V\ 4 + deform anti, stretch twist rock 866 C 3082 C 1178 C 739 C 866 ia ia ia VS 866 S, dp 3090 S. dp 1178 739 W, dp M References [1] R.IR. G. Herzberg. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York cited there. [2] [3J R.IR. IR.Th. [4] R. [5] IR. A. W. Baker and R. C. Lord. J. Chem. Phys. 23, 1636 (1955). Hs. H. Giinthard. R. C. Lord, and T. K. McCubbin. Jr.. J. Chem. Phys. 25, 768 (1956). P. M. Mathai, G. G. Shepherd, and H. L. Welsh. Can. J. Phys. 34, 1448 (1956). C. Brecher, E. Krikorian. J. Blanc, and R. S. Halford. J. Chem. Phys. 35, 1097 (1961). 33 1945). and the references Cyclopropane-dn Molecule: Symmetry Sym. class C3D6 Symmetry number cr = 6 D. ?h Approximate type No. No. 109 of mode Selected value of frequency Raman Infrared cm~ cm~ 1 Comments 1 (Liquid) a\ V-I CD, sym. stretch CD, scissors V3 Ring stretch, v4 CD, v5 CD wag CD anti, V\ ' a2 n a -2 Vs e e" twist 2 2 stretch V10 CD, rock CD, sym. stretch CD, scissors CD, wag Vn Ring stretch. V \2 CD, anti, stretch Vis CD twist r 14 CD, rock v7 Vs V9 2 ia 956 C 801 E 873 E 2336 C 614 C 2211 C 1074 C 887 C 720 C 2329 C 928 E 528 C ia 2236 VS, p 1274 S, p ia (ring breath) a[ C C 2236 1274 + deform 956 S, p ia ia ia ia 2336 VS 614 2211 VS 1074 S 887 720 VS ia W ia M 2204 W, dp 1068 W, dp 884 M, dp 721 M, dp 2329 S, p ia CF. ia 528 ia W, dp References [1] [2] R.IR. IR.Th. W. Baker and R. C. Lord, J. Chem. Phys. 23 , 1636 (1955). Hs. H. Giinthard, R. C. Lord, and T. K. McCubbin, Jr., J. Chem. Phys. A. 34 CF. CF. 25 , 768 (1956). Cyclobutane Molecule: C-iH# No. Symmetry D 2d (D 4h ) Approximate type Sym. class Symmetry number No. of Selected value of frequency mode V\ Qi(«io) V-z v3 V\ a\(b\u) v» a>(ao g ) v* V7 a-iib-zu) Vs b (b V9 \g) \ V\0 CH CH CC -2 > a sym. stretch scissors ) rock Ring puckering V\\ b>(b>g) V 12 V 13 V 14 CH wag CH 2 twist CH 2 wag CC stretch, 2 V\5 ^16 e(e g ) V \7 V 18 V 19 V 20 e(e u ) Vz\ V-22 V23 CH 2 twist CH sym. stretch CH scissors CCC deform, (ring 2 2 CH 2 anti, stretch CH rock CH anti, stretch CH twist CH 2 rock CH 2 sym. stretch CH 2 scissors CH 2 wag CC stretch, and CCC 2 2 2 form, (ring deform.) a (Liquid) D ia 2916 p 2866 p 1443 C ia 1443 p SF(v l3 ). 1001 1001 p SF(r'i 4 ). FR(2^ 2 2 ^ 13 ). , Corrected for a presumed shift C ia 2975 E ia C ia 200 E 1260 E 1257 E 1219 C ia CF [3]. 741 dp ia ia ia ia ia 1219 dp ia 926 dp CF CF CF [3]. [3]. [3]. (ring deform.) b-Aa-zu) 1 (Gas) 2895 741 -2 deform.) b\(ai u ) cm ~ 1 Comments stretch, (ring breathing) anti, stretch CH CH = 4(8) Raman Infrared cm ~ cr no due to 926 1222 2893 1443 C E E C CF CF ia 1443 dp 1001 D 2987 627 2952 1223 749 C C C C C 2887 D 1447 1257 C C 2878 1447 S 1257 S 898 C 898 S (1001 p) [3]. [3]. SF(v 2 ). SF(v 3 ). 2987 S 627 S 1223 749 2997 2952 dp? W W 1 } de Fermi resonance. References [2] IR.R. IR.R. [3] Th. [1] W. Rathjens, Jr., N. K. Freeman. W. D. Gwinn. and K. S. Pitzer. J. Am. Chem. Soc. 75, 5634 (1953). Lord and D. G. Rea (to be published). Preliminary account presented at 3rd Meeting. European Molecular Spectroscopy Group. Oxford, England, 1955. R. C. Lord and I. Nakagawa, J. Chem. Phys. 39, 2951 (1963). G. R. C. 35 1 Cyclobutane-dfg Molecule: C4D8 Symmetry number cr= 4(8) Symmetry D? d (D 4h ) Approximate type Sym. class No. No. Ill of Selected value of frequency mode Infrared cm ~ Raman [1] ai(biu) V2 CD? sym. stretch CD? scissors V2 CC l>4 breathing) CD? anti, stretch l> 5 CD 2 V\ V6 a2(a 2g ) a-Ab-zu) Vi v% bl(blg) r9 V\Q 2124 E 1160 C (Liquid) i>w rock Ring puckering CD 2 wag CD 2 twist CD 2 wag CC stretch, CD CD biia-iu) V\o ^16 e(e g ) twist 2 sym. stretch 882 p E E E C ia ia ia ia ia ia ia ia 1078 dp ia 746 dp CF CF CF CF CF [21 [2k [2]. [2]. [2]. 