UvA-DARE (Digital Academic Repository) Flora, vegetation and ecology in the Venezuelan Andes: a case study of Ramal de Guaramacal Cuello Alvarado, N.L. Link to publication Citation for published version (APA): Cuello Alvarado, N. L. (2010). Flora, vegetation and ecology in the Venezuelan Andes: a case study of Ramal de Guaramacal. Amsterdam: Universiteit van Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED). General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) Download date: 21 jun 2020 FLORA, VEGETATION AND ECOLOGY IN THE VENEZUELAN ANDES: A CASE STUDY OF RAMAL DE GUARAMACAL Nidia Lourdes Cuello Alvarado ISBN 978-90-76894-87-4 Publisher: Universiteit van Amsterdam / IBED. Amsterdam. Cover design: Karim Rodriguez / www.wix.com/masdesign/studio Illustrations: Angelina Licata FLORA, VEGETATION AND ECOLOGY IN THE VENEZUELAN ANDES: A CASE STUDY OF RAMAL DE GUARAMACAL ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op donderdag 9 september 2010, te 14.00 uur door Nidia Lourdes Cuello Alvarado geboren te Barquisimeto, Venezuela Promotor: Prof. Dr. A. M. Cleef Prof. Dr. H. Hooghiemstra Copromotor: Dr. J. F. Duivenvoorden Overige leden: Prof. Dr. O. Huber Prof. Dr. P. J. M. Maas Prof. Dr. J. H. J. Schaminée Prof. Dr. J. H. D. Wolf Faculteit der Natuurwetenschappen, Wiskunde en Informatica CONTENTS Chapter 1 Introduction 1 Chapter 2 The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes. Nidia L. Cuello A. and Antoine M. Cleef Phytocoenologia 39(1): 109-156 (2009) 7 Chapter 3 The páramo vegetation of Ramal de Guaramacal, Trujillo, Venezuela. 1. Zonal communities. Nidia L. Cuello A. and Antoine M. Cleef Phytocoenologia 39(3): 295-329 (2009) 65 Chapter 4 The páramo vegetation of Ramal de Guaramacal, Trujillo State, Venezuela. 2. Azonal vegetation. Nidia L. Cuello A. and Antoine M. Cleef Phytocoenologia 39(4): 389-409 (2009) 111 Chapter 5 Phytogeography of the vascular páramo flora of Ramal de Guaramacal (Andes, Venezuela) and its ties to other páramo floras. Nidia L. Cuello A., Antoine M. Cleef and Gerardo A. Aymard C. The text of Chapter 5 has been submitted to Flora (general part; to be accepted after review) and to Anales del Jardin Botánico de Madrid (Venezuelan part, under review) 141 Chapter 6 Functional diversity of Andean forests in Venezuela changes with altitude. Joost F. Duivenvoorden and Nidia L. Cuello A. submitted to Global Ecology and Biogeography 161 Chapter 7 Synthesis 175 References 187 Appendix Summary Samenvatting Resumen 207 239 243 247 Acknowledgements Curriculum Vitae Publications 251 253 254 Chapter 1 Introduction Nidia L. Cuello A. Introduction _______________________________________________________ 1.1 INTRODUCTION The Venezuelan Andes belongs to the northernmost bioregion of the Andes. With regard to biodiversity this area represents one of the most prominent areas on a global scale. At a regional scale it is one of the zones with highest priority for conservation (Dinerstein et al. 1995; Mittermeier et al. 1999; Myers et al. 2000). The Andes of Venezuela is a continuation of the Colombian Cordillera Oriental which ends at the Táchira Depression on the Colombian-Venezuelan border. The northern extension is a small range, the Serranía de Perijá. The northeastern extension is the Cordillera de Mérida, mainly referred to as the Venezuelan Andes, and, includes the Páramo de Tamá which is part of the Cordillera Oriental. Another mountain system, the Coastal Cordillera of Venezuela, is considered as a system separated from the Andes (Schubert 1980; González de Juana et al. 1980; Pouyllau 1989; Vivas 1992). The Cordillera de Mérida is composed of several ranges including the Sierra Nevada de Mérida, Sierra de la Culata, Sierra de Santo Domingo, Sierra de Tovar, Sierra de Uribante, and the Sierra de Trujillo. This complex of ranges is about 100 km wide and extends in northeastern direction over 450 km. The highest altitude is reached at the Pico Bolívar (5007 m) in the Sierra Nevada de Mérida. Most of the Cordillera de Mérida is covered by montane forest while the land over 3000 m, at places even over 2500 m, is covered by páramo. During the past two decades the significant taxonomic and ecological diversity of the northern Andes, as well as the ecological importance of these mountain ecosystems, has been recognized (Van der Hammen et al. 1983, 1986, 1989, 2003, 2005, 2008; Henderson et al. 1991; Ramsay 1992; Churchill et al. 1995; Gentry 1995; Luteyn & Churchill 2000; Rangel 2000a, 2000b, 2007; Kappelle & Brown 2001; Lauer et al. 2001; Young et al. 2002; Beck et al. 2008; Gradstein et al. 2008). However, the number of studies on biodiversity of Venezuelan mountain ecosystems, particularly of montane forests, are limited (Ataroff 2001). The botanical knowledge of the Venezuelan Andes is still low (Olson et al. 1997; Dorr et al. 2000) compared to other areas, such as the Guayana Tepuis. The Tepuis area has been always attractive for botanical exploration and there we find the greatest efforts of botanical knowledge (Huber 1995) and the nine volumes of the Flora of the