Subido por Jmol Mol

tablesofmolecula11shim

Anuncio
National
Bureau of Standards
Library,
E-01 Admin. Bldg.
OCT 2 5
W.
AlillDE
14 bE34
NSRDS-NBS
Tables of Molecular Vibrational
Frequencies
Part 2.
U.S.
DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
14
5 73
Vo. i I
/? 6 7
£, JK
11
National Standard Reference Data SeriesNational Bureau of Standards
National Standard Reference Data System, Plan of Operation
NSRDS-NBS 1 — 15 cents*
Thermal Properties of Aqueous Uni-univalent Electrolytes
NSRDS-NBS 2 — 45
cents*
Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables — Si
Si III, Si
II,
IV
NSRDS-NBS
3,
Section
1
— 35
cents*
Atomic Transition Probabilities, Volume
NSRDS-NBS 4-12.50*
The Band Spectrum
of
NSRDS-NBS 5-70
I,
Hydrogen Through Neon
Carbon Monoxide
cents*
Tables of Molecular Vibrational Frequencies.
NSRDS-NBS 6 — 40 cents*
Part
1.
Data
High Temperature Properties and Decomposition of Inorganic
NSRDS-NBS 7 — 35
for Fifty-Nine
Salts.
Part
1.
Molecules
Sulfates
cents*
Thermal Conductivity of Selected Materials
NSRDS-NBS 8 — $1.00*
Tables of Bimolecular Gas Reactions
NSRDS-NBS 9Selected Values of Electric Dipole
Moments
for
Molecules in the Gas Phase
NSRDS-NBS 10Tables of Molecular Vibrational Frequencies.
Part 2
NSRDS-NBS 11*Send orders with remittance
ington, D.C. 20402.
to: Superintendent of Documents, U.S. Government Printing Office, WashRemittances from foreign countries should include an additional one-fourth of the
purchase price for postage.
UNITED STATES DEPARTMENT OF COMMERCE
Alexander
B.
Trowbridge,
Secretary,
NATIONAL BUREAU OF STANDARDS
A.
V
Astin, Director
Tables of
Molecular Vibrational Frequencies
Part 2.
Takehiko Shimanouchi
University of Tokyo
Tokyo, Japan
NSRDS
NSRDS-NBS
11
National Standard Reference Data SeriesNational Bureau of Standards 11
(Category 3 — Atomic and Molecular Properties)
Issued October 1967
For sale by the Superintendent of Documents. L .S. Government Printing Office
Washington, D.C. 20402— Price 30 cents
NATIONAL BUREAU Of STANDARDS
9
J'JN
DC.
197(1
oo
I
.U6 73
no.
/
9<*7
G.op
Library of Congress Catalog Card Number: 66-60085
II
.
Xj
I
!
Foreword
The National Standard Reference Data System is a government-wide effort to give to the
community of the United States optimum access to the quantitative data of physical
The program was established in
science, critically evaluated and compiled for convenience.
1963 by the President’s Office of Science and Technology, acting upon the recommendation of the
Federal Council for Science and Technology. The National Bureau of Standards has been assigned responsibility for administering the effort. The general objective of the System is to
technical
coordinate and integrate existing data evaluation and compilation activities into a systematic, com-
prehensive program, supplementing and expanding technical coverage
when necessary,
establish-
ing and maintaining standards for the output of the participating groups, and providing mecha-
nisms for the dissemination of the output as required.
The NSRDS is conducted as a decentralized operation of nation-wide scope with central coordination by NBS.
It comprises a complex of data centers and other activities, carried on in
government agencies, academic institutions, and nongovernmental laboratories. The independent
Data centers
is maintained and encouraged.
produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful
functions derived from standard reference data.
For operational purposes, NSRDS compilation activities are organized into seven categories
as listed below.
The data publications of the NSRDS, which may consist of monographs, looseleaf sheets, computer tapes, or any other useful product, will be classified as belonging to one
operational status of existing critical data projects
that are
components of the
NSRDS
or another of these categories.
An
additional “General” category of
include reports on detailed classifications schemes,
lists
Reference Data, status reports, and similar material.
NSRDS
publications will
of compilations considered to be Standard
Thus,
NSRDS
publications will appear in
the following eight categories:
Category
General
2
Nuclear Properties
Atomic and Molecular Properties
3
4
Solid State Properties
5
Thermodynamic and Transport Properties
6
Chemical Kinetics
Colloid and Surface Properties
Mechanical Properties of Materials
7
8
tion
Title
1
The present compilation is in category 3 of the above list. It constitutes the eleventh
in a new NBS series known as the National Standard Reference Data Series.
publica-
A. V. Astin, Director.
Contents
Page
Foreword
iii
I.
Introduction
1
II.
Tables of vibrational frequencies
3
List of
Tables
Page
B2 H6
Diborane-c^, 10 B 2 D6
Diborane, n B 2 H 6
10
5
87.
6
88.
Chlorobromomethane-<i2
Formaldehyde, H 2 CO
7
89.
Formaldehyde-di,
SiBr 4
8
90.
2,
64. Silicon tetrachloride, SiCl 4
8
91.
9
92. Methylbromide-<i3 ,
9
93. Methylchloride,
60.
61.
62.
Diborane,
63. Silicon tetrabromide,
65. Silicon tetrafluoride,
SiF 4
SiH 4
Silane-d2 SiH 2 D 2
66. Silane,
67.
94.
10
,
68. Silane-<73 ,
SiHD 3
10
95.
69. Silane-d4 ,
SiD 4
11
96.
C 3 H6
C3D6
Cyclobutane, C 4 H 3
Cyclobutane-c^g, C 4 Dg
33
GeH 4
GeH 3 D
Germane-d2 GeH D 2
Germane-c/3 GeHD 3
Germane-^, GeD 4
Nitrogen trifluoride, NF 3
12
98.
12
99.
13
100.
13
101.
14
102.
14
103.
15
15
104.
113.
105.
16
106.
80.
Phosphorus trichloride, PC1 3
Phosphorus trifluoride, PF 3
Tribromochloromethane, CBr 3 Cl..
Dibromodichlorometh&ne, CBr 2 Cl
16
107.
81.
Bromotrichloromethane, CBrCl;
17
108. Cyclopropane,
82.
Dibromomethane,
17
109. Cyclopropane-<76
83.
Dibromomethane-c?i,
18
110.
76.
77.
78.
79.
;
CH^r
CHDBr 2
CD 2 Br 2
85.
Dibromomethane-<72
Chlorobromomethane,
86.
Chlorobromomethane-di, CHDCIBr
84.
,
CH
2
ClBr
23
23
3
24
24
3
3,
25
25
3
3
26
2
27
2,
3
2
3,
3
2
28
2
29
5,
3
29
3
30
3
,
30
2
2
111.
112. Polyethylene,
31
4
2
,
19
IV
3
3
3
18
19
22
3
Germane,
,
21
3
3,
Germane-<7i,
74.
20
2
3,
71.
75.
20
22
11
2
ClBr
CD Br
CH C1
Methylchloride-d CD C1
Methylfluoride, CH F
Methylfluoride-d CD Br
Methyliodide, CH 1
Methyliodide-d CD 1
Methylamine, CH NH
Methylamine-G? CH ND (gas)
Methylamine-G? CD NH (gas)
Methylamine-o? CD ND (gas)
Methylcyanide, CH CN
Methylcyanide- ds CD CN
Ethylene oxide, C H 4 0
Ethylene oxide-t/4 C D 0
Ethylene imine, C H N
97.
,
2
21
Sibcon tetraiodide, Sil 4
73.
CD
HDCO
Formaldehyde-d D CO
Methylbromide, CH Br
70.
72.
,
32
5
34
,
35
36
— (CH 2 n —
37
)
Perdeuterated Polyethylene,
— (CD
2)
n — ...
38
Tables of Molecular Vibrational Frequencies
Part 2.
T.
Shimanouchi
A compilation of vibrational freauencv data for selected molecules is being conducted at the
University of Tokyo in cooperation with the National Standard Reference Data Program of the National
Bureau of Standards as a part of an international effort to compile and evaluate physical and chemical
This report, as a continuation of Part I published as NSRDS—NBS—6, contains fundamental
data.
vibrational frequencies of 54 molecules together with vibrational assignments, sources of data, brief
comments, and citations of references. The procedures used for the preparation of tables are the same
The fundamental frequencies are obtained mainly from the infrared and Raman
as given in Part I.
When these are not avialable, other experimental data such as microwave results are taken
spectra.
The selection of vibrational fundamentals from observed data is based upon careful
into account.
These tables were designed
studies of the spectral data and comprehensive mathematical analyses.
to provide a concise summary needed for the computation of ideal gas thermodynamic properties.
They may also provide a convenient source of information to those who require vibrational energy levels
and related properties in molecular spectroscopy, analytical chemistry, and other fields of physics
and chemistry.
force constants, infrared spectra, modes of vibration, molecular vibrational
frequencies, molecular spectra, Raman spectra.
Key Words: Data,
1.
Introduction
A compilation of vibrational frequency data for
selected molecules is being conducted as a part of
a broad program on the compilation and critical
evaluation of physical and chemical data of many
substances. Vibrational frequency data of molecules are not only useful in research on molecular
structure, but are also essential to accurate computation of ideal gas thermodynamic properties.
These tables will be a convenient source of information in any field of physics or chemistry in which
the vibrational energy levels and related properties
are needed.
These data may also be useful to those
who utilize infrared or Raman spectra as a technique
in analytical chemistry.
This is the second of a series of annual reports
being prepared in cooperation with the National
Standard Reference Data Program of the National
Bureau of Standards. The first report, which has
been published as NSRDS-NBS 6, contains data for
59 molecules. This second report contains another 54 molecules with the serial numbers 60
The author expresses his sincere thanks to many
members of the National Bureau of Standards,
especially C. W. Beckett, D. R. Lide, Jr., E. L.
Brady, and S. A. Rossmassler who helped me in the
planning, the preparation, and the publication of
the tables.
The author also acknowledges the assistance of
his colleagues at the University of Tokyo: I. Nakagawa, A. Hirakawa, I. Suzuki, M. Tasumi, T. Fujiyama, I. Harada, M. Ishii, T. Ueda, H. Yoshioka,
and K. Ishii.
Table
These molecules have been selected from
compounds for which experimental data are
available and normal coordinate treatments have
been made in detail. General comments on the
procedures by which the tables are prepared and
on the explanations of notation and abbreviations
are given in Part 1 (NSRDS-NBS 6).
Only the
important notation and abbreviations are reproduced in the following tables.
1.
Abbreviations for approximate type of mode
113.
1
stretch.
stretching
twist.
twisting
deform.
rock.
deformation
rocking
wag.
bend.
wagging
bending
sym.
symmetric
deg.
degenerate
anti.
antisymmetric
”
Table
Notation
Uncertainty for the selective values of frequencies
2.
Basis*
Uncertainty
cm~
0-
A
l
1
Gas, grating spectrometer, rotational fine structure accurately analyzed.
Gas, grating spectrometer, a sharp Q branch.
(i)
(ii)
B
~3
1
Gas, grating spectrometer, rotational fine structure partly analyzed.
Gas, prism spectrometer, fairly high resolution (e.g., 700 — 1000 cm -1 for
(i)
(ii)
NaCl
C
3
—6
6-15
D
15-30
E
prism).
(i)
Gas, prism spectrometer, low resolution
(ii)
prism).
Solid, liquid or solution, accurate
(i)
Gas prism spectrometer, very low resolution
(ii)
prism).
Solid, liquid or solution, inaccurate
(e.g.,
1000
— 2000 cm -1
for
NaCl
> 2000 cm -1
for
NaCl
measurement.
(e.g.,
measurement,
(ii)
Value estimated from Fermi resonance doublet.
