http://claudiovz.github.io/ Introducción a elementos finitos Tarea 6 I-2016 Aplicando el método de Newton-Cotes construir la tabla de pesos y puntos de muestreo hasta n = 4 n=1 k =1−1=0 Calculando ri +1 Z P (r) r0 dr = 0 −1 El polinomio es P (r) = r − r1 Reemplazando Z +1 r − r1 dr = 0 −1 Integrando Z +1 r − r1 dr = 1 2 −1 r2 − r1 r +1 = −2r1 −1 Despejando r1 = 0 Calculando wi Z +1 w1 = dr = 2 −1 n=2 k =2−1=1 Calculando ri Z +1 −1 Z +1 P (r) r0 dr = 0 P (r) r1 dr = 0 −1 El polinomio es P (r) = (r − r1 )(r − r2 ) Reemplazando 1 http://claudiovz.github.io/ Z +1 (r − r1 )(r − r2 ) dr = 0 Z −1 +1 (r − r1 )(r − r2 )r dr = 0 −1 Integrando r1 + r2 2 r + r1 r2 r 3 2 1 r1 + r2 3 r1 r2 2 r4 − r + r 4 3 2 1 +1 r3 − −1 +1 −1 1 = 2 r1 r2 + 3 2 = − (r1 + r2 ) 3 Formando el sistema de ecuaciones r1 r2 = − 1 3 r1 + r2 = 0 Resolviendo r 1 r1 = − 3 r 1 r2 = 3 Calculando wi Z +1 w1 = −1 +1 Z w2 = −1 r − r2 dr r1 − r2 r − r1 dr r2 − r1 Reemplazando Z +1 w1 = −1 Z +1 w2 = −1 q r − 13 q q dr − 13 − 13 q r + 13 q q dr 1 1 + 3 3 Integrando +1 √3 1 w1 = − r2 + r =1 4 2 −1 +1 √3 1 r2 + r =1 w2 = 4 2 −1 2 http://claudiovz.github.io/ n=3 k =3−1=2 Calculando ri Z +1 P (r) r0 dr = 0 −1 Z +1 −1 Z +1 P (r) r1 dr = 0 P (r) r2 dr = 0 −1 El polinomio es P (r) = (r − r1 )(r − r2 )(r − r3 ) Reemplazando Z +1 (r − r1 )(r − r2 )(r − r3 ) dr = 0 Z −1 +1 (r − r1 )(r − r2 )(r − r3 )r dr = 0 Z −1 +1 (r − r1 )(r − r2 )(r − r3 )r2 dr = 0 −1 Integrando i r1 + r2 + r3 3 r1 r2 + r1 r3 + r2 r3 2 r + r − r1 r2 r3 r 4 3 2 h1 r1 + r2 + r3 4 r1 r2 + r1 r3 + r2 r3 3 r1 r2 r3 2 i r5 − r + r − r 5 4 3 2 h1 r1 + r2 + r3 5 r1 r2 + r1 r3 + r2 r3 4 r1 r2 r3 3 i r6 − r + r − r 6 5 4 3 h1 +1 r4 − −1 +1 2 = − (3r1 r2 r3 + r1 + r2 + r3 ) 3 = −1 +1 =− −1 Formando el sistema de ecuaciones 3r1 r2 r3 + r1 + r2 + r3 = 0 5r1 r2 + 5r1 r3 + 5r2 r3 = −3 5r1 r2 r3 + 3r1 + 3r2 + 3r3 = 0 Resolviendo r r1 = − r2 = 0 r r3 = 3 3 5 3 5 2 (5r1 r2 + 5r1 r3 + 5r2 r3 + 3) 15 2 (5r1 r2 r3 + 3r1 + 3r2 + 3r3 ) 15 http://claudiovz.github.io/ Calculando wi Z +1 w1 = −1 +1 Z w2 = −1 +1 Z w3 = −1 r − r2 r − r3 · dr r1 − r2 r1 − r3 r − r1 r − r3 · dr r2 − r1 r2 − r3 r − r2 r − r1 · dr r3 − r2 r3 − r1 Reemplazando Z r− q +1 −1 +1 w2 = −1 Z 3 r−0 5 q q dr · 3 3 − 5 − 0 − 5 − 35 q q r + 35 r − 35 q · q dr 0 + 35 0 − 35 q r + 35 r−0 q q dr ·q 3 3 3 − 0 + 5 5 5 w1 = Z q +1 w3 = −1 Integrando √ +1 5 15 2 5 3 w1 = r − r = 18 12 9 −1 5 +1 8 w2 = − r3 + r = 9 9 −1 √ +1 5 15 2 5 3 w3 = r + r = 18 12 9 −1 n=4 k =4−1=3 Calculando ri Z +1 −1 Z +1 −1 Z +1 −1 Z +1 P (r) r0 dr = 0 P (r) r1 dr = 0 P (r) r2 dr = 0 P (r) r3 dr = 0 −1 El polinomio es 4 http://claudiovz.github.io/ P (r) = (r − r1 )(r − r2 )(r − r3 )(r − r4 ) Reemplazando Z +1 (r − r1 )(r − r2 )(r − r3 )(r − r4 ) dr = 0 Z −1 +1 (r − r1 )(r − r2 )(r − r3 )(r − r4 )r dr = 0 Z −1 +1 −1 Z +1 (r − r1 )(r − r2 )(r − r3 )(r − r4 )r2 dr = 0 (r − r1 )(r − r2 )(r − r3 )(r − r4 )r3 dr = 0 −1 Integrando h1 r1 + r2 + r3 + r4 4 r1 r2 + r1 r3 + r1 r4 + r2 r3 + r2 r4 + r3 r4 3 r1 r2 r3 + r1 r2 r4 + r1 r3 r4 + r2 r3 r4 2 r5 − r + r − r 5 4 3 2 i +1 2 + r1 r2 r3 r4 r = (15r1 r2 r3 r4 + 5r1 r2 + 5r1 r3 + 5r1 r4 + 5r2 r3 + 5r2 r4 + 5r3 r4 + 3) 15 −1 h1 r1 + r2 + r3 + r4 5 r1 r2 + r1 r3 + r1 r4 + r2 r3 + r2 r4 + r3 r4 4 r1 r2 r3 + r1 r2 r4 + r1 r3 r4 + r2 r3 r4 3 r6 − r + r − r 6 5 4 3 +1 r1 r2 r3 r4 2 i 2 r + = − (5r1 r2 r3 + 5r1 r2 r4 + 5r1 r3 r4 + 5r2 r3 r4 + 3r1 + 3r2 + 3r3 + 3r4 ) 2 15 −1 h1 r1 + r2 + r3 + r4 6 r1 r2 + r1 r3 + r1 r4 + r2 r3 + r2 r4 + r3 r4 5 r1 r2 r3 + r1 r2 r4 + r1 r3 r4 + r2 r3 r4 4 7 r − r + r − r 7 6 5 4 +1 r1 r2 r3 r4 3 i 2 + r = (35r1 r2 r3 r4 + 21r1 r2 + 21r1 r3 + 21r1 r4 + 21r2 r3 + 21r2 r4 + 21r3 r4 + 15) 3 105 −1 h1 r1 + r2 + r3 + r4 7 r1 r2 + r1 r3 + r1 r4 + r2 r3 + r2 r4 + r3 r4 6 r1 r2 r3 + r1 r2 r4 + r1 r3 r4 + r2 r3 r4 5 r8 − r + r − r 8 7 6 5 +1 r1 r2 r3 r4 4 i 2 + r = − (7r1 r2 r3 + 7r1 r2 r4 + 7r1 r3 r4 + 7r2 r3 r4 + 5r1 + 5r2 + 5r3 + 5r4 ) 4 35 −1 Formando el sistema de ecuaciones 15r1 r2 r3 r4 + 5r1 r2 + 5r1 r3 + 5r1 r4 + 5r2 r3 + 5r2 r4 + 5r3 r4 = −3 5r1 r2 r3 + 5r1 r2 r4 + 5r1 r3 r4 + 5r2 r3 r4 + 3r1 + 3r2 + 3r3 + 3r4 = 0 35r1 r2 r3 r4 + 21r1 r2 + 21r1 r3 + 21r1 r4 + 21r2 r3 + 21r2 r4 + 21r3 r4 = −15 7r1 r2 r3 + 7r1 r2 r4 + 7r1 r3 r4 + 7r2 r3 r4 + 5r1 + 5r2 + 5r3 + 5r4 = 0 Resolviendo 5 http://claudiovz.github.io/ s 3 2 + 7 7 r1 = − r 6 5 s r 3 2 6 − r2 = − 7 7 5 s r 3 2 6 r3 = − 7 7 5 s r 3 2 6 r4 = + 7 7 5 Calculando wi Z +1 w1 = −1 +1 Z w2 = −1 +1 Z w3 = −1 +1 Z w4 = −1 r − r2 r − r3 r − r4 6r2 r3 r4 + 2r2 + 2r3 + 2r4 · · dr = − r1 − r2 r1 − r3 r1 − r4 3(r1 − r2 )(r1 − r3 )(r1 − r4 ) r − r1 r − r3 r − r4 6r1 r3 r4 + 2r1 + 2r3 + 2r4 · · dr = r2 − r1 r2 − r3 r2 − r4 3(r1 − r2 )(r2 − r3 )(r2 − r4 ) r − r2 r − r1 r − r4 6r1 r2 r4 + 2r1 + 2r2 + 2r4 · · dr = − r3 − r2 r3 − r1 r3 − r4 3(r2 − r3 )(r1 − r3 )(r3 − r4 ) r − r3 r − r2 r − r1 6r1 r2 r3 + 2r1 + 2r2 + 2r3 · · dr = r4 − r3 r4 − r2 r4 − r1 3(r3 − r4 )(r2 − r4 )(r1 − r4 ) Reemplazando r q r q r r 3 − 3 7 + r 2 7 2 7 6 5 6 5 + 3 7 3 7 q r − 2 7 2 7 6 5 6 5 q r 3 7 − 2 7 3 7 q 6 5 − 2 7 6 5 − r 2 7 3 7 − 6 5 2 7 2 7 6 5 3 7 2 7 6 5 3 7 2 7 6 5 3 7 Simplificando 6 2 7 q 3 7 6 5 − r 2 7 r 3 7 q 6 5 − 2 7 6 5 − r 3 7 + 2 7 6 5 q q 6 + − + −2 + − 2 37 − 72 65 + 2 37 + 72 65 r r r w3 = − r q q r q q r q q 3 2 6 3 2 6 3 2 6 3 2 6 3 2 6 3 2 6 3 − 7−7 5− 7−7 5 − 7+7 5− 7−7 5 − − + 7 7 5 7 7 5 r r r r r r q q q q q q 6 37 + 27 65 37 − 27 65 37 − 72 65 − 2 37 + 27 65 − 2 37 − 27 65 + 2 37 − 27 65 r r r w 4 = r q q r q q r q q 3 2 6 3 2 6 3 2 6 3 2 6 3 2 6 3 2 6 3 − − + − − − + − + − + 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 3 7 q 3 7 q r q 6 − − + +2 − +2 − + 2 37 + 72 65 r r r w1 = − r q q r q q r q q 3 6 3 6 3 6 3 6 3 6 3 2 2 2 2 2 2 3 − 7+7 5+ 7−7 5 − 7+7 5− 7−7 5 − 7 + 7 5 − 7 + 7 65 r r r r q r q r q q q q 3 6 3 6 3 6 3 6 3 6 2 2 2 2 2 −6 7 + 7 5 7 − 7 5 7 + 7 5 − 2 7 + 7 5 + 2 7 − 7 5 + 2 37 + 27 65 r r r w2 = r q q r q q r q q 3 7 6 5 http://claudiovz.github.io/ √ 18 − 30 36√ 18 + 30 36√ 18 + 30 36√ 18 − 30 36 w1 = w2 = w3 = w4 = Tabla resumen n r w 1 0 q − 13 q 2 q − 35 5 9 2 1 1 3 3 0 q 8 9 3 5 5 9 r − 3 7 + 2 7 q 6 5 √ 18− 30 36 3 7 − 2 7 q 6 5 √ 18+ 30 36 r 4 − r 1 3 7 − 2 7 q 6 5 √ 18+ 30 36 3 7 + 2 7 q 6 5 √ 18− 30 36 r 7