746 864 2115 1040 C E E CF CF ia D [21. [2]. 1040 dp CCC deform, (ring deform.) CD CD CD -2 2 rock 2 anti, stretch rig CD rock sym. stretch 2 CD? 938 D 2242 C 483 C 2230 C 938 D 556 C 2103 E 1078 C 1048 C anti, stretch twist V 22 V 23 ia 151 scissors CD? V2\ 882 C 2224 E 632 E [2]. (ring I/j8 e(e g ) 1160 p 1010 889 1078 2 CD? V\4 CF ia ia stretch, (ring deform.) bA an/) Comments cm - 1 (Gas) aiiciig) [1] CD scissors CD 2 wag CC stretch, and CCC 2 form. (ring, 938 dp SF(i'is). 2230 dp? 938 dp SF(*14). 2242 S 483 S 556 W CF [2]. 1078 S 1048 S de- deform.) 734 C 734 S References [1] IR.R. [2] Th. Rea (to be published). Preliminary account presented troscopy Group, Oxford, England, 1955. R. C. Lord and I. Nakagawa, J. Chem. Phys. 39, 2951 (1963). R. C. Lord and D. G. 36 at 3d Meeting, European Molecular Spec- Polyethylene Molecule: (CH 2 ) No. 112 Symmetry number a — 4 Symmetry D 2h Approximate type Sym. No. class of Selected value of frequency mode Raman Infrared cm ~ cm~ 1 V\ CH> sym. stretch V-l CH scissors V-S, CC Va CH> wag 2 stretch. + CCC CC l> twist V- CH anti, stretch V8 CH> rock CH 2 twist ^10 (iH > I'll CH> V\> V\4 d„ bin b>u b-m > 1440 M C C C C 2883 C 1168 C 1050 D 2919 C ia 1131 1415 1061 1295 M C CH-» sym. stretch 2851 C CH scissors CH wag > 1468 C > 1176 C 1063 Doublet due to the crystal is ia 725 rock b 1 2848 S 1131 1415 1061 1295 anti, stretch a cm ia de- stretch CH> Vfi 2 (i C C 2848 1440 form b\„ given to this frequency in reference ia ia ia IR.Th. S. |2| R. J. [3 IR. 1 ] ia ia 2919 S 731 S 720 S 2851 S 1473 S 1463 S 1176 ia ia VW ia 6. field effect [1, 8]. 25 549 , (1956). |7| R. R. G. Brown. |8| Th. |6| J. J. Chem. Phys. 38, 221 (1963). M. Tasumi and T. Shimanouchi. J. Chem. Phys. 43, 1245 37 (1965). ). b ). ( ia Th. IR.Th. |5J IR. a ( ia R. G. Snyder. J. Mol. Spectry. 4, 411 (1960). R. Nielsen and R. F. Holland. J. Mol. Spectry. 4, 488 (1960): 6, 394 (1961). M. Tasumi. T. Shimanouchi, and T. Miyazawa, J. Mol. Spectry. 9, 261 (1962). J. H. Schachtschneider and R. C. Snyder. Spectrochim. Acta 19 , 85. 117 (1963). j |4| M M W ia Krimm, C. Y. Liang, and G. B. B. M. Sutherland. J. Chem. Phys. R. Nielsen and A. H. Woollett, J. Chem. Phys. 26 , 1391 (1957). W 2883 S 1168 ia References | 1 (Solid) (Solid) (if, Comments b ( ). Perdeuterated Polyethylene Molecule: No. 113 Symmetry number Symmetry D, h Approximate type Sym. class (CD,), No. mode of Selected value of frequency cr =4 Raman Infrared cm - cm ~ 1 (Solid) ag Vi CD v2 CD, Vl CC 2 sym. stretch scissors stretch. + CCC big big l> 5 CD wag CC stretch V6 v7 CD, CD, anti, stretch CD rock Va 2 2 twist Qu Vg b\ u ^ 10 CD, CD, ^11 CD, rock ^12 CD, sym. ^13 CD, Vl4 CD wag b-iu biu a Doublet due twist anti, stretch stretch scissors the crystal field effect 966 1249 820 916 2197 991 743 2192 E C E C C C E C 526 C 2088 C 1090 C 2102 S 1146 ia M 966 VW ia ia ia 1249 W 916 2197 991 M M M ia ia ia ia ia ia 2192 528 522 2088 1092 1087 S ia M M ia S S S CF [5]. CF [5]. a ). ( ia 889 E 2 to C C 1 (Solid) de- form big 2102 1146 Comments a ia ( ia CF ). [5]. [5]. References [1] IR. [2] IR. [3] R. [4] IR. [5] IR.Th. N. Sheppard and G. B. B. M. Sutherland, Nature 159, 739 (1947). L. C. Leitch, P. E. Gagnon, and A. Cambron, Can. J. Res. B28, 256 (1950). R. G. Brown, J. Chem. Phys. 38, 221 (1963). M. Tasumi. T. Shimanouchi, H. Tanaka, and S. Ikeda, J. Polymer Sci. A2, 1607 (1964). M. Tasumi and T. Shimanouchi, J. Chem. Phys. 43, 1245 (1965). 