Value estimated from overtone or combination tone.
(iii)
Calculated frequency.
(i)
*The uncertainty assigned here
to
each method of measurement
is
a typical value; greater accuracy
is
often achieved with
some
of the methods.
Table
3.
VS
s
M
W
VW
Abbreviations used with “ infrared ”
very strong
strong
ia
inactive
b
medium
weak
very weak
vb
sh
broad
very broad
shoulder
The
Raman
may
also
be indicated by
which gives a rough estimation of
relative intensity.
intensity
— (10),
of a
line
Table
FR
4.
Abbreviations used in “Comments
Fermi Resonance with an overtone or
combination tone indicated
a
in the paren-
theses which follow.
OC
polarized
depolarized
P
dp
(1)
and “Raman”
Frequency estimated from an overtone or
a combination
parentheses.
tone
in
the
CF
Calculated frequency.
SF
Calculation shows that the frequency approximately equals that of the vibration
indicated in the parentheses.
TA
Tentative assignment.
OV
Overlapped by the band indicated
parentheses.
Depolarization degree.
2
indicated
in the
II.
Tables of Vibrational Frequencies
Pages 5 to 38
'
!
Symmetry
BH
2
No. 60
6
D 2n
Symmetry number
Approximate type
Sym.
class
10
Diborane
Molecule:
No.
of
mode
Selected
value of
frequency
cr
=4
Raman
Infrared [ 6 ]
cm ~
V2
V3
BH
BH
BH
v±
Ring deform
Vi
2
sym. stretch
ring stretch
scissors
2
2537 C
2110 C
1186 C
ia
816
C
ia
829
1768
1044
2625
955
368
2640
930
D
Comments
8]
cm -1
1
(Gas)
(Gas)
ag
[
2537 VS
2110 S
1186
816 S
b
820 ( 2 )
ia
ia
M
|
(liquid)
CLu
big
v»
Vq
BH 2 twist
BH ring stretch
BH 2 wag
BH anti, stretch
BH rock
Vio
Ring puckering
Vi,
V6
V7
bin
b'2g
& 2u
b*iu
2
Vu
BH
V\2
BH?
BH
Vis
2
anti, stretch
rock
b
ring stretch
BH? wag
V 14
l>
bsu
2
BH twist
BH 2 sym. stretch
BH ring stretch, and
15
2
V 16
Vn
C
E
C
E
C
E
E
1920
E
a
829
1
VW
ia
1768
ia
W
OC(^5+V7)
ia
2625
VS
2640
ia
W,
(1992
W)
BH
a
b
c
2
scissors
^
977
1012
2528
1606
C
E
C
C
2528
1606
VS
ia
VVS
ia
1181
C
1181
VS
ia
977 S
ia
CF. C
ia
References
Anderson and A.
R.
T. F.
[2]
F. Stitt, J.
[3]
IR.R.
Th.
[4]
IR.
[5]
[6]
IR.R.
IR.R.
[7]
IR.
[8]
R.
Th.
[9]
B. Burg,
Chem. Phys. 9, 780
J.
Chem. Phys. 6, 586
(1938).
(1941).
R. P. Bell and H. C. Longuet-Higgins, Proc. Roy. Soc. (London) A183, 357 (1945).
W. C. Price, J. Chem. Phys. 16, 894 (1948).
A. N. Webb, J. T. Neu, and K. S. Pitzer, J. Chem. Phys. 17, 1007 (1949).
R. C. Lord and E. Nielsen, J. Chem. Phys. 19, 1 (1951).
W. J. Lehman, J. F. Ditter, and J. Shapiro, J. Chem. Phys. 29, 1248 (1958).
R. C. Taylor and A. R. Emergy, Spectrochim. Acta 10, 419 (1958).
T. Ogawa and T. Miyazawa, Spectrochim. Acta 20 , 557 (1964).
5
258-524 0-67
2
b
}
Forbidden by the selection rule, observed very weakly, and also confirmed by a combination band.
Corrected for a presumed shift due to Fermi resonance.
Expected frequency from vi 5 of n B 2 H6.
[1]
[9].
OC(l^i 0 +^ 12 )[ 6 ].
ia
M
6 ].
ia
deform.
Vis
CF
ia
368 S
1882
[
ia
Diborane-d6
Molecule:
Symmetry
B D6
No. 61
2
D 2h
Symmetry number cr= 4
Approximate type
Sym.
class
10
No.
of
mode
Selected
value of
frequency
Raman
Infrared [ 2 ]
cm -
cm~
1
(Gas)
ag
Vs
BD
BD
BD
Va
Ring deform
V\
V2
v9
Ring puckering
VG
bin
Vs
V7
V11
V\2
V\s
bin.
Via
bsg
V15
bsu
Vie
V17
a
2
BD anti, stretch
BD rock
BD ring stretch
BD wag
BD twist
BD sym. stretch
BD ring stretch, and
a
2
9
2
ia
C
C
C
ia
929
726
592
D
1273
870
1999
705
262
C
E
C
E
C
1980
E
740
2
2
E
1860
1511
ring stretch
scissors
Vio
big
bsu
2
sym. stretch
BD twist
BD ring stretch
BD 2 wag
BD 2 anti, stretch
BD 2 rock
Vs
big
2
a
1465
728
730
1845
E
E
C
C
C
1205
C
881
C
S, p
p
VS, p
OC(l'5
ia
1273
(2)
a
b
BD
2
scissors
OC(v 9 +Vio).
ia
1975
(2000
ia
(9)
(5))
dp
dp
M
FR(^5+
ia
[1]
IR.
[2]
IR. R.
[3]
R.
[4j
Th.
A. N. Webb, J. T. Neu, and K. S. Pitzer, J. Chem. Phvs. 17, 1007 (1949).
R. C. Lord and E. Nielsen, J. Chem. Phys. 19, 1 (1951).
R. C. Taylor and A. R. Emergy, Spectrochim. Acta 10, 419 (1958).
T. Ogawa and T. Miyazawa, Spectrochim. Acta 20, 557 (1964).
6
j/i 2 ).
V 7).
ia
730
(4)
dp
ia
1
ia
ia
Corrected for a presumed shift due to Fermi resonance.
Forbidden, by the selection rule, observed very weakly, and also confirmed by a combination band.
References
).
1
ia
VS
|FR (^6 + ^ 15
OC(^io +
ia
881
7 ).
ia
deform.
Vis
+V
ia
262M
1857 VS
(1799 S)
1205 VVS
b
7 ).
0C(V 5 +Vi 5 ).
OC(l' 5
VS
+v
dp
ia
1491
1459 MS
728 S
|fR(2i/ 3 ).
VS, p
WW
ia
1999
Comments
l
VS, p
1880
1833
1511
929
726
ia
592
2]
(Liquid)
ia
»
[
FRte + vis).
1
Diborane
Molecule:
No. 62
Symmetry D 2h
Symmetry number cr— 4
Approximate type
Sym.
class
1
No.
of
Selected
value of
frequency
mode
Infrared
[6]
Raman
cm (Gas)
vz
BH 2 sym. stretch
BH ring stretch
BH scissors
1^4
Ring deform
CL U
V5
BH
big
V6
BH ring stretch
BH wag
BH anti, stretch
BH rock
Vi
V2
829
twist
b
2
950 E
Ring puckering
BH anti, stretch
BH rock
BH ring stretch
BH wag
BH twist
BH sym. stretch
BH ring stretch, and
2
Vi 5
bzu
Vi 6
b
2
2
2
vn
ia
ia
a
1768
368
2591
920
2
V 14
bzg
D
2
Vio
Vi 3
ia
ia
C
C
E
1035 E
2612 C
vn
V 12
&2u
1180
794
2
vs
v9
b2g
2
C
2104C
2
Vi
b\u
2524
E
973
1012
2525
1602
C
C
C
C
1177
C
cm 2524
2104
1180
794
(10)
(10)
(7)
(10)
BH
a
b
2
scissors
1788
1747
(1)
(1)
B. Burg, J.
Chem. Phys. 6, 586
368 S
ia
(9)
OC(ri 0 + ^ 12 ).
M
1887
(1999 W)
973 S
ia
1
a
ia
1012
(5)
2525
1602
VS
VVS
ia
1177
VS
ia
F. Stitt,
[3]
Th.
R. P. Bell and H. C. Longuet-Higgins, Proc. Roy. Soc. (London) A183, 357 (1945).
W. C. Price, J. Chem. Phys. 16, 894 (1948).
A. N. Webb, J. T. Neu, and K. S. Pitzer, J. Chem. Phys. 17, 1007 (1949).
R. C. Lord and E. Nielsen, J. Chem. Phys. 19, 1 (1951).
W. J. Lehman, J. F. Ditter, and J. Shapiro, J. Chem. Phys. 29, 1248 (1958).
R. C. Taylor and A. R. Emergy, Spectrochim. Acta 10, 419 (1958).
T. Ogawa and T. Miyazawa, Spectrochim. Acta 20, 557 (1964).
[8]
[9]
Th.
[7]
(1938).
(1941).
7
dp
ia
T. F.
[5]
).
ia
2591
R.
[6]
9 ).
).
IR. R.
IR.
IR. R.
IR. R.
IR.
R.
1^
OC(v 5 + v 9
OC(r 9 + rio).
ia
[2]
[4]
FR(r 5 +
ia
[1]
Chem. Phys. 9, 780
dp
dp
OC(r 5 + v 7
VS
References
J.
OC(r 5 + r 7 a
OC(r 5 + v 9 ).
).
ia
Forbidden by the selection rule, observed very weakly, and also confirmed by a combination band.
Corrected for a presumed shift due to Fermi resonance.
Anderson and A.
p
ia
deform.
Vis
p
p
ia
2612
Comments
(Liquid)
VW
ia
C
C
E
1915
829
[6],
dp
2
Silicon tetrabromide
Molecule:
Approximate type
Sym.
No.
class
SiBr4
No. 63
Symmetry number
Symmetry T d
of
mode
1
Selected
value of
frequency
cr
= 12
Infrared
cm ~
Raman
cm ~
1
Comments
1
(Liquid)
ai
V\
e
V'2
h
GO
4.
sym. stretch
SiBr 4
SiBr 4
SiBr 4
SiBr 4
deg. deform
deg. stretch
deg. deform
249
90
487
137
C
C
C
C
ia
ia
249
90
487
(4)
137
(3)
p
(3)
(1)
1
References
[1]
[2]
[3]
[4]
[5]
Trumpy,
B.
Z.
Physik
68
,
675 (1931).
G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945).
M. L. Delwaulle, J. Chem. Phys. 56, 355 (1952).
D. A. Long, T. V. Spencer, D. N. Waters, and L. A. Woodward, Proc. Roy. Soc. (London) A240, 499 (1957).
M. Radhakrishnan, Z. Physik. Chem. (Frankfurt) 35, 247 (1962).
Molecule:
Silicon tetrachloride
Symmetry T d
Sym.
class
No. 64
Symmetry number
Approximate type
No.
SiCl 4
of
mode
Selected
value of
frequency
cr
=1
Infrared
cm ~
1
Raman
Comments
cm (Liquid)
ai
V\
e
Vi
h
SiCl 4 sym. stretch
SiCl 4 deg. deform
^3
SiCR deg.
^4
SiCl 4 deg. deform
stretch
424
150
621
221
C
C
C
C
ia
ia
621
VS
424
(5) p
150 (4)
610 (2b)
221 (4)
References
[1J
[4]
R.
R. IR.
R.
[5]
Th.
[2]
[3]
G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945).
L. Delwaulle, J. Phys. Chem. 56, 355 (1952).
A. L. Smith, J. Chem. Phys. 21, 1997 (1953).
D. A. Long, T. V. Spencer, D. N. Waters, and L. A. Woodward, Proc. Roy. Soc. (London) A240, 499 (1957).
M. Radhakrishnman, Z. Physik. Chem. (Frankfurt) 41, 197 (1964).
M.