Venezuelan Guayana (Steyermark et al. 1995). Most studies on the flora and vegetation of the Venezuelan Andes have been carried out in the State of Mérida. Pionering studies are those of the forests of La Mucuy (Lamprecht 1954) and of La Carbonera (Veillon 1965). Classic studies on the páramo vegetation are the ‘Flora de los Páramos de Venezuela’ by Vareschi (1970) and the ecological studies on páramos by Monasterio and collaborators (Monasterio 1980). Recent floristic analysis in the Venezuelan Andes of montane forest (Kelly et al. 1994, 2004; Schneider et al. 2000; Schneider 2001) and páramos (Yánez 1998; Berg 1998; Berg & Suchi 2000) are restricted to local areas or preliminary (Ortega et al. 1987; Cuello 1996, 1999, 2002; Dorr et al. 2000). More comprehensive studies of the flora and vegetation of larger areas, including phytogeographical analyses of páramo flora are few (Bono 1996; Ricardi et al. 1997, 2000) and 3 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes floristic lists are up to date limited to the flowering plants of the páramo (Briceño & Morillo 2002, 2006). The scarcity of information on the floristic composition of the Andean ecosystems of Venezuela is hindering a good estimation of the floristic diversity, the botanical composition of most forests and páramos, and the status of conservation of the endemic flora in the protected areas. In the Mérida Andes mostly dry páramos have been studied, but almost no knowledge is available for bamboo páramos. The descriptions of the different páramo and high Andean forest communities by Monasterio (1980) provide a first overview. Phytosociological studies describing associations and higher syntaxonomical units are only known for the high Sierra Nevada de Mérida páramos (Berg 1998) and for the transect study in the Andean and high Andean forests (Schneider 2001). These phytosociological studies triggered our interest to learn more about the montane forest and páramo under wet climatic conditions in the Cordillera de Mérida. Studies on the wet Andean ecosystems has been carried out before in Colombia (Van der Hammen et al. 1984, 2005, 2008; Rangel Ch. & Lozano C. 1986; Rangel Ch. 1994; Cleef 1981) where bamboo páramos were described for the first time. As is the case in other South American countries, the Venezuelan Andes are suffering an increased human intervention and many forests and páramos have been converted into agricultural land. The conversion of areas with montane forest into pasture land is a common feature in the Venezuelan Andes. This practice is changing the water flows and erosive processes in the uplands, affecting dramatically soil stability, and the supply of water to people both in the upland and lowland areas (Ataroff 2001). Fortunately, a relatively large part of the montane forests and páramo ecosystems in the Venezuelan Andes are preserved by a net of thirteen national parks that in total cover about 31% of the whole mountain system. One of such protected areas is Ramal de Guaramacal, located at the northeastern end of the Venezuelan Andes. It lies within the Guaramacal National Park and strong human intervention is not present. The Páramo of Guaramacal has been reported as an important center of diversification of the Espeletiinae genus Ruilopezia (Cuatrecasas 1986). Moreover, due to its relative isolation, Ramal de Guaramacal is also an area with an endemic flora (Steyermark 1979; Ortega et al. 1987; Dorr et al. 2000). The presence of a road traversing the Guaramacal range from the drier northwestern slope (Andes-facing) to the moister southeastern (llanos-facing) slopes at lower elevation, offered an excellent opportunity to initiate in 1995 a research project to study floristically the vegetation along an altitudinal gradient. It has been widely recognized that altitudinal gradients in mountain ecosystems have considerable impact on the distribution of biodiversity. Altitudinal gradients in temperature, precipitation, and other parameters are known to influence vegetation and diversity patterns over relatively short distances (Whittaker 1960; Gentry 1982, 1988, 1995; Lomolino 2001). Temperature can be the principal driver of ecosystem functioning (Chapin & Körner 1995; Colwell et al. 2008; Svenning & Condit 2008). 4 Introduction _______________________________________________________ With support from the related project Flora of Guaramacal, jointly conducted by Basil Stergios (UNELLEZ) and Laurence Dorr (NMNH of Smithsonian Institution), the current project combined geobotanical exploration and floristic surveys of the vegetation types. The aim was to explore the structure, botanical composition, and the diversity of forests and páramo, and to relate these results to environmental gradients. A specific goal was to examine the relationship between altitudinal patterns of diversity and plant functional traits, particularly in the montane rain forests. In addition, the phytogeographical patterns of the wet páramo flora were elucidated and compared to páramo areas in Ecuador, Colombia, and the Talamancas of Central