38 U.S. GOVERNMENT PRINTING OFFICE : 1967 OL— 258-524 Announcement of New Publications in National Standard Reference Data Series Superintendent of Documents, Government Printing Office, Washington, D.C. 20402 Dear Sir: Please add in the series: my name to the announcement list of new publications to he issued National Standard Reference Data Series — National here) Standards. (cut Name Company Address City (Notification key State N-337) Zip Code Bureau of THE NATIONAL BUREAU OF STANDARDS The National Bureau essential to the efficiency The Bureau serves provides measurement and technical information services and effectiveness of the work of the Nation's scientists and engineers. of Standards 1 Government for assuring maximum appliadvancement of technology in industry and also as a focal point in the Federal cation of the physical and engineering sciences to the commerce. To accomplish this mission, the Bureau program areas of research and services: is THE INSTITUTE FOR BASIC STANDARDS organized into three institutes covering broad . . provides the central basis within the . United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: — Applied Mathematics— Electricity— Metrology— Mechanics — Heat — Atomic Physics — Physical Chemistry — Radiation Physics — Laboratory Astrophysics 2 — Radio Standards Laboratory 2 which includes Radio Standards Physics and Radio Standards Engineering — Office of Standard , Reference Data. THE INSTITUTE FOR MATERIALS RESEARCH . . . conducts materials research and provides associated materials services including mainly reference materials and data on the prop- Beyond its direct interest to the Nation's scientists and engineers, this Institute which are essential to the advancement of technology in industry and commerce. This Institute is organized primarily by technical fields: — Analytical Chemistry — Metallurgy— Reactor Radiations — Polymers — Inorganic Materials — Cryogenics 2 — Office of Standard Reference Materials. erties of materials. yields services THE INSTITUTE FOR APPLIED TECHNOLOGY mote the use of available technology and government. The principal elements of . . . provides technical services to pro to facilitate technological innovation in industry and this Institute are: — Building Research — Electronic Instrumentation — Technical Analysis — Center for Computer Sciences and Technology — Textile and Apparel Technology' Center— Office of Weights and Measures — Office of Engineering Standards Services — Office of Invention and Innovation-Office of Vehicle Systems Research — Clearinghouse for Federal Scientific and Technical Information 1 3 — Materials Headquarters and Laboratories at Evaluation Laboratory — NBS/GS A Testing Laboratory. Gaithersburg, Maryland, unless otherwise noted: mailing address Washington. D.C.. 20234. - Located at Boulder. Colorado. 80302. 1 Located at 5285 Port Royal Road. Springfield, Virginia 22151. U.s. DEPARTMENT OF COMMERCE WASHINGTON, D.C. U.S. 20230 OFFICIAL BUSINESS - • POSTAGE AND FEES PAID DEPARTMENT OF COMMERCE