8
Molecule:
Silicon tetrafluoride
Symmetry T d
Symmetry number cr= 12
Approximate type
Sym.
No.
class
No. 65
SiF 4
mode
of
Selected
value of
frequency
Infrared
cm~
l
Raman
Comments
cm -1
(Liquid)
ax
V\
e
V-2
h
V*
SiF 4
SiF 4
SiF 4
SiF 4
V4
a 28
Si 23
F4
sym. stretch
deg. deform
deg. stretch
deg. deform
C
C
B
389 B
801
264
1032
ia
ia
a
1031.8 S
a
389.35 S
800 S
268
1010
390
W
W
W
.
References
J. S. Kirby-Smith, P. J. H. Woltz, and A. H. Nielsen,
Heicklen and V. Knight, Spectrochim. Acta 20, 295 (1964).
L. Duncan and I. M. Mills, Spectrochim. Acta 20, 1089 (1964).
[1]
R.IR.
E. A. Jones,
[2]
IR.
J.
[3]
Th.
J.
Molecule:
(1951).
No. 66
Symmetry T d
class
Chem. Phys. 19, 242
SiH 4
Silane
Sym.
J.
Symmetry number cr= 12
Approximate type
No.
of
mode
Selected
value of
Infrared
Raman
cm~
cm -1
frequency
Ul
Vi
e
V-I
ft
Vz
V4
a
SiH 4
SiH 4
SiH 4
SiH 4
Coriolis interaction
sym. stretch
deg. deform
deg. stretch
deg. deform
between
v-z
and v4
2187 B
975 C
2191 A
914 B
x
ia
a
974.6
2190.6
914.2
2187.0 S
978
W
.
References
[1]
[2]
R.
IR.
[3]
[4]
IR.
[5]
IR.
and D. M. Yost, J. Chem. Phys. 4, 82 (1936).
C. H. Tindal, J. W. Straley, and H. H. Nielsen, Phys. Rev. 62, 151 (1942).
G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand,
D. F. Ball and D. C. McKean, Spectrochim. Acta 18, 1019: 1029 (1962).
I. W. Levin and W. T. King, J. Chem. Phys. 37, 1375 (1962).
F. B. Stitt
9
New
York, 1945).
Comments
Molecule:
SiH 2 D 2
Silane-di
No. 67
Symmetry C 2v
Approximate type
Sym.
No.
class
a
Symmetry number cr= 2
V\
x
v>
Vz
V\
of
mode
SiH> sym. stretch
SiD? sym. stretch
SiH 2 scissors
SiD 2 scissors
SiH? twist
do
b\
V6
v-i
b2
^9
SiH 2 anti, stretch
SiH 2 rock
SiD 2 anti, stretch
SiH 2 wag
Selected
value of
frequency
Infrared
Raman
cm~
cm~
x
2189 C
1587 C
944 B
683 B
844 E
2183 C
743 B
2189
1587
944
C
B
1601
S
S
S
862
M
1601
862
Comments
x
S
S
W
M
682.5
CF
ia
2183
743
[1].
Reference
[1]
IR.Th.
J.
H. Meal and M. K. Wilson,
Molecule:
J.
Chem. Phys. 24, 385
SiHD 3
Silane-<i 3
Symmetry C 3v
Sym.
No. 68
Symmetry number
Approximate type
No.
class
(1956).
of
mode
Selected
value of
cr
—3
Infrared
Raman
Comments
frequency
cm~
a
Vx
x
V2
r3
e
Va
ve
SiH stretch
SiD 3 sym. stretch
SiD 3 sym. deform
SiD 3 deg. stretch
SiH bend
SiD 3 deg. deform
2182 C
1573 C
683 C
1598 C
851 B
683 C
References
[1|
IR.
J.
[2J
IR.
I.
H. Meal and W. K. Wilson, J. Chem. Phys. 24, 385
W. Levin and W. T. King, J. Chem. Phys. 37, 1375
(1956).
(1962).
10
2182
1573
683
1598
851
683
x
cm~
l
M
S
S
S
S
S
SF(r 6 ).
SF(r 3 ).
Molecule:
No. 69
SiD 4
Silane-d 4
Symmetry number cr= 12
Symmetry T d
Approximate type
Sym.
No.
class
of
Selected
value of
mode
Infrared
Raman
Comments
frequency
cm ~
SiDj <sym streteh
l/o
h
Vz
r4
1558
700
1597
681
SiD deg. deform
SiD 4 deg. stretch
SiD 4 deg. deform
j
E
E
B
C
cm~
1
x
CF
CF
[41.
[4].
1597 S
681 S
References
[3]
IR.
IR.
IR.
[4]
Th.
[1]
[2]
H. Meal and M. K. Wilson, J. Chem. Phys. 24, 385 (1956).
D. F. Ball and D. C. McKean, Spectrochim. Acta 18, 1019; 1029 (1962).
I. W. Levin and W. T. King, J. Chem. Phys. 37, 1375 (1962).
T. Shimanouchi, I. Nakagawa, J. Hiraishi, and M. Ishii, J. Mol. Spectry. 19, 78 (1966).
J.
Silicon tetriodide
Molecule:
Symmetry number cr= 12
Symmetry T d
Approximate type
Sym.
No.
class
No. 70
Sil 4
of
mode
Selected
value of
frequency
Infrared
cm ~
Sil 4
e
V2
Sil 4 deg.
h
Vz
Sil 4 deg. stretch
V4
Sil 4 deg.
ai
168
63
405
94
sym. stretch
V\
deform
deform
C
C
C
C
Reference
[1]
R.
M.
L. Delwaulle,
J.
Phys. Chem.
56
,
355 (1952).
11
ia
ia
1
Raman
cm~
l
168 S, p
63 M, dp
405 W, dp
94 S, dp
Comments
1
GeH
Germane
Molecule:
No. 71
4
Symmetry T d
Symmetry number cr= 12
Approximate type
Sym.
No.
class
of
v3
GeH 4
GeH 4
GeH 4
sym. stretch
deg. deform
deg. stretch
v4
GeH 4
deg. deform
Cll
V\
e
V-2
ft
Selected
value of
frequency
mode
2106 B
931 D
2114 B
819 B
Infrared
Raman
cm~
cm ~
x
Comments
1
2106 S, p
920
2106
ia
W
W
(liquid)
816 W
a
930.9
2113.6
819.3
(liquid)
a
Coriolis interaction
between
v-z
and v 4
.
References
[1]
IR.
[2]
R.
[3]
[4]
IR.R.
[5]
IR.
W. Straley, C. H. Tindal, and H. H. Nielsen, Phys. Rev. 62, 161 (1942).
K. Schafer and J. M. Gonzalez Barredo, Z. Physik. Chem. 193 , 334 (1944).
G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand,
L. P. Lindeman and M. K. Wilson, Z. Physik. Chem. (Frankfurt) 9, 29 (1956).
A. A. Chalmers and D. C. McKean, Spectrochim. Acta 21, 1941 (1965).
J.
Molecule:
Germane-c/i
class
Ul
Approximate type
V\
v-i
Vi
e
v4
Vi
va
No. 72
3
Symmetry number
No.
of
GefG sym.
Selected
value of
frequency
mode
stretch
GeD stretch
GeH sym. deform
GeH deg. stretch
GeH 3 deg. deform
GeH 3 rock
.3
.3
=3
Infrared
Raman
cm -
cm -
2106 C
1520 B
820 C
2112 B
820
2112
C
C
901
706
901
706
cr
1
2106
1520.4
M
S
S
W
S
References
[1
)
[2 J
IR.
L. P.
IR.R.
L. P.
York, 1945).
GeH D
Symmetry C 3v
Sym.
New
Lindeman and M. K. Wilson,
Lindeman and M. K. Wilson,
J.
Chem. Phys. 22, 1723 (1954).
Chem. (Frankfurt) 9, 29
Z. Physik.
12
(1956).
Comments
1
Germane-d 2
Molecule:
GeH D
2
No. 73
2
Symmetry number cr= 2
Symmetry C 2v
Approximate type
Sym.
No.
class
Gl
V\
a2
V2
v3
V4
v5
vG
V7
V8
bt
b2
of
Selected
value of
frequency
mode
GeH sym. stretch
GeD 2 sym. stretch
GeH 2 scissors
GeD 2 scissors
GeH 2 twist
GeH 2 anti, stretch
GeH 2 rock
GeD 2 anti, stretch
GeH wag
2112
1512
2
V9
881
620
807
2112
657
1522
770
2
C
C
B
C
E
C
C
C
C
Infrared
Raman
cm ~
cm -1
1
Comments
2112
1512
881
620
807
2112
657
1522
770
Reference
[1]
IR.
L. P.
Lindeman and M. K. Wilson,
Germane-d3
Molecule:
Symmetry
Sym.
class
Z. Physik.
GeHD
(Frankfurt) 9, 29 (1956).
No. 74
3
Symmetry number a — 3
C.3 V
Approximate type
No.
Chem.
of
Selected
value of
frequency
mode
Infrared
cm ~
ai
GeH stretch
GeD 3 sym. stretch
GeD 3 sym. deform
GeD 3 deg. stretch
GeH bend
GeD 3 deg. deform
Vi
l>2
e
v3
v4
V5
V6
2112 B
1504 B
593 C
1522 C
792 B
625 C
cm -
1
2112.4
1504
595
1522
792.3
625
References
[1]
IR.
L. P.
[2]
IR.R.
L. P.
Lindeman and M. K. Wilson,
Lindeman and M. K. Wilson,
J.
Chem. Phys. 22, 1723 (1954).
Chem. (Frankfurt) 9, 29
Z. Physik.
13
258-524
0 - 67—3
Raman
(1956).
Comments
1
1
GeD
Germane-d 4
Molecule:
Symmetry T d
Symmetry number
Approximate type
Sym.
No.
class
No. 75
4
of
mode
Selected
value of
frequency
<x
Vi
ft
V3
GeD 4
GeD 4
GeD 4
GeD 4
V-2
Va
a
Coriolis interaction
1504
665
1522
596
sym. stretch
deg. deform
deg. stretch
deg. deform
between v2 and
C
ia
W
a
B
1522.2 S
665
Raman
cm ~
1
D
C
12
Infrared
cm ~
ai
e
=
Comments
1
1504
S
596
v*.
Reference
[1J
IR.R.
L. P.
Molecule:
Lindeman and M. K. Wilson,
Z. Physik.
Nitrogen trifluoride
NF3
Symmetry
Sym.
class
a
x
e
Approximate type
of
mode
V\
NF 3
Vt
NF3 sym. deform
V\
(Frankfurt) 9, 29 (1956).
No. 76
Symmetry number
C,3 V
No.
Vz
Chem.
NF 3
NF 3
sym. stretch
deg. stretch
deg. deform
Selected
value of
frequency
1032
647
905
493
C
C
C
C
<j
=3
Infrared
cm -
cm -
(Gas)
(Liquid)
1032 S
647
905 S
493
1050
667
905
515
W
W
References
[2]
IR.
IR.
[3]
IR.R.
[1]
[4]
IR.
[5]
Th.
C. R. Bailey, S. C. Carson, and J. W. Thompson, J. Chem. Phys. 5, 274 (1937).
M. K. Wilson and S. R. Polo, J. Chem. Phys. 20, 1716 (1952).
E. L. Pace and L. Pierce, J. Chem. Phys. 23, 1248 (1955).
P. N. Schatz and I. W. Levin, J. Chem. Phys. 29, 475 (1958).
P. N. Schatz, J. Chem. Phys. 29, 481 (1958).
14
Raman
Comments
Phosphorus trichloride
Molecule:
Symmetry number a = 3
Symmetry C 3v
Approximate type
Sym.
