Subido por Marjorie Sandoval

guia-U 2 Fuerza-7º-Basico

Anuncio
Guía de auto-aprendizaje Nº 2 Fuerza.
Nombre:…………………………………………………………………………………………………………………………
Curso:…………………………………………
fecha:………………………………………..
Objetivo: Conocer y describir los efectos de las fuerzas sobre distintos cuerpos utilizando
vectores y diagramas de cuerpo libre.
FUERZA: Es una interacción entre dos o más cuerpos que puede producir movimiento o
reposo de un cuerpo. Para expresar una fuerza se utiliza una denotación especial llamada
vector, la cual indica la intensidad o módulo de la fuerza, la dirección y el sentido en la cual se
aplica.
Las fuerzas nunca actúan solas, lo más común es que sobre un cuerpo actúen varias fuerzas a
la vez, las que sumadas determinaran la fuerza neta total y por lo tanto, el movimiento o
reposo de un cuerpo. La unidad para medir las fuerzas en el sistema internacional de medidas
es el Newton en honor al físico que estudio el fenómeno y estableció las leyes de la dinámica.
Veamos un ejemplo.
1. Si sobre una caja de 2 [kg] de masa, apoyada sobre una superficie lisa, actúan dos
fuerzas horizontales, tal como indica la figura, ¿Cuánto vale la fuerza neta y hacia qué
lado se mueve la caja?
Al observar la situación podemos ver que hay dos fuerzas actuando, una de 12 N hacia la
derecha y por lo tanto positiva y otra de 4 N actuando hacia la izquierda y por tanto negativa,
al realizar la suma algebraica respetando los signos de la cada fuerza podremos obtener la
fuerza neta que actúa sobre el cuerpo y el sentido del movimiento.
Finalmente el cuerpo se moverá hacia la derecha.
Ejercicios 1:
1. En las siguientes situaciones determine la fuerza neta y hacia qué lado se moverá la
caja. Si se sabe que F1 = 12 N y F2 = 5 N
A
B
2. La persona de la figura aplica una fuerza aproximada de 80 N para levantar un balde cuyo
peso aproximado es de 65 N determine el valor de la fuerza neta y hacia donde se mueve
la balde.
Caso especial: en algunas ocasiones las fuerzas aplicadas actúan tanto en el eje x como en el
eje y, en ese caso se calcula la fuerza neta de cada eje y se aplica el teorema de Pitágoras para
obtener la fuerza neta total.
Para determinar la fuerza neta total que se aplica sobre un cuerpo se pueden utilizan los
diagramas de cuerpo libre (DCL), siendo una herramienta útil al momento de desarrollar
problemas.
Ejemplo: Sobre la caja de la figura se aplican dos fuerzas F3 = 4 N y F4 = 3 N determine el valor
de la fuerza neta total y hacia donde se mueve la caja.
Solución.
Como se aplican fuerzas en ambos ejes
de manera simultánea la fuerza neta
se calcula a través del teorema de
Pitágoras donde F3 y F4 representan a
los catetos y FN la hipotenusa:
Finalmente la caja se mueve con una fuerza resultante de 5 N hacia arriba y hacia la derecha,
es decir de manera oblicua.
Ejercicios 2: En todos los casos determine la fuerza neta resultante y hacia donde se mueven
los cuerpos.
1. Sobre un cuerpo de masa m se aplican tres fuerzas F1 = 18 N; F2 = 5 N; y F3 = 20 N tal
como lo indica la figura.
2. Los vectores F1 = 4 N; F2 = 5 N; y F3 = 10 N se aplica sobre un cuerpo de masa m tal como
lo indica la figura.
3. En un plano cartesiano dibuja dos fuerzas de 6 y 8 Newton y determina la magnitud y el
sentido de la fuerza neta.
4. Un trabajador aplica una fuerza vertical a una caja de 12 N para levantarla desde el suelo
y luego camina con ella realizando una fuerza horizontal de 16 N. Realice un DCL de la
situación descrita y determine el valor de la fuerza neta total aplicada por el trabajador en
el proceso.
5. Se aplica una fuerza horizontal de 12 N hacia la izquierda del origen del sistema de
referencia de un plano cartesiano y otra fuerza vertical de 5 N hacia abajo del origen del
sistema, determine:
A) El módulo y el sentido de la fuerza resultante.
B) ¿Qué signo tiene el vector resultante? ¿Qué significa el signo del vector?
Solucionario:
Ejercicios 1:
1.
A) 17 N hacia la derecha.
B) – 7 N hacia la izquierda.
2. 15 N hacia arriba.
Ejercicios 2:
1.
2.
3.
4.
5.
3 N hacia la derecha.
– 1 N hacia la izquierda.
10 N oblicuo en el primer cuadrante.
20 N
A) 13 N oblicuo en el tercer cuadrante. B) el vector fuerza neta tiene signo negativo lo
que significa que está actuando en contra del sentido elegido como positivo.
Descargar