America. The results of this study are basic for conservation and biodiversity management in the region. The study of vegetation along the altitudinal gradient in Ramal de Guaramacal was done using a floristic, phytosociological and a plant functional approach. A growing amount of literature is illustrating the value of functional approaches to understand biodiversity, pointing out the importance of analyzing changes of functional traits along an altitudinal gradient for predicting the effects of environmental changes on ecosystem functioning, such as those induced land use, cover changes or by global warming (Díaz & Cabido 1998; Díaz et al. 1999; Duckworth et al. 2000; Lavorel & Garnier 2002; McGill et al. 2006). Recently, some studies focused on the importance of traits associated with animal-plant interactions to analyse the relationship between species diversity and functional diversity with the aim to explore the ecosystem responses to environmental change, e.g. caused by deforestation (Mayfield et al. 2005) and fragmentation (Girao et al. 2007). In mountain ecosystems it is expected that with increasing elevation temperature and available land surface decrease leading to more environmental stress and more ecological filtering as a consequence (Mayfield et al. 2005). In this study, the change of composition and diversity of some functional (energy balance-related, reproductive/fragmentation-related) traits of undisturbed mountain forest of Ramal de Guaramacal was analyzed along an altitudinal gradient with the aim to contribute with benchmark information to studies of degraded tropical Andean ecosystems (see Chapter 6). Several topics on the diversity of flora and vegetation ecology of Ramal de Guaramacal along altitudinal gradients have been addressed, including issues of phytosociology, altitudinal zonation, floristic diversity, phytogeography and functional diversity. The observed patterns were interpreted on the basis of comparisons with other regional and extra-regional studies. This Ph.D. thesis consists of several published articles and manuscripts in review at international journals. Chapter 2 includes the characterization of the physical environment of the study area of Ramal de Guaramacal and gives an overview of the geobotanical exploration and botanical research conducted there. This information serves as reference information for all chapters. This chapter gives a description of the floristic diversity and structure of the montane rain forest vegetation of Ramal de Guaramacal and presents a syntaxonomic scheme to classify the montane rain forests of this part of the Venezuelan Andes. It is based on quantitative data and analysis of physiognomy, floristic composition, ecological relations, and spatial 5 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes distribution of the different vegetation communities. An altitudinal zonation is presented and a comparison is made to montane forests elsewhere in the Venezuelan Andes. Finally human influence and issues of conservation are discussed. Chapters 3 and 4 deal with the study of the wet bamboo páramo vegetation on top of the Guaramacal mountain range. Chusquea dominated bamboo páramos are distributed along the humid upper forest line on the Llanos facing slopes of the Venezuelan Andes. In Venezuela this type of vegetation was not studied before. Chapter 3 covers the phytosociological classification and description of zonal páramo vegetation communities and examines the affinities to páramo vegetation elsewhere in the tropical Andes. In this chapter we also address the mosaic-like distribution of shrub páramo, grass páramo and dwarf forest vegetation communities which are present on the summits of Ramal de Guaramacal. These aspects are based on the analysis of physiognomy, composition, floristic diversity, and relationships of the vegetation communities and the environmental variables involved. Chapter 4 comprises the classification of azonal wet páramo vegetation communities found so far in páramo areas of Ramal de Guaramacal. Patches of azonal bunchgrass, Sphagnum bogs, aquatic communities, and boggy bamboo páramo are described and their floristic relationships with similar páramo communities elsewhere in Colombia and Venezuela are discussed. Chapter 5 is an introduction to the analysis of the phytogeographical patterns and affinities of the lowermost and the wet páramo vegetation of Ramal de Guaramacal. It provides an analysis of the floristic connections with the neighboring dry páramos of the Sierra Nevada de Mérida, and the floras of other páramo areas in the northern Andes and in Central America. We describe how phytogeographical components change among different páramos. Using ordinations, we explored whether the phytogeographical patterns of the páramo flora of Ramal de Guaramacal are determined by temperature, or more by the overall permanent humidity which characterizes the Guaramacal bamboo páramo. Chapter 6 encompasses the analysis of functional diversity of the mountain forest of Ramal de Guaramacal as a function of altitude. This study is based on the vascular plant species composition of forest plots sampled along an altitudinal gradient in the study area (chapter 2) and their linked functional traits related to energy balance and fragmentation, obtained by means of literature and herbarium studies. Using DCA ordination and Fourthcorner analysis, we explored the relationships between the studied traits and environment and discuss the implications of climate change in temperature on functional changes. This study shows the advantage of functional approach above species approach for the analysis of the effect of environmental changes on mountain forest ecosystems. Finally, a synthesis of the results and conclusions based on all chapters are presented in chapter 7. 