No.
class
No. 77
PCI3
of
mode
Selected
value of
Raman
Infrared
Comments
frequency
cm ~
cm -1
1
(Liquid)
(Gas)
V\
ai
V-I
e
Vz
VA
PC1 3 sym. stretch
PC1 3 sym. deform
PC1 3 deg. stretch
PC1 3 deg. deform
504 C
252 C
482 C
198 C
504
252
482
510
257
480
190
198
(10)
(6)
(3)
p
p
dp
dp
(10)
References
[3]
R.
IR.
IR.
[4]
Th.
[1J
[2]
K.
P.
W. F. Kohlrausch, Der Smekal-Raman Effekt, Erganzungsband, 1931-1937,
W. Davais and R. A. Oetzen, J. Mol. Spectry. 2, 253 (1958).
Lorenzelli, Compt. Rend. 252, 3219 (1961).
Springer, Berlin, 1938.
V.
A. M. Mirri, F. Scappini, and P. G. Favero, Spectrochim. Acta 21, 965 (1965).
Phosphorus
Molecule:
trifluoride
Sym.
Approximate type
No.
PF
No. 78
3
Symmetry number
Symmetry C 3v
class
J.
of
mode
Selected
value of
<x
=3
Infrared
Raman
frequency
cm~
CLl
V\
V2
e
Vz
V4
PF 3 sym. stretch
PF 3 sym. deform
PF 3 deg. stretch
PF 3 deg. deform
892
487
860
344
C
C
D
C
l
(Liquid)
892 S
487
860 S
344
890
486
840
M
M
References
[3]
R.
IR.
IR.
[4]
Th.
[1]
[2]
D. M. Yost and T. F. Anderson, J. Chem. Phys. 2, 624 (1934).
H. S. Gutowsky and A. D. Liehr, J. Chem. Phys. 20, 1652 (1952).
M. K. Wilson and S. R. Polo, J. Chem. Phys. 20, 1716 (1952).
A. M. Mirri. F. Scappini, and P. G. Favero, Spectrochim. Acta 21, 965 (1965).
15
cm -1
(Gas)
(10)
(3)
(10)
Comments
CBr3 Cl
Tribromochloromethane
Molecule:
Symmetry number a = 3
Symmetry C 3v
Approximate type
Sym.
No.
class
No. 79
of
Selected
value of
frequency
mode
Infrared
cm _1
Raman
cm~
Comments
l
(CeHe
CCI4
ai
V\
CC1
V-1
CBr 3 sym.
stretch
745
C
327
C
747 S
(CS 2
stretch
soln.)
748
(1)
326
(10)
p
210
677
(10)
p
(4)
dp
141
(7)
dp
soln.)
329
W
(C 7 H 14 soln.)
Vz
e
Va
CBr 3 sym. deform
CBr3 deg. stretch
211
677
C
C
CC1 bend, (vq)
CBr 3 deg. deform.
211
140
E
675 S
(CS 2
1/5
(v 5 )
SF(r5 ).
soln.)
SF(lAj).
C
References
[1]
R.IR.
[2]
IR.
[3]
R.
R.
[4]
A. G. Meister, S. E. Rosser, and F. F. Cleveland, J. Chem. Phys. 18, 346 (1950).
E. K. Plyler, W. H. Smith, and N. Acquista, J. Res. NBS 44, 503 (1950), RP2097.
M. L. Delwaulle, M. B. Buiss^t, and M. Delhaye, J. Am. Chem. Soc. 74, 5768 (1952).
R. H. Krupp, S. M. Ferogle, and A. Weber, J. Chem. Phys. 24, 355 (1956).
Dibromodichloromethane
Molecule:
class
Approximate type
No.
No. 80
Symmetry number
Symmetry C 2v
Sym.
CB^CL
of
mode
Selected
value of
frequency
cr
=2
Infrared
cm ~
cm ~
1
(Liquid)
ai
V\
V2
l>3
CCI 2 sym. stretch
CBr 2 sym. stretch
CCI 2 scissors V 4 )
(
V4
CBr? scissors
a2
r 5
b
^6
CCI 2 twist
CBr 2 anti, stretch
CCI 2 wag
CCI 2 anti, stretch
CCI 2 rock
!
>
P7
62
^8
^9
(v^)
733
380
242
154
175
683
230
768
262
C
C
C
C
C
C
C
C
C
VS
733
377
W
683
VS
768
VS
References
[1]
IR.
[2J
R. IR.
E. K. Plyler and W. S. Benedict, J. Res. NBS 47, 202 (1951),
A. Davis, F. F. Cleveland, and A. G. Meister, J. Chem. Phys.
16
RP
2245.
20, 454
Raman
(1952).
1
(Liquid)
734 (1) p
380 (10) p
242 ( 6 ) p
154 (4) p
175 (2) dp
684 (3) dp
229 (2) dp
771 (0) dp
262 ( 1 ) dp
Comments
p
CBrCl 3
Bromotrichlromethane
Molecule:
Symmetry number <x= 3
Symmetry C 3v
Approximate type
Sym.
No.
class
No. 81
of
Selected
value of
frequency
mode
Infrared
cm ~
1
(Liquid)
VQ
CC1 3 sym. stretch
CBr stretch
CC1 2 sym. deform
V\
ai
Vt
€
Vi
CCI3 deg. stretch
V5
CBr bend,
V6
CCI3 deg. deform.
716
422
247
775
295
193
(i^)
(r 5 )
C
C
C
C
C
C
719
420
VS
773
294
VS
W
W
Raman
cm ~
Comments
1
(Liquid)
716.3 (2) p
422.3 (10) p
247.3 (5) p
775.3 (1) dp
295.0 (3) dp
193.3 (4) dp
References
and A. G. Meister, J. Chem. Phys. 18, 1076 (1950).
R. Madigan and F. F. Cleveland, J. Chem. Phys. 19, 119 (1951).
E. K. Plyler and W. S. Benedict, J. Res. NBS 47, 202 (1951), RP 2245.
[1]
R.
J.
[2]
IR.
J.
[3]
IR.
P. Zietlow, F. F. Cleveland,
Dibromomethane
Molecule:
Approximate type
No.
class
2
No. 82
2
Symmetry number
Symmetry C 2v
Sym.
CH Br
of
mode
Selected
value of
frequency
a— 2
Infrared
cm~
l
(Liquid)
V\
fli
V2
Vz
l>4
sym. stretch
scissors
CBr 2 sym. stretch
CBr 2 scissors
2 twist
2 anti, stretch
Vs
V9
CBr 2
r5
b1
^6
V7
a
2
2
CH
CH
CH rock
CH wag
a2
b-2
CH
CH
Apparently the
2
2
C 2V
anti, stretch
C
C
C
C
C
C
C
1192 C
638 C
2989
1389
579
174
1096
3065
813
2989
1389
579
a
W
[2]
[3]
[4]
R.
R.
IR.
IR.
M.
Wagner,
W
174 S, p
1089 W. dp
3061 W, dp
1096
3065 S
813
1192 S
638 S
M
selection rule does not hold in the liquid state.
Z. Physik.
L. Delwaulle
17
1
2988 M, p
1387 M,
577 S, p
Chem. B45, 69 (1939).
and F. Francois, J. Phys. Radium 7, 15 (1946).
E. K. Plyler, W. A. Smith, and N. Acquista, J. Res. NBS 44, 503 (1950) RP2097.
I. Suzuki, unpublished work.
J.
cm ~
(Liquid)
M
M
References
[1]
Raman
1183
639
W, dp
W, dp
Comments
Dibromomethane-di
Molecule:
Symmetry C
No. 83
2
Symmetry number
s
Approximate type
Sym.
No.
class
CHDBr
mode
of
Selected
value of
frequency
=
cr
1
Raman
Infrared
cm~
cm~
1
(Liquid)
v4
CH
CD
CH
CD
V5
CBr 2 sym.
t
a
V\
V2
Vi
stretch
stretch
bend
bend
stretch
3030
2247
1245
702
563
a
n
a
CH
CD
V7
Vs
V9
a
Assumed
to
bend
bend
CBr 2
anti, stretch
174
1151
836
622
C
C
C
C
C
3030
2247
1245
702
563
Comments
1
(Liquid)
M
W
W
M
M
D
C
C
C
1151 S
836
622
M
W
have the same value as the corresponding frequencies of CILBrz and
CD
2
Br 2
.
References
[1J
IR.
I.
Suzuki, unpublished work.
Dibromomethane-</ 2
Molecule:
Symmetry C 2v
2
No. 84
2
Symmetry number
Sym.
Approximate type
No.
class
CD Br
of
mode
Selected
value of
frequency
cr
—2
Infrared
cm ~
1
(Liquid)
a
Vi
i
V2
Vs
V4
<22
v5
6,
Vs
V7
b2
a
Vs
V9
Apparently the
CD
CD
2
sym. stretch
scissors
CBr 2 sym. stretch
CBr 2 scissors
CD 2 twist
CD 2 anti, stretch
2
CD rock
CD wag
2
2
CBr 2
C 2v
anti, stretch
2192
1028
553
174
779
2313
637
901
779
C
C
C
C
C
C
C
C
C
selection rule does not hold in the liquid state.
References
[1]
[2]
R.
IR.
B.
I.
Trumpy, Z. Physik. 100 , 250 (1936).
Suzuki, unpublished work.
18
2192
1028
553
a
M
W
W
779 W
2313 S
637
901 S
779 S
M
Raman
cm ~
1
(Liquid)
2195
1023
548
174
2235
Comments
p
CH
Chlorobromomethane
Molecule:
Symmetry C
Approximate type
No.
class
ClBr
No. 85
Symmetry number cr=
s
Sym.
2
of
Selected
value of
mode
1
Raman
Infrared
Comments
frequency
cm ~
cm ~
1
1
(Liquid)
a
V-1
Vz
V\
CC1
CBr
stretch
stretch
CCL scissors
2 anti, stretch
2 twist
v5
a
a
It
3003 A
1482 D
1231 B
744 B
614 B
229 C
3066 B
1128 C
CHo sym. stretch
CHo scissors
CH> wag
V\
Vs
CH
CH
V9
CH>
v7
in the liquid state is
found
at
1407
M
W
W
(liquid)
852 W
3066
1127
852 B
rock
The corresponding frequency
a
3003 S
1482
1231 S
744 VS
614 S
cm -1
.
This band
2986 M. p
1410 M,
1229 W, p
731 M, p
606 S, p
229 S. p
3055 M, dp
1130
W
848 W
may be
assigned to the overtone of the CC1
stretching vibration.
References
[lj
IR.
[2j
[3J
IR.R.
IR.R.
[4J
IR.
E. K. Plyler. W. A. Smith, and W. Acquista. J. Res. NBS 44, 503 (1950) RP2097.
A. Weber, A. G. Meister. and F. F. Cleveland. J. Chem. Phys. 21, 930 (1953).
A. N. Tanaka. K. V. Narasimham, A. G. Meister. J. M. Dowling. F. F. Cleveland. S. Sundaram. E. A. Piotrowski. R. B.
Bernstein, and S. I. Miller, J. Mol. Spectry. 15, 319 (1965).
I. Suzuki, unpublished work.
Chlorobromomethane-cC
Molecule:
Symmetry
class
Approximate type
No.
No. 86
Symmetry number
Ci
Sym.
CHDCIBr
of
Selected
value of
frequency
mode
Infrared
cm~
a
V\
V2
V3
Vi
V5
V6
V7
Vs
V9
CH
CD
CH
CH
CD
CD
stretch
stretch
bend
bend
bend
bend
CC1 stretch
CBr stretch
CBrCl scissors
:.
3031 C
2252 C
1262 C
1188 B
868 B
746 B
711 B
607 C
228 C
=
cr
a
a
a
l
3031 S
2252
1262 S
1188
868
746
711 S
607
M
M
M
W
W
1
Raman
cm~
Comments
1
(Liquid)
S, p
S, p
3024
2245
1264
1179
867
743
707
586
228
W,
W,
W
p
p
VW
M, p
S, p
S, p
1
a
The value
in the liquid state.
References
r
1
1
IR.R.
A. N. Tanaka. K. V. Narasimham. A. G. Meister. F. F. Cleveland. S. Sundaram. F. A. Piotrowski. R. B. Bernstein, and S.
Miller, J. Mol. Spectry. 15, 319 (1965).
19
I.
Symmetry C
No. 87
Symmetry number a —
s
Approximate type
Sym.
No.
class
CD?ClBr
Chlorobromomethane-d?
Molecule:
of
mode
Selected
value of
1
Raman
Infrared
Comments
frequency
cm~
cm ~
1
1
(Liquid)
v5
CD? sym. stretch
CD? scissors
CD? wag
CC1 stretch
CBr stretch
V7
CRrCl scissors
CD? anti, stretch
Vs
V9
CD? twist
CD? rock
t
a
V\
V2
V3
V4
a
n
[1]
a
The value
2208
1050
936
717
582
226
2305
B
B
B
B
B
811
667
B
C
C
C
2208
1050
936
717
582
a
2196
1042
922
702
574
226
2305
809
667
S
W
S
S
S
2305 S
811
a
668
W
W
M, p
M, p
W,
p
M, p
S, p
S, p
W, dp
W, dp
W, dp
in the liquid state.
References
IR.R.
A. N. Tanaka, K. V. Narasimham, A. G. Meister, J. M. Dowling, F. F. Cleveland, S. Sundaram, E. A. Piotrowski, R. B.
Bernstein, and S. I. Miller, J. Mol. Spectry. 15, 319 (1965).
H?CO
Formaldehyde
Molecule:
Symmetry number cr— 2
Symmetry C 2v
Sym.
Approximate type
No.
class
No. 88
of
mode
Selected
value of
frequency
cm ~
o.
V\
l
V'l
Vs
V4
v5
V6
6,
62
a
CH sym. stretch
CO stretch
CH scissors
CH anti, stretch
CH rock
CH wag
2766 E
1746 A
2
1501
2
2
2
2
The frequency has uncertainty due
to the
a
A
2843 E
1247 B
1164 B
Raman
Infrared
cm ~
1
2766.4 S
1746.1 VS
1500.6 S
2843.4 VS
1247.4 S
1163.5 S
Fermi resonance between v 4 and
vi
+v
2866
5
.
References
[1]
R.
IR.
[3] IR.
[2]
W. Davidson, B. P. Stoicheff, and H. J. Bernstein, J. Chem. Phys. 22, 289 (1954).
H. H. Blau, Jr. and H. H. Nielsen, J. Mol. Spectry. 1, 124 (1957).
K. B. Harvey and J. F. Ogilvie, Can. J. Chem. 40, 85 (1962).
D.
20
1
2781.6 S
1742.3
1499.7
W
M
W
Comments
1
HDCO
Formaldehyde-di
Molecule:
Symmetry C
Symmetry number cr=
s
Sym.
Approximate type
No.
class
No. 89
of
Selected
value of
frequency
mode
V\
Vo
V3
vA
V-o
a
//
a
b
2844 E
2121 B
a
The frequency has uncertainty due
to the
b
The frequency has uncertainty due
to the
2844.1
2120.7
1723.4
1400.0
1041
A
A
1723
1400
1041
1074
Raman
Infrared
cm ~
CH stretch
CD stretch
CO stretch
CHD scissors
CHD rock
CHD wag
r
a
1
E
E
1074
cm ~
1
S
S
Comments
1
2846.2 S
2120.3 S
1723.2 VS
1397.4
VS
M
S
S
S
Fermi resonance between
and v a +v 5
Fermi resonances among v>. 2i? 6 and 2z? 5
.
.
.
References
[1]
IR.R.
D.
.
Davidson. B. P. Stoicheff. and H.
J.
Chem. Phys. 22, 289
No. 90
Symmetry number cr—
Approximate type
class
No.
«i
V\
CD? sym.
Vo
CO
of
mode
Selected
value of
frequency
Infrared
cm -
Vj,
6,
Va
V*
b-z
V6
a
a
stretch
stretch
CD 2 scissors
CD 2 anti, stretch
CD
2
rock
CD? wag
The frequency has uncertainty due
to the
2056 E
1700 C
1106 C
2160 E
990 E
938 E
Fermi resonance between
References
[1]
IR.
E. S.
Ebers and H. H. Nielsen.
J.
(1954).
2
Symmetry C 2v
Sym.
Bernstein.
D CO
Formaldehyde-eb
Molecule:
J.
Chem. Phys. 6, 311
(1938).
21
v\
Raman
cm~
2056.4 S
1700
VS
1106.0 S
2160.3 VS
990.2 S
938
2
S
and 2va
.
l
Comments
Methylbromide
Molecule:
CH Br
Symmetry number
Symmetry C 3v
Approximate type
Sym.
No.
class
No. 91
3
of
Selected
value of
frequency
mode
cr
=3
Infrared
cm ~
cm ~
1
(Gas)
V-1
CH 3
CH
Vz
CBr
V\
0-1
e
Va
V5
3
CH
CH
CH
sym. stretch
2935 E
sym. deform
1305
611
3057
1443
954
3
stretch
deg. stretch
deg. deform
3
rock
3
A
A
A
A
A
S
S
3056.7 S
1442.8
954.3
Comments
1
(Liquid)
M
M
2972
2861
1305
611
Raman
M
M
2972 VS
2862
1309
609 S
3068 VS
1456
956
W
W
FR(2^ 5 ).
M
VW
References
[1J
R.
[2]
IR.
[3]
IR.
IR.
IR.
[4]
[5J
H. L. Welsh, M. F. Crawford, T. R. Thomas, and G. R. Love, Can. J. Phys. 30, 577 (1952).
H. B. Weissman, R. B. Bernstein, S. E. Rosser, A. G. Meister, and F. F. Cleveland, J. Chem. Phys.
Y. Morino and J. Nakamura, Bull. Chem. Soc. Japan 38, 443 (1965).
Y. Morino, J. Nakamura, and S. Yamamoto, Bull. Chem. Soc. Japan 38 , 459 (1965).
E. W. Jones, R. J. L. Popplewell, and H. W. Thompson, Spectrochim. Acta 22, 647 (1966).
Methylbromide-d 3
Molecule:
class
,
(1955).
CD Br
N 0>
3
Symmetry number a = 3
Symmetry C 3v
Sym.
23 544
Approximate type
No.
of
mode
Selected
value of
frequency
Infrared
cm ~
Raman
cm ~
1
Comments
1
(Gas)
0\
V\
v-l
t'S
e
Va
V5
Va
CD 3
CD 3
sym. stretch
sym. deform
CBr
stretch
deg. stretch
deg. deform
CD
CD 3
CD 3
3
rock
2157 E
993 A
578 A
2296 A
1056 A
713 A
2157
VS
FR(2r' 5 ).
993.4 VS
577.9 S
2296.3
1055.6 S
713.1
M
M
References
[1]
IR.
[2J
IR.
[3]
IR.
H. B. Weissman, R. B. Bernstein, S. E. Roser, A. G. Meister, and F. F. Cleveland, J. Chem. Phys. 23, 544 (1955).
Y. Morino and J. Nakamura, Bull. Chem. Soc. Japan 38, 443 (1965).
E. W. Jones, R. J. L. Popplewell, and H. W. Thompson, Spectrochim. Acta 22, 639 (1966).
22
92
1
Methylchloride
Molecule:
CH
3
C1
No. 93
Symmetry number a = 3
Symmetry C 3v
Selected
value of
frequency
Approximate type
Sym.
No.
class
of
mode
cm
ai
CH 3
CH
i>\
Vo
3
CC1
V3
vA
e
CH 3
CH 3
CH 3
Vj
V6
sym. stretch
2937 E
svm. deform
1355
732
3042
1452
1017
stretch
deg. stretch
deg. deform
rock
A
A
A
A
A
Raman
Infrared
cm ~
1
(Gas)
2966.7
2878.7
1354.9 S
732.1 S
3042.4 S
1452.1
1017.3
M
M
M
M
Comments
1
(Liquid)
2955 VS, p
2861
1370 VW, p
709 VS, p
3036 M, dp
1446 W, dp
1016 W, dp
M
FR(2r- 5 ).
References
Z. Physik. Chem. B40 , 439 (1938).
Pickworth and H. W. Thompson. Proc. Roy. Soc. (London) A2 2 2 , 443 (1954).
W. T. King. I. M. Mills, and B. Crawford. Jr.. J. Chem. Phys. 27, 455 (1964).
Y. Morino and J. Nakamura. Bull. Chem. Soc. Japan 38 , 443 (1965).
E. W. Jones. R. J. L. Popplewell, and H. W. Thompson, Spectrochim. Acta 22, 669
[1]
R.
J.
(2]
IR.
J.
13]
[4]
IR.
IR.
[5]
IR.
Wagner,
Molecule:
Methylchloride-d 3
Symmetry C 3v
Sym.
3
C1
No. 94
Symmetry number
Approximate type
No.
class
CD
of
mode
(1966).
Selected
value of
frequency
cr
—3
Infrared
cm
Raman
Comments
cm -
1
(Gas)
a
sym. stretch
2141
Vo
CD 3
CD 3
sym. deform
v*
CC1
Va
CD 3
CD 3
CD 3
stretch
deg. stretch
deg. deform
1029
695
2283
1060
768
V\
1
e
Vo
V6
rock
E
A
A
A
A
A
2161
2103
1029
695
2283.4
1059.9
767.7
S
M
S
S
S
M
M
References
[1]
[2]
[3]
[4]
IR.
IR.
IR.
IR.
Pickworth and H. W. Thompson. Proc. Roy. Soc. (London) A2 2 2 , 443 (1954).
T. King, I. M. Mills, and B. Crawford. Jr.. J. Chem. Phys. 27, 455 (1964).
Y. Morino and J. Nakamura. Bull. Chem. Soc. Japan 38, 443 (1965).
E.
Jones. R. J. L. Popplewell. and H. W. Thompson. Spectrochim. Acta 22, 659 (1966).
J.
W.
.
23
FR(2f s ).
Methylfluoride
Molecule:
CH F
Symmetry number
Symmetry C 3v
Approximate type
Sym.
No.
class
No. 95
3
of
mode
Selected
value of
frequency
cr
=3
Infrared
cm~
Raman
cm ~
1
Comments
1
(Gas)
Vo
CH
CH
V*
CF
V5
vs
CH
CH
CH
V\
at
e
3
sym. stretch
2930 E
3
sym. deform
1464
1049
3006
1467
1182
stretch
3 deg. stretch
3 deg. deform
3
rock
A
A
A
A
A
VS
2964
2863
1464
FR(2^ 5 ).
S
S
1048.6 S
3005.8 S
M
M
1466.5
1182.4
References
[1]
IR.
[2]
IR.
[3]
IR.
[4]
IR.
IR.
[5]
K. P. Yates and H. H. Nielsen. Phys. Rev. 71 , 349 (1947).
Pickworth and H. W. Thompson, Proc. Roy. Soc. (London) A222, 443 (1954).
F. A. Anderson, B. Bak, and S. Brodersen, J. Chem. Phys. 24, 989 (1956).
W. L. Smith and I. M. Mills, J. Mol. Spectry. 11, 11 (1963).
E. W. Jones, E. J. L. Popplewell, and H. W. Thompson, Proc. Roy. Soc. (London)
J.
Molecule:
Methylfluoride-d 3
Sym.
Approximate type
No.
class
of
mode
(1966).
CD F
N 0<
3
Symmetry number
Symmetry C 3v
A290, 490
Selected
value of
cr
—3
Infrared
Comments
Raman
frequency
cm ~
1
cm ~
1
(Gas)
at
V\
CDs sym.
V<1
CD 3
v3
v4
e
stretch
sym. deform
CF
Vb
stretch
CD 3 deg. stretch
CD 3 deg. deform
v6
CD 3
rock
2110 E
1136
991
2258
1072
903
A
A
A
A
A
2090
2150
1136
FR(2r 5 ).
991
2258
1072
903
References
Pickworth and H. W. Thompson, Proc. Roy. Soc. (London) A2 2 2 , 443 (1954).
F. Edgell and L. Parts, J. Am. Chem. Soc. 78 , 2358 (1956).
E. W. Jones, E. J. L. Popplewell, and H. W. Thompson, Proc. Roy. Soc. (London)
[1J
IR.
J.
[2]
IR.
W.
[3
IR.
j
24
A2 90,
490
(1966).
96
CH
Methyliodide
Molecule:
?
I
No. 97
Symmetry number cr= 3
Symmetry C 3v
Approximate type
Sym.
No.
class
of
Selected
value of
frequency
mode
Infrared
cm~
Raman
cm~
x
Comments
1
(Gas)
Vo
CH
CH
Vz
Cl stretch
1252
533
V4
CH 3
CH
CH 3
3060
1437
882
V\
at
e
^5
3
sym. stretch
2933 E
3
sym. deform
deg. stretch
deg. deform
3
V6
rock
M
M
2969 8
FR(2i/ 5 ).
2861.0
1251.5 S
532.8 S
3060.3 S
1437.4
882.4
A
A
A
A
A
M
M
References
[1]
Th.
[2]
IR.
[3]
IR.
[4]
IR.
W.
J. Chem. Phys. 27, 455 (1957).
Proc. Roy. Soc. (London) A288, 50 (1965).
Y. Morino and J. Nakamura. Bull. Chem. Soe. Japan 38, 443 (1965).
Y. Morino, J. Nakamura, and S. Yamamoto, to be published.
T. King.
I.
M.
W. Jones and
E.
Molecule:
Mills,
H.
and
B. Crawford. Jr.,
W. Thompson.
Methyliodide-eG
Symmetry C 3 V
CD
Symmetry number
Sym.
Approximate type
No.
class
No. 98
3I
of
mode
cr
=3
Selected
value of
Infrared
Raman
Comments
frequency
cm ~
1
cm~
x
(Gas)
a
V\
x
Vo
VA
e
Vo
Vfi
CD
CD
3
sym. stretch
3 sym. deform
Cl stretch
CD 3
CD
CD 3
3
deg. stretch
deg. deform
rock
2155
2130 E
951
501
2298
1049
656
1
A
A
2081.0
950.7
501.4
E
2298
A
A
1049.3
655.9
FR(2^ 5
References
[1]
Th.
[2j
IR.
E.
[3)
IR.
[4)
IR.
Y.
Y.
.
Jr., J. Chem. Phys. 27, 455 (1957).
W. Thompson. Proc. Roy. Soc. (London) A288, 39
Morino and J. Nakamura. Bull. Chem. Soc. Japan 38 443 (1965).
Morino, J. Nakamura, and S. Yamamoto, to be published.
T. King.
W.
I.
M.
Jones. R.
Mills,
J. L.
and B. Crawford.
Popplewell. and H.
.
25
(1965).
).
Methylamine
Molecule:
Symmetry C
3
No. 99
2
Symmetry number (r=
s
Approximate type
Sym.
class
CH NH
No.
mode
of
Selected
value of
frequency
1
Infrared
cm~
a
t
V\
Vo
V3
v4
^5
v-
V8
Vq
a
rr
V\0
V\\
Vvi
NH sym. stretch
CH 3 deg. stretch
CH 3 sym. stretch
NH scissors
CH deg. deform
CH 3 sym. deform
CH rock
CN stretch
NH wag
NH anti, stretch
CH deg. stretch
CH 3 deg. deform
NH twist
CH rock
CN torsion
3
3361
2961
2820
1623
1473
1430
1130
2
1044.2
780.1
2
2
3
2
3
2
V 14
V\b
3
3427
2985
1485
1419
1195
268
cm ~
1
W
B
B
B
B
B
B
A
A
A
Raman
[2]
C
C
D
D
D
A
1
3360 VS
2960 VS
2820 S
3361
2961 VS
2820 VS
1623 S
1473 S
1430
1130
1044 S
780 VS
3427
2985 VS
a
1485
1460
M
M
[3]
Comments
[1]
M
1044 S
781
3470
W
W
W
CF. b
a
1195
200 ~ 330
Estimated from R Q branch frequency.
Calculated from the force constants which correlate the frequencies of
twisting frequency of CD 3 NH 2
a
b
ND
2
CH NH
3
2
,
CH ND
3
.
References
[1]
[2]
[3]
[4]
R.
IR.
IR.
IR.
J. S. Kirby-Smith and L. G. Booner, J. Chem. Phys. 7, 880 (1939).
A. P. Gray and R. C. Lord, J. Chem. Phys. 26, 690 (1957).
M. Tsuboi, A. Y. Hirakawa, T. Ino, T. Sasaki, and K. Tamagake, J.
M. Tsuboi, A. Y. Hirakawa, and K. Tamagake, to be published.
26
Chem. Phys.
2
,
CD NH
3
2
,
and
CD 3 ND
2
Including the
1
CH.5ND2 (gas)
Methylamine-cC
Molecule:
Symmetry C
No.
class
No. 100
Symmetry number cr=
s
Approximate type
Sym.
1
of
mode
Selected
value of
frequency
1
Raman
Infrared [ 2 ]
cm a
9
V\
v3
CH
CH 3
V4
ND>
v-a
CH 3
V-2.
Vs
VV»
a"
ND> sym.
3
stretch
deg. stretch
sym. stretch
scissors (v 7 v 9
deg. deform
.
CH> sym. deform
Vi)
CH 3 rock.
CN stretch.
ND wag
V\0
ND>
vu
V 12
CH deg. stretch
CH deg. deform
\D twist. 14
CH 3 rock. 13
CN torsion
(
Vu
(
1^ 4 )
625.4
>
anti, stretch
3
3
>
vu
1^ 4 )
^
(1
(1
)
2479
2961
2817
1234
1468
1430
1117
997
^
)
)
2556
2985
1485
1058
1187
228
B
B
B
B
B
B
A
A
[3]
B
C
D
D
C
a
2479
2961
2817
1234
1468
1430
1117
997
624
2556
2985
1485
1
[
Comments
]
cm -
W
2450 S
2969
2824 M
1214
1473 M
M
M
VS
S
S
S
M
S
S
995 S
VS
M
2527
M
VS
CF. h
M
1187
180 ~ 280 S
Estimated from K Q branch frequency.
Calculated from the force constants which correlate the frequencies of
twisting frequency of CD 3 NH 2 .
;1
11
ND
2
CH 3 NH CH AD CD 3 NH
2
References
[1]
R.
IR.
|3] IR.
4] IR.
12]
1
T. Edsall and H. Schinberg. J. Chem. Phys. 8. 520 (1940).
A. P. Gray and R. C. Lord. J. Chem. Phys. 26. 690 (1957).
M. Tsuboi. A. Y. Hirakawa. T. Sasaki, and K. Tamagake. to be published.
M. Tsuboi. A. Y. Hirakawa. and K. Tamagake. to be published.
J.
27
.
3
2
.
2
.
and
CD 3 ND
2
including the
1
Methylamine-d!.?
Molecule:
Symmetry C
(gas)
No. 101
Symmetry number
s
Approximate type
Sym.
class
CD3NH2
No.
mode
of
Selected
value of
frequency
cr
Infrared
cm /
V\
Cl
Vo
v3
Va
Vj
Vfi
v7
V8
V9
a
ft
^10
^11
Vl2
V 13
V 14
V 15
a
NH
CD
CD
NH
CD
CD
CD
CN
NH
2
3
3
2
3
sym. stretch
deg. stretch
sym. stretch
scissors (P9)
deg. deform
3
sym. deform
3
rock. (v 9 )
stretch. (v 6 )
2
NH>
CD 3
CD
3
wag.
anti, stretch
deg. stretch
deg. deform
NH?
twist
CD
CN
rock
3
(v 7 )
torsion
3361
2203
2077
1624
1065
1142
913
973
740.4
3427
2236
1077
1416
926
247
[2]
Raman
[1]
Comments
cm -
1
3361
2203 VS
2077 VS
1624 S
A
B
D
CF. a
A
A
M
B
A
1142 S
913 S
973
740 VS
3427
2236 VS
1077
1416
[2]
C
c
c
c
W
W
W
D
D
Calculated from the force constants which correlate the frequencies of
IR.
IR.
1
W
B
B
References
[1]
=
A. F. Cray and R. C. Lord, J. Chem. Phys. 26, 690 (1957).
M. Tsuboi, A. Y. Hirakawa, and K. Tamagake, to be published.
28
CF. a
CF. a
CH NH
:!
2
,
CH 3 ND
2
,
CD NH
3
2
,
and
CD 3 ND
2
.
1
CD
Methylamine-eL
Molecule:
Symmetry C
3
ND2(Gas)
Symmetry number cr=
s
Approximate type
Sym.
No.
class
No. 102
Selected
value of
frequency
mode
of
Infrared
1
Raman
[1]
cm ~
cm a
a
V\
ND> sym.
Vo
V3
CD 3
CD 3
Vi
ND
v-
C.D 3
V6
V7
CD 3
CD 3
Vs
V9
CN
ND
Vio
ND>
/
it
I'll
V 12
[1]
CD
CD
>
Vl5
a
,
svm. deform
rock. (v s v 9 )
stretch ( ve v 7 )
.
,
>
3
3
NDo
Vu
stretch
deg. stretch
sym. stretch
scissors ( v 7 v 9 )
deg. deform..
wag
(i/|i)
B
B
B
B
1065
1123
880
942
601
D
B
B
A
A
2556 C
2238 C
1077 C
1072 D
910 B
anti, stretch
deg. stretch
deg. deform
twist
2477
2202
2073
1227
-
CD 3 rock
CN torsion
201
W
Comments
1
2477
2202 VS
2073 VS
1227 S
CF. a
M
M
1123
880
942 S
601 VS
2556
2238 VS
1077
W
W
CF. a
910
M
CF. a
D
Calculated from the force constants which correlate the frequencies of
CH 3 NH 2 CH 3 ND 2 CD 3NH 2
.
,
,
and
CD 3 ND 2
.
References
IR.
A. P. Gray and R. C. Lord.
J.
Chem. Phys. 26, 690
Methylcyanide
Molecule:
CH CN
class
No. 103
3
Symmetry number <r—
Symmetry C 3v
Sym.
(1957).
Approximate type
No.
of
mode
Selected
value of
frequency
Infrared
cm
d\
Vs
CH 3 sym. stretch
CN stretch
CH 3 sym. deform
Vi
CC
V\
Vo
e
Vo
Vs
VVs
stretch
CH 3 deg. stretch
CH 3 deg. deform
CH 3 rock
CCN bend
2965
2267
1400
920
3009
1454
A
A
1041
361
A
C
A
A
A
A
3
cm~
1
(Gas)
2965.3
2267.3
1400.0 S
919.9 S
3009.0 S
1454.0 S
1041.0
361.0 S
M
M
M
References
[1]
R.
[2]
R.
[3]
IR.R.
IR.R.
[4]
[5]
[6]
IR.
IR.
A. Dadieu. Monatsh. 57, 437 (1931).
A. W. Reitz and R. Skrabel. Monatsh. 70. 398 (1937).
P. Yenkatesvarlu. J. Chem. Phys. 19, 293 (1951).
H. W. Thompson and R. L. Williams. Trans Faraday Soc. 48, 502 (1952).
F. W. Parker. A. H. Nielsen, and W. H. Fletcher. J. Mol. Speetry. 1. 107 (1957).
1.
Nakagawa and
T. Shimanouchi. Speetrochim. Acta 18, 513 (1962).
29
Raman
x
(Liquid)
2942
2249
1376
918
2999
1440
1124
380
VS
S
M
S
S
M. b
VW
S
Comments
CD CN
Methylcyanide-cG
Molecule:
Symmetry
Symmetry number <j= 3
C3 V
Sym.
Approximate type
No.
class
No. 104
3
of
Selected
value of
frequency
mode
Infrared
cm ~
Raman
cm~
1
Comments
1
(Gas)
V2
v3
VA
V5
V6
V7
CD 3 sym. stretch
CN stretch
CD 3 sym. deform
CC stretch
CD 3 deg. stretch
CD 3 deg. deform
CD 3 rock
Vs
CCN
V\
<2l
e
2107
2278
1112
831
2258
1046
847
333
bend
A
A
A
A
A
A
A
A
2106.9
2277.5
1112.2
831.4
2258.4
1045.7
846.6
333.2
References
[1]
IR.
Y. Morino and
to
be published.
C2H4O
Ethylene oxide
Molecule:
Symmetry
No. 105
Symmetry number
C2 V
Sym.
class
Nakamura,
J.
Approximate type
No.
of
mode
Selected
value of
frequency
cr
=2
Infrared
cmr
Raman
cm ~
1
Comments
1
(Liquid)
ai
CH
CH
V\
V2
2
sym. stretch
Vs
scissors
Ring stretch, (ring
breath)
V4
CH wag
2
2
3006 C
1498 B
3006 S
1498
3005 S, p
1490 W, p
B
1271 S
1118
1266 S, p
1120 M, p
1271
1130
D
W
W
(CS 2
a2
bi
Ring stretch+ deform
V5
V6
v7
V8
V9
Vio
Vn
b2
V 12
V 13
V 14
62
Vl5
CH
CH
CH
CH
CH
CH
2
anti, stretch
2
twist
2
rock
sym. stretch
2
scissors
2
wag
2
Ring stretch - - deform
1
CH
CH
CH
2
anti, stretch
2
twist
2
rock
877
3065
1300
860
3006
1472
B
1151
soln.)
877
VS
D
ia
E
E
C
B
ia
3006 S
1472
D
1151
890 E
3065 B
1142 D
822 B
SF(p 9 ).
867 M, dp
3063 W, dp
SF(pi 3 ).
3005 S, p
SF(iq).
ia
W
M
1150
W, dp
CF
3065 S
1142
822
M
M
3063 W, dp
1150 W, dp
807 M, dp
[41.
SF(p 6 ).
References
[1]
R.IR.
G. Herzberg, Infrared and
Raman
Spectra of Polyatomic Molecules (Van Nostrand,
New York
cited there.
[3]
IR.Th.
R.IR.
[4]
IR.
[5]
R.IR.
[2]
Hs. H. Gunthard, B. Messikommer, and M. Kohler, Helv. Chim. Acta 33, 1809 (1950).
H. W. Thompson and W. T. Cave, Trans. Faraday Soc. 47, 946 (1951).
R. C. Lord and B. Nolin, J. Chem. Phys. 24, 656 (1956).
W. J. Potts, Spectrochim. Acta 21, 511 (1965).
30
1945),
and the references
Ethylene oxide-cL
Molecule:
Symmetry C
No. 106
2
Symmetry number cr—2
2V
Approximate type
Sym.
class
c d,o
No.
of
mode
Selected
value of
frequency
Infrared
cm~
1
Raman
cm ~
1
(Liquid)
a
x
Vl
CD> sym.
V2
V3
CD
Va
v5
V6
V7
CD wag
stretch
scissors
2
Ring stretch,
bx
CD>
anti, stretch
CD
twist
V\x
V 12
Ring
V 13
V 14
CD>
CDo
twist
Vxo
CD
rock
^10
b-z
Ring stretch. + deform
CD> rock
CD> sym. stretch
CD> scissors
CDi wag
Vs
V9
2
C
C
C
C
D
581 C
2174 C
1013
2
2
1311
C
C
stretch.
2204 S
1311
M
1014
970
755
VS
VS
(ring
breath)
a2
2204
+ deform
anti, stretch
970
755
2250
1083
1145
952
809
2317
896
577
D
D
C
C
C
C
W. Arnold and
IR.
C.
[2]
R.IR.
R. C. Lord
and
F. A.
Bull. Am. Phys. Soc. 29,
Chem. Phys. 24, 656 (1956).
Matsen.
B. Nolin,
J.
31
M
M
ia
2250
1083
581
2157
ia
2174
1145
VS
VW
809 S
2317 VS
896 S
577
W
8 (1954).
VS
1013 S
952
755
ia
References
[1]
W
1301
W
W
VW
M
M
M
952
786
2319 S
896
W
Comments
Ethylene imine
Molecule:
Symmetry C
No. 107
Symmetry number cr=
s
Approximate type
Sym.
class
C2H5N
No.
of
mode
Selected
value of
frequency
Infrared
cm~
a
r
V\
V-2
Vi
Va
V5
NH
CH
CH
CH
stretch
anti, stretch
2 sym. stretch
2 scissors
2
//
CH twist
CH wag
NH bend
vs
Ring
stretch.
VlQ
CH
rock
Vu
CH>
V12
CH-? sym. stretch
2 scissors
Via
a
n
V 15
V 16
V 17
V \S
cm ~
3302 M, p
3059 M, dp
2999 VS, p
1471 W, p
2
B
1211 S
1095 S
1090 S
998
1212 VS, p
1088 W, p
1088 W, p
1028
855 M, dp
787 W, dp
3059 M, dp
2
CH
CH
2
2
NH
+ deform
anti, stretch
twist
bend
CH wag
2
Ring stretch. + deform
CH
2
rock
D
D
998 C
856 B
773 B
3079 D
3015 D
1463 B
1268 C
1237 C
1131 B
904 B
817 D
M
856
773
3079
3015
1463
1268
1237
1131
904
VS
[1J
R.IR.
1R.
[3]
R.IR.
SF(rn).
sf(Vi 2 ).
S
S
S
W
M
M
M
W
2999 VS, p
1452 W, dp
1276
1297 W, p
1130
VW
VW
S
817 M, dp
References
[2]
1
3338
3079 S
3015 S
1482
W
Comments
(Liquid)
3338 B
3079 D
3015 D
1482 B
1211
1095
1090
V6
v7
V8
V 13
W
Raman
Ring stretch, (ring
breath)
a
1
1
H. W. Thompson and W. T. Cave, Trans. Faraday Soe. 47, 951 (1951).
H. T. Hoffman. Jr., G. E. Evans, and G. Glockler, J. Am. Chem. Soc. 73, 3028 (1951).
W. J. Potts, Spectrochim. Acta 21,511 (1965).
32
SF(r 2 ).
SF(r 3 ).
C3H6
Cyclopropane
Molecule:
Symmetry D 3h
class
Symmetry number cr= 6
Approximate type
Sym.
No. 108
No.
of
Selected
value of
frequency
mode
Infrared
cm~
V\
CH) sym.
V-z
CH
f
a,
V3
>
stretch
n
v4
a2
n
a2
V5
V6
^8
V to
CH) wag
t
e
?
)
-2
ia
1188
1133
1078
3101
852
3025
1442
1028
CH> twist
CH? wag
CH> anti, stretch
CH
CH
CH
v7
D
cm ~
x
1
3038 S, p
1504 W, p
1453
Comments
W,
FR(2r'i 4 ).
p
(ring
breath)
ai
ia
1475
scissors
Ring stretch,
3038 C
Raman
rock
sym. stretch
scissors
C
D
D
C
C
C
C
C
1188 S. p
ia
ia
ia
ia
ia
3101 S
852 S
3025 VS
1442
1028 S
M
ia
ia
3019 VS, p
1443 M. dp
1023
VW
(liquid).
V\\
Ring stretch.
Vvi
CH)
CH)
CH)
tr
e
V 13
V\ 4
+ deform
anti, stretch
twist
rock
866 C
3082 C
1178 C
739 C
866
ia
ia
ia
VS
866 S, dp
3090 S. dp
1178
739 W, dp
M
References
[1]
R.IR.
G. Herzberg. Infrared and
Raman
Spectra of Polyatomic Molecules (Van Nostrand,
New York
cited there.
[2]
[3J
R.IR.
IR.Th.
[4]
R.
[5]
IR.
A. W. Baker and R. C. Lord. J. Chem. Phys. 23, 1636 (1955).
Hs. H. Giinthard. R. C. Lord, and T. K. McCubbin. Jr.. J. Chem. Phys. 25, 768 (1956).
P. M. Mathai, G. G. Shepherd, and H. L. Welsh. Can. J. Phys. 34, 1448 (1956).
C. Brecher, E. Krikorian. J. Blanc, and R. S. Halford. J. Chem. Phys. 35, 1097 (1961).
33
1945).
and the references
Cyclopropane-dn
Molecule:
Symmetry
Sym.
class
C3D6
Symmetry number cr = 6
D. ?h
Approximate type
No.
No. 109
of
mode
Selected
value of
frequency
Raman
Infrared
cm~
cm~
1
Comments
1
(Liquid)
a\
V-I
CD, sym. stretch
CD, scissors
V3
Ring stretch,
v4
CD,
v5
CD wag
CD anti,
V\
'
a2
n
a
-2
Vs
e
e"
twist
2
2
stretch
V10
CD, rock
CD, sym. stretch
CD, scissors
CD, wag
Vn
Ring stretch.
V \2
CD,
anti, stretch
Vis
CD
twist
r 14
CD, rock
v7
Vs
V9
2
ia
956 C
801 E
873 E
2336 C
614 C
2211 C
1074 C
887 C
720 C
2329 C
928 E
528 C
ia
2236 VS, p
1274 S, p
ia
(ring
breath)
a[
C
C
2236
1274
+ deform
956 S, p
ia
ia
ia
ia
2336 VS
614
2211 VS
1074 S
887
720 VS
ia
W
ia
M
2204 W, dp
1068 W, dp
884 M, dp
721 M, dp
2329 S, p
ia
CF.
ia
528
ia
W, dp
References
[1]
[2]
R.IR.
IR.Th.
W. Baker and R. C. Lord, J. Chem. Phys. 23 , 1636 (1955).
Hs. H. Giinthard, R. C. Lord, and T. K. McCubbin, Jr., J. Chem. Phys.
A.
34
CF.
CF.
25
,
768 (1956).
Cyclobutane
Molecule:
C-iH#
No.
Symmetry D 2d (D 4h )
Approximate type
Sym.
class
Symmetry number
No.
of
Selected
value of
frequency
mode
V\
Qi(«io)
V-z
v3
V\
a\(b\u)
v»
a>(ao g )
v*
V7
a-iib-zu)
Vs
b (b
V9
\g)
\
V\0
CH
CH
CC
-2
>
a
sym. stretch
scissors
)
rock
Ring puckering
V\\
b>(b>g)
V 12
V 13
V 14
CH wag
CH 2 twist
CH 2 wag
CC stretch,
2
V\5
^16
e(e g )
V \7
V 18
V 19
V 20
e(e u )
Vz\
V-22
V23
CH 2 twist
CH sym. stretch
CH scissors
CCC deform, (ring
2
2
CH 2 anti, stretch
CH rock
CH anti, stretch
CH twist
CH 2 rock
CH 2 sym. stretch
CH 2 scissors
CH 2 wag
CC stretch, and CCC
2
2
2
form, (ring deform.)
a
(Liquid)
D
ia
2916 p
2866 p
1443
C
ia
1443 p
SF(v l3 ).
1001
1001 p
SF(r'i 4 ).
FR(2^ 2 2 ^ 13 ).
,
Corrected for a presumed
shift
C
ia
2975 E
ia
C
ia
200 E
1260 E
1257 E
1219 C
ia
CF
[3].
741 dp
ia
ia
ia
ia
ia
1219 dp
ia
926 dp
CF
CF
CF
[3].
[3].
[3].
(ring
deform.)
b-Aa-zu)
1
(Gas)
2895
741
-2
deform.)
b\(ai u )
cm ~
1
Comments
stretch, (ring
breathing)
anti, stretch
CH
CH
= 4(8)
Raman
Infrared
cm ~
cr
no
due
to
926
1222
2893
1443
C
E
E
C
CF
CF
ia
1443 dp
1001
D
2987
627
2952
1223
749
C
C
C
C
C
2887
D
1447
1257
C
C
2878
1447 S
1257 S
898
C
898 S
(1001 p)
[3].
[3].
SF(v 2 ).
SF(v 3 ).
2987 S
627 S
1223
749
2997
2952 dp?
W
W
1
}
de
Fermi resonance.
References
[2]
IR.R.
IR.R.
[3]
Th.
[1]
W.
Rathjens, Jr., N. K. Freeman. W. D. Gwinn. and K. S. Pitzer. J. Am. Chem. Soc. 75, 5634 (1953).
Lord and D. G. Rea (to be published). Preliminary account presented at 3rd Meeting. European Molecular Spectroscopy Group. Oxford, England, 1955.
R. C. Lord and I. Nakagawa, J. Chem. Phys. 39, 2951 (1963).
G.
R. C.
35
1
Cyclobutane-dfg
Molecule:
C4D8
Symmetry number cr= 4(8)
Symmetry D? d (D 4h )
Approximate type
Sym.
class
No.
No. Ill
of
Selected
value of
frequency
mode
Infrared
cm ~
Raman
[1]
ai(biu)
V2
CD? sym. stretch
CD? scissors
V2
CC
l>4
breathing)
CD? anti, stretch
l> 5
CD 2
V\
V6
a2(a 2g )
a-Ab-zu)
Vi
v%
bl(blg)
r9
V\Q
2124 E
1160 C
(Liquid)
i>w
rock
Ring puckering
CD 2 wag
CD 2 twist
CD 2 wag
CC stretch,
CD
CD
biia-iu)
V\o
^16
e(e g )
twist
2
sym. stretch
882 p
E
E
E
C
ia
ia
ia
ia
ia
ia
ia
ia
1078 dp
ia
746 dp
CF
CF
CF
CF
CF
[21
[2k
[2].
[2].
[2].
746
864
2115
1040
C
E
E
CF
CF
ia
D
[21.
[2].
1040 dp
CCC
deform, (ring
deform.)
CD
CD
CD
-2
2
rock
2
anti, stretch
rig
CD
rock
sym. stretch
2
CD?
938 D
2242 C
483 C
2230 C
938 D
556 C
2103 E
1078 C
1048 C
anti, stretch
twist
V 22
V 23
ia
151
scissors
CD?
V2\
882 C
2224 E
632 E
[2].
(ring
I/j8
e(e g )
1160 p
1010
889
1078
2
CD?
V\4
CF
ia
ia
stretch, (ring
deform.)
bA an/)
Comments
cm -
1
(Gas)
aiiciig)
[1]
CD scissors
CD 2 wag
CC stretch, and CCC
2
form.
(ring,
938 dp
SF(i'is).
2230 dp?
938 dp
SF(*14).
2242 S
483 S
556
W
CF
[2].
1078 S
1048 S
de-
deform.)
734
C
734 S
References
[1]
IR.R.
[2]
Th.
Rea (to be published). Preliminary account presented
troscopy Group, Oxford, England, 1955.
R. C. Lord and I. Nakagawa, J. Chem. Phys. 39, 2951 (1963).
R. C. Lord and D. G.
36
at
3d Meeting, European Molecular Spec-
Polyethylene
Molecule:
(CH 2 )
No. 112
Symmetry number a — 4
Symmetry D 2h
Approximate type
Sym.
No.
class
of
Selected
value of
frequency
mode
Raman
Infrared
cm ~
cm~
1
V\
CH>
sym. stretch
V-l
CH
scissors
V-S,
CC
Va
CH> wag
2
stretch.
+ CCC
CC
l>
twist
V-
CH
anti, stretch
V8
CH>
rock
CH
2
twist
^10
(iH
>
I'll
CH>
V\>
V\4
d„
bin
b>u
b-m
>
1440
M
C
C
C
C
2883 C
1168 C
1050 D
2919 C
ia
1131
1415
1061
1295
M
C
CH-» sym. stretch
2851
C
CH scissors
CH wag
>
1468
C
>
1176
C
1063
Doublet due to the crystal
is
ia
725
rock
b
1
2848 S
1131
1415
1061
1295
anti, stretch
a
cm
ia
de-
stretch
CH>
Vfi
2 (i
C
C
2848
1440
form
b\„
given to this frequency in reference
ia
ia
ia
IR.Th.
S.
|2|
R.
J.
[3
IR.
1
]
ia
ia
2919 S
731 S
720 S
2851 S
1473 S
1463 S
1176
ia
ia
VW
ia
6.
field effect [1, 8].
25 549
,
(1956).
|7|
R.
R. G. Brown.
|8|
Th.
|6|
J.
J. Chem. Phys. 38, 221 (1963).
M. Tasumi and T. Shimanouchi. J. Chem. Phys. 43, 1245
37
(1965).
).
b
).
(
ia
Th.
IR.Th.
|5J
IR.
a
(
ia
R. G. Snyder. J. Mol. Spectry. 4, 411 (1960).
R. Nielsen and R. F. Holland. J. Mol. Spectry. 4, 488 (1960): 6, 394 (1961).
M. Tasumi. T. Shimanouchi, and T. Miyazawa, J. Mol. Spectry. 9, 261 (1962).
J. H. Schachtschneider and R. C. Snyder. Spectrochim. Acta 19 , 85. 117 (1963).
j
|4|
M
M
W
ia
Krimm, C. Y. Liang, and G. B. B. M. Sutherland. J. Chem. Phys.
R. Nielsen and A. H. Woollett, J. Chem. Phys. 26 , 1391 (1957).
W
2883 S
1168
ia
References
|
1
(Solid)
(Solid)
(if,
Comments
b
(
).
Perdeuterated Polyethylene
Molecule:
No. 113
Symmetry number
Symmetry D, h
Approximate type
Sym.
class
(CD,),
No.
mode
of
Selected
value of
frequency
cr
=4
Raman
Infrared
cm -
cm ~
1
(Solid)
ag
Vi
CD
v2
CD,
Vl
CC
2
sym. stretch
scissors
stretch.
+ CCC
big
big
l> 5
CD wag
CC stretch
V6
v7
CD,
CD,
anti, stretch
CD
rock
Va
2
2
twist
Qu
Vg
b\ u
^ 10
CD,
CD,
^11
CD, rock
^12
CD, sym.
^13
CD,
Vl4
CD wag
b-iu
biu
a
Doublet due
twist
anti, stretch
stretch
scissors
the crystal field effect
966
1249
820
916
2197
991
743
2192
E
C
E
C
C
C
E
C
526
C
2088
C
1090
C
2102 S
1146
ia
M
966 VW
ia
ia
ia
1249
W
916
2197
991
M
M
M
ia
ia
ia
ia
ia
ia
2192
528
522
2088
1092
1087
S
ia
M
M
ia
S
S
S
CF
[5].
CF
[5].
a
).
(
ia
889 E
2
to
C
C
1
(Solid)
de-
form
big
2102
1146
Comments
a
ia
(
ia
CF
).
[5].
[5].
References
[1]
IR.
[2]
IR.
[3]
R.
[4]
IR.
[5]
IR.Th.
N. Sheppard and G. B. B. M. Sutherland, Nature 159, 739 (1947).
L. C. Leitch, P. E. Gagnon, and A. Cambron, Can. J. Res. B28, 256 (1950).
R. G. Brown, J. Chem. Phys. 38, 221 (1963).
M. Tasumi. T. Shimanouchi, H. Tanaka, and S. Ikeda, J. Polymer Sci. A2, 1607 (1964).
M. Tasumi and T. Shimanouchi, J. Chem. Phys. 43, 1245 (1965).
38
U.S.
GOVERNMENT PRINTING OFFICE
:
1967
OL— 258-524
Announcement of New Publications
in
National Standard Reference Data Series
Superintendent of Documents,
Government Printing Office,
Washington, D.C. 20402
Dear
Sir:
Please add
in
the
series:
my name
to the
announcement
list
of
new
publications to he issued
National Standard Reference Data Series
— National
here)
Standards.
(cut
Name
Company
Address
City
(Notification key
State
N-337)
Zip
Code
Bureau of
THE NATIONAL BUREAU OF STANDARDS
The National Bureau
essential to the efficiency
The Bureau serves
provides measurement and technical information services
and effectiveness of the work of the Nation's scientists and engineers.
of Standards
1
Government for assuring maximum appliadvancement of technology in industry and
also as a focal point in the Federal
cation of the physical and engineering sciences to the
commerce. To accomplish this mission, the Bureau
program areas of research and services:
is
THE INSTITUTE FOR BASIC STANDARDS
organized into three institutes covering broad
.
.
provides the central basis within the
.
United States for a complete and consistent system of physical measurements, coordinates that
system with the measurement systems of other nations, and furnishes essential services leading
to accurate and uniform physical measurements throughout the Nation's scientific community,
industry,
and commerce. This Institute comprises a series of
divisions,
each serving a classical
subject matter area:
— Applied Mathematics— Electricity— Metrology— Mechanics — Heat — Atomic Physics — Physical Chemistry — Radiation Physics — Laboratory Astrophysics 2 — Radio Standards Laboratory 2
which includes Radio Standards Physics and Radio Standards Engineering — Office of Standard
,
Reference Data.
THE INSTITUTE FOR MATERIALS RESEARCH
.
.
.
conducts materials research and
provides associated materials services including mainly reference materials and data on the prop-
Beyond its direct interest to the Nation's scientists and engineers, this Institute
which are essential to the advancement of technology in industry and commerce.
This Institute is organized primarily by technical fields:
— Analytical Chemistry — Metallurgy— Reactor Radiations — Polymers — Inorganic Materials —
Cryogenics 2 — Office of Standard Reference Materials.
erties of materials.
yields services
THE INSTITUTE FOR APPLIED TECHNOLOGY
mote the use of available technology and
government. The principal elements of
.
.
.
provides technical services to pro
to facilitate technological innovation in industry
and
this Institute are:
— Building
Research — Electronic Instrumentation — Technical Analysis — Center for Computer Sciences and Technology — Textile and Apparel Technology' Center— Office of Weights
and Measures — Office of Engineering Standards Services — Office of Invention and Innovation-Office of Vehicle Systems Research — Clearinghouse for Federal Scientific and Technical Information
1
3
— Materials
Headquarters and Laboratories
at
Evaluation Laboratory
— NBS/GS A
Testing Laboratory.
Gaithersburg, Maryland, unless otherwise noted: mailing address Washington. D.C..
20234.
-
Located
at
Boulder. Colorado. 80302.
1
Located
at
5285 Port Royal Road. Springfield, Virginia 22151.
U.s.
DEPARTMENT OF COMMERCE
WASHINGTON,
D.C.
U.S.
20230
OFFICIAL BUSINESS
-
•
POSTAGE AND FEES PAID
DEPARTMENT OF COMMERCE
Descargar