6 Chapter 2 The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes Nidia L. Cuello A. and Antoine M. Cleef PHYTOCOENOLOGIA 39(1):109-156. 2009 The forest vegetation of Ramal de Guaramacal _______________________________________________________ 2.1 INTRODUCTION Montane forests of the northern Andes are fragile ecosystems of significant biological and ecological diversity with a complex biogeographical history, and playing a major role in the regional hydrological balance (Gentry 1995; Cavalier & Goldstein 1989; Cavelier et al. 1996; Holder 2006; Kappelle & Brown 2001). Despite increased attention and conservation interest of the northern Andean forest ecosystem over the past two decades (Henderson et al. 1991; Churchill et al. 1995, Gentry 1995; Luteyn & Churchill 2000; Kappelle & Brown 2001; Van der Hammen et al. 1984), studies on montane forests of the Venezuelan Andes remain limited in area, subject and time. The majority of studies have been carried out in the montane forests of the state of Mérida. The silvicultural studies of La Mucuy and La Carbonera (Lamprecht 1954; Veillon 1965, 1985), vegetation ecology (Vareschi 1953, 1956; Yánez 1998); floristic analysis (Kelly et al. 1994, 2004); and several studies focusing on different aspects of ecophysiology, population ecology and hydroecology of cloud forests (Brun 1979; ICAE 2005), aspects of diversity, structure and biogeography on a succesional and mature forest stands close to the town of Mérida (Schneider et al. 2000; Schneider 2001) are particularly noteworthy. Few Andean montane forest areas outside of Mérida State have been studied (Bono 1996; Ortega et al. 1987; Cuello 1996, 1999, 2002 and Dorr et al. 2000). Beyond the Andes, other montane forest areas previously studied are Coastal Cordillera (Huber 1986; Howorth & Pendry 2006); Cerro El Avila (Vareschi 1955; Steyermark & Huber 1978; Meier 2004) and Cerro Copey in Margarita Island (Sugden 1985). On tropical mountains, the altitudinal limit of forest formations varies with latitude (Troll 1959, 1968) or in response to local or regional peculiarities of topography or climate (Grubb & Whitmore 1966; Monasterio & Reyes 1980; Van der Hammen & Cleef 1986; Van der Hammen 1995; Lauer et al. 2001; Richter 2003). In the tropical Andes, the distribution of vegetation types and their qualitative and quantitative composition are thought to be determined largely by gradients of temperature, rainfall, and relative humidity (Van der Hammen & Cleef 1986; Van der Hammen 1995), and horizontal precipitation and mist deposition (Bendix et al. 2006; Richter & Moreira-Muñoz 2005). Gradients of temperature have pronounced effects on the pattern of vegetation zonation, especially at the limits of the upper forest line (Troll 1973; Rundel 1994). In the northern Andes, altitudinal vegetation zonation has been distinguished as lowland tropical forests from 0-1000 m, lower montane (LMRF) or subandean forests from 1000-2300 m, upper montane (UMRF) or Andean forests from 23003500 (3200-3600) m and high Andean forests from 3500 (3000-3500)-3900 m. Open paramo vegetation is found over 3200-3900 m up to the nival zone (>48005000 m) (Cuatrecasas 1934, 1958; Van der Hammen 1974; Cleef et al. 1984; Van der Hammen & Hooghiemstra 2001). The existence of altitudinal zonation with discrete vegetation belts in the northern Andes (Cuatrecasas 1958; Van der Hammen 1974) versus a continuous change in species composition in tropical mountains, have been subject of discussion. Some quantitative studies in other tropical mountain areas support the existence of 9 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes discrete vegetation belts (Kitayama 1992; Hemp 2006), while other studies have been less conclusive about zonation (Nakashizucha et al. 1992; Kappelle et al. 1995; Lieberman et al. 1996; Vásquez & Givnish 1998). Differences in their scope, sampling methods, and analytical techniques may account for the discrepancy in their conclusions (Cuello 1996, 2000; Hemp 2006). In the Venezuelan Andes, six ecological altitudinal zones have been recognized (Sarmiento et al. 1971; Monasterio 1980; Monasterio & Reyes 1980; Ataroff & Sarmiento 2004): (1) a Basal zone from piedemont to 1000 m, (2) a Subandean zone between 1000 and 2000 m, (3) a Lower Andean zone between 2000 and 3000 m, (4) an Upper Andean zone between 3000 and 4000 m, (5) a High Andean zone between 4000 and 4800 m and (6) a Snow zone above 4800 m. The distribution of vegetation types along altitudinal zones in the Venezuelan Andes differs between humid and dry slopes (Sarmiento et al. 1971; Monasterio 1980; Monasterio & Reyes 1980; Ataroff & Sarmiento 2004). As elsewhere, the Venezuelan Andes are suffering increased human intervention. Many areas of montane forests continue to be converted into areas of agricultural or other land uses, while basic biodiversity studies remain scarce (Ataroff 2001). Fortunately, due to their steep slopes and inaccessibility there are still large parts of the Venezuelan Andes, with or without legal protection, where natural vegetation remains relatively undisturbed. One of such areas is Ramal de Guaramacal, the larger part of which is enclosed within a national park (Cruz Carrillo or Guaramacal National Park), not presently subject to a strong human intervention. The main goal of the present study is to identify, define and characterize the montane rain forest vegetation of Ramal de Guaramacal and to establish a syntaxonomic scheme or classification, based on analysis of the physiognomy, floristic composition, ecological relations and spatial distribution of the different vegetation communities. This work was conducted within the framework of a larger project aiming to study the floristic and vegetation diversity of the Guaramacal National Park (Cuello 1999, 2000, 2002, 2004). The classification of the paramo vegetation of the Guaramacal summit area is described separately (Cuello & Cleef 2009 b, c). 2.2 STUDY AREA Geography Ramal de Guaramacal is a mountain range extending approximately 30 kilometers northeast towards the eastern end of the Venezuelan Andes between 9° 0521‟ N and 70° 0020‟ W. (Fig. 1). Parts of the Boconó Municipality in the State of Trujillo and Sucre Municipality of the Portuguesa state are included. This formation, in its larger extension, reaches altitudes over 2000 m. The Guaramacal range includes summits of 3130 m in Páramo de Guaramacal; 2970 m in Páramo El Pumar; 2800 m in Páramo Agua Fría and 2600 m in Páramo Los Rosarios. 10 The forest vegetation of Ramal de Guaramacal _______________________________________________________ Much of the surface area of the Ramal de Guaramacal is protected by the Gral. Cruz Carrillo Nacional Park (or Guaramacal National Park), which includes, from the lowermost level of 1600 m, an approximate surface area of 21,466 hectares. Climate The climate of the Venzuelan Andean cordillera, as in the whole country is largely determined by the Intertropical Convergence Zone (ITCZ). The great altitudinal interval with respect to the Llanos, in combination with full exposition to trade winds, causes high precipitation of at least 3000 mm/year from low altitude up to approximately 2400 m on the southeastern slopes. From this position upwards and northwards, precipitation decreases to around 2000 mm on the northern slopes (Reaud-Thomas 1989). The climate is characterized by a dry season from November to March and a rainy season from April to October. Maximum precipitation occurs during June and July (Cuello & Barbera 1999). Temperatures remain low throughout the year, averaging around 18 to 20 oC between 1000 to 1500 m, and 9 to 12 oC in the zone above 2500 m. According to Grubb (1977) and Sarmiento (1986) the decrease of temperature with altitude (lapse rate) is around 0.6 oC/100 m. Above 2000 m the nights are cold and seasonal frosts may occur at altitudes over 2,500 m (Reaud-Thomas 1989; Urriola 1999). Geology Guaramacal mountain range is aligned to the South to the Boconó fault (Schubert 1980) and to the North of the Calderas fault. It constitutes a homogeneous block separated from the rest of the mountain range (and limiting in the North and West) by the interandean valley of Boconó River. To the South (Llanos slope) steep slopes descend towards the Calderas fault, from there, the smaller mountain formations decrease in altitude towards the piedemont at 400 m (Urriola 1999). This mountain chain is the product of orogenic processes which built the equatorial Andes. Some of the most important geological formations of the Venezuelan Andean Cordillera are displayed, from the oldest bedrock of the Precambric and the Paleozoic, to more recent deposits of the Neogene (Tertiary and Quaternary period). The most predominant geologic formations in Ramal de Guaramacal are: Sabaneta (Paleozoic), Palmarito (Paleozoic) y El Santuario or Gobernador (Tertiary), and, in the North slope at the end of the Boconó Fault, the Sierra Nevada formation (Grupo Iglesias, Upper Precambric) (Ministerio de Minas e Hidrocarburos, s/f; Urriola 1999) is present. In the Páramo de Guaramacal area (Sector A), the Sabaneta formation predominates. This old formation consists of a sequence of gray to brown sandstones intercalated with limolites and red to red-violet sandstones. Around Páramo El Pumar (Sector C), the Santuario, or Gobernador, formation (Tertiary) arises. This formation consists of 80% friables to hardened gray quartzeous sandstones becoming brownish under weathered conditions, being locally conglomerated in thick layers with intercalations of light colored limolites, and laminations of dark lutites, being occasionally calcareous and making up to 20% of the formation (Urriola 1999). 11 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Soils The soils of Guaramacal are determined by a set of climatic, geologic, and topographic conditions as well as vegetation characteristics for this mountainous landscape (Marvez & Schargel 1999). Periglacial phenomena are also an important landscape feature at the highest altitudes with páramos and high Andean forests. This is also true for the Guaramacal range. Glacial lakes, different types of morraines, roches mouttonnées, etc. account for the past presence of a glacial snow and ice cap in the summit zone during past glacial times. The high precipitation of the region favors intense lixiviation and acidification of the soils; thus, acid soils of low pH (<5) predominate. The soils under forests and páramos generally display high organic matter content due to low temperatures and acid conditions which markedly reduce the activity of soil microorganisms. The steep slopes and the elevated water content of soils on weathered rocks, favor mass movements and landslides at different spatiotemporal intervals; also determining substantial variability in soil depth and coarse fragment content (diameter > 2 mm). The predominance of sandstone of the Sabaneta and El Santuario formations accounts for a high sand content of the soils. Nevertheless, the presence of fine grained sedimentary lutites causes clayey soils in some localities. The soils of the study area are predominantly of the Entisols, Inceptisols and Ultisols order (Marvez & Schargel 1999). Morphological and chemical characteristics of some of the soil profiles representative of Ramal de Guaramacal (from Marvez & Schargel 1999) are presented in Appendix 3. Vegetation The vegetation of Guaramacal Park area is predominantely represented by montane rain forests with height and density decreasing with altitude (Cuello 2002). Subpáramo and of páramo vegetation is locally evident from 2700 m; however, forest vegetation patches mixed with open páramo can be found to elevations of up to 2900-3000 m in the summit zone. The montane forests of Ramal de Guaramacal are in the Tropical Lower Montane Very Wet Forest and Tropical Montane Rain Forest zones of the Holdridge climatic life zone system (Ewel et al. 1976). According to Huber & Alarcon (1988) the forests of Guaramacal are classified as „Bosques ombrófilos submontanos/montanos siempreverdes‟. According to the bioclimatic classification proposed by Costa et al. (2007) for the Andes of Merida, both forest and páramo zones of Guaramacal correspond to the Mesotropical belt. Previous geobotanical explorations and flora research Botanical exploration of Ramal de Guaramacal started in the 1960‟s when a rural road between Mosquey (Boconó - North slope) and the village of Guaramacal (South slope) was constructed, to provide access to a complex of communication antennas installed in the summit of Páramo de Guaramacal (Ortega et al. 1987, Dorr et al. 2000). The first floristic exploration was conducted by G.C.K. Dunsterville in 1963, who exploited this new track to collect orchids while workers still were felling trees for the new road (Dunsterville & Garay 1965, Dorr 12 The forest vegetation of Ramal de Guaramacal _______________________________________________________ 1999). Julian Steyermark visited Guaramacal at a later date, accompanied by Marvin Rabe in 1966; in 1970, with Basset Maguire and Celia K. Maguire; and finally alone in 1971 (Dorr 1999). During the 1970‟s several botanists visited the Guaramacal range; the late Luis Enrique Ruiz-Terán, being among them in 1973. Dana Griffin III collected bryophytes in 1975; José Cuatrecasas in 1978 for Espeletiinae (Asteraceae), and James L. Luteyn in 1978 mainly for Ericaceae and other species of the páramo. Manuel López-Figueiras and Mason Hale also collected lichens in Guaramacal in 1979 (Dorr 1999). During the 1980‟s, staff of Herbario Universitario (PORT) of the Universidad Nacional Experimental de los Llanos „Ezequiel Zamora‟ (UNELLEZ) in Guanare, headed by Francisco Ortega, Basil Stergios and Gerardo Aymard, made the first effort to catalogue the Guaramacal flora (Ortega et al. 1987, Rivero & Ortega 1989). In many of their visits they were accompanied by botanists from the United States of America, among them were Ronald Liesner and Henk van der Werff from the Missouri Botanical Garden; Alan R. Smith of the University of California, Berkeley; and Laurence J. Dorr, previously of the New York Botanical Garden (Dorr 1999). In 1995, the first author initiated a floristic research project studying vegetation across an elevational gradient using plots for the vegetation analysis (Cuello 1996), consequently initiating explorations in other, more remote, areas of Ramal de Guaramacal. Simultaneously, Basil Stergios (UNELLEZ) and Laurence Dorr (Smithsonian Institution) initiated a project to document the Flora of Guaramacal. This project initially served as a supporting framework for the present study of the Guaramacal vegetation. The combined efforts of botanical exploration and floristic survey, together with contributions from an integrated multidisciplinary team of researchers from UNELLEZ, generated publication of a reference book dealing with several aspects of the nature of the Guaramacal National Park (Cuello 1999). In addition to the first results detailing forest composition and diversity (Cuello 1996, 2000, 2002, 2004), a first „Catalogue of the vascular plants of Guaramacal National Park‟ (Dorr et al. 2000) has also been published. This catalogue accounts for a total 147 families, 517 genera and 1227 species of vascular plants. During the last twenty years, as a result of continued integrated survey and botanical exploration, ca. 40 species new to science have been discovered in the Guaramacal range (Morillo 1988; Axelius & D‟ Arcy 1993; Badillo 1994, Carnevali & Ramírez 1998; Aymard et al. 1999; Taylor 2002; Stergios & Dorr 2003; Stancik 2004; Niño et al. 2005; Cuello & Aymard 2008, for the species list see also Stergios 1999 and Dorr et al. 2000). The combined intensive vegetation surveys by the first author and botanical explorations by B. Stergios, L. Dorr and M. Niño (UNELLEZ) over the past ten years, have resulted in the addition of several new records to the Dorr et al. (2000) catalogue. Collections of non-vascular plants have been neglected in Guaramacal to date. Despite the collections made during the 70‟s, a published list of bryophytes and lichens from Guaramacal does not yet exist. Only a few of the most prominent and 13 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes conspicuous of bryophyte and lichen species present have been recently collected by first author, mainly from páramo vegetation. Many of the collections are undetermined at PORT, with only a present account of ca. 55 bryophyte species and 20 species of lichens. 2.3 METHODS Field surveys The study was carried out during 1995, 1996, 1999, 2003, 2005 and 2006 (see Appendix 2.). Montane forest community composition of Ramal de Guaramacal, Venezuelan Andes, was studied along the altitudinal gradient on both sides of the range with different slope expositions. The study area was divided into three sectors: (A) Guaramacal, (B) Agua Fría and (C) El Santuario (Fig. 2.1). Sector A corresponds to both slopes (N and S) in the central and higher part of the mountain range. This area is crossed North-South by a road that leads up to the telecommunication repeater antennas at the top of the mountain (Páramo de Guaramacal) and then descends to the village of Guaramacal on the South slope. Sector B comprises both slopes of the northeastern end of Ramal de Guaramacal with. This sector includes samplings sites named after nearby villages and rivers. Such sites are “La Peña” and “Río Frío” on the South slope, Trujillo state; “La Divisoria” and “El Alto”, at the border of Trujillo and Portuguesa states on the South slope; and “Laguna Negra” in Trujillo state and “El Mogote”, at the border of Trujillo and Portuguesa states on the North slope. Sector C corresponds to the north-western end of the Park, and includes the site known as “Qda. Honda – El Santuario”. Within the park access remains limited to the only existing road in the Guaramacal sector, whereas the other sites (La Divisoria, El Alto, El Mogote, Agua Fría, Río Frío, Laguna Megra and El Santuario) could only be reached on foot using new or existing pathways in the forest. The old paths crossing the mountain are also locally known as “caminos reales”; having previously served as commercial connections between towns located on the South side of Ramal de Guaramacal and the city of Boconó and its surroundings. On the South slope of Agua Fría sector it was also possible to survey forests below the Park boundaries (1350 - 1550 m). The discovery of these natural forests at low altitude provided the opportunity to document information on this region of the country. No other forest inventories are known from slopes at these altitudes. On the North slope of the same sector, the lowest plot was at 1650 m, near the locality of El Mogote, also located outside the Park boundary. For a more complete description of the study area the reader is referred to Cuello (1999). The forest survey contained a total of 44 samples (total area 3.705 hectares) located at different altitudes between 1300 and 3000 m, distributed throughout the different Park sectors (Fig. 2.1, Appendix 2). The samples include 35 plots of 1000 m2 (20 m x 50 m, divided in subunits of 10 m x 10 m) each. The forests located at higher elevations, due to access difficulties, low stature and low diversity of species, were surveyed in smaller plots. These include one plot of 500 m2, one of 14 The forest vegetation of Ramal de Guaramacal _______________________________________________________ 400 m2, one of 300 m2, three of 200 m2, two of 100 m2 and one of 50 m2 (see Table 2.2(b), Appendix 2). B A C Figure. 2.1. Geographic position of Ramal de Guaramacal in the Andes of Venezuela, with the outline of the National Park. Park sectors: A-Guaramacal, B-Agua Fría, CQda. Honda-El Santuario. 15 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes The altitudinal intervals between sampling sites were variable between 30 to 150 meters. The plots were selected taking into account accessibility, topography and vegetation physiognomy. Thus, plots were laid out in relatively accessible sites of less steep slope where possible and under a rather continuous canopy. In the highest and steepest part of the South slope, in the “Guaramacal” sector, the plots were laid out in sites where forest had been affected by nearby landslides. This was inevitable reflecting natural conditions, since the South slope is steeper than the North slope (Fig. 2.11). On the South slope of Agua Fría sector, the maximum altitude surveyed was 2125 m. Traveling by foot to this altitude was extremely difficult as the mountain relief in this sector is comprised of contiguous small ranges with low summits (1900-2000 m). From 1300 m (altitude of base camp), these lower summits had to be crossed (with lower valleys between at 1700 m) in order to reach the forest limits at around 2450 m. Unfortunately, the opportunity to arrive at this location remained unrealised at this time. Within each plot, all rooted individuals – trees, shrubs, lianas, tall and thick-stem or climbing terrestrial herbs and hemiepiphytes– ≥ 2.5 cm dbh (diameter at breast height, taken at 1.3 m from the base of the trunk, or lower for shrubs and thickstemmed herbs) were recorded, labeled with numbered aluminum tags and their dbh and height recorded. The 2.5 cm dbh minimum size was chosen to include most of the small woody understory species, as well as lianas and hemiepiphytes, and to make samples comparable with the studies of Gentry (1982, 1992, 1995). Epiphytes, non-vascular plants, small herbs and other growth forms with stems < 2.5 cm were not surveyed. Height of trees was estimated using a 2 m clipper pole as reference. Multistemmed species were counted as single individuals, but entire stem diameters were recorded for calculation of basal area. The same criterion was applied to multiple aerial roots of hemiepiphytes, such as Clusia. Individuals were assigned to morphospecies; a voucher sample of each morphospecies collected from each plot. For ambiguous species multiple vouchers were collected. Morphospecies were later matched for all plots. As voucher samples from plots were mostly sterile, general collections of fertile specimens outside the plots were also made. Some individuals (mainly lianas or very tall trees) could not be vouchered. In these cases, only registry of growth form, dbh and height were taken. For each site, collections and observations of other species not included in the surveys, herbs and epiphytes for instance, were made. In total over 2000 botanical numbers were collected under the number of N. Cuello (et al.) from nr. 915 to 2900 and A. Licata from nr. 150 to 690 (see Appendix 1). Data processing and analysis Identification and processing of botanical specimens was made at Herbarium PORT of the Universidad de los Llanos (UNELLEZ) in Guanare, Venezuela. Other herbaria, such as MO and US, were also consulted. Some specimens were sent to specialists at other institutions to confirm identification. All specimens 16 The forest vegetation of Ramal de Guaramacal _______________________________________________________ collected have been deposited at PORT, some duplicates have been sent to VEN, MER, MERF, MO and US. All the information and field data were stored and handled using Microsoft Excel. The total listing of the inventoried species together with their respective collection numbers appears in Appendix 1. For the physiognomic characterization of the forests structural profiles of 20 m x 10 m (Fig. 2.2-2.10) were elaborated in the direct neighbourhood of some of the surveyed plots. The sites selected for the elaboration of profiles are georeferenced in Appendix 2. A data matrix of the relative abundance of 360 species and 44 plots was processed with TWINSPAN (Hill 1979) using the program PC-Ord 4 (McCune & Mefford 1999). The resulting TWINSPAN was interpreted in terms of syntaxonomical classification of the vegetation, on the basis of floristic affinities, according to the Zürich-Montpellier approach (Braun-Blanquet 1979, Westhoff & van der Maarel 1973). For forest descriptions we followed Cuatrecasas‟s (1934) classification of subandean, Andean and high Andean forest. However, for discussion and comparison with other montane forests, we also referred to the equatorial montane rain forest zonation of LMRF, UMRF and SARF by Grubb (1977) used also elsewhere in the equatorial tropics. 2.4 RESULTS Flora diversity A total of 388 morphospecies with dbh ≥ 2.5 cm, corresponding to 189 genera and 78 families of vascular plants, were recorded from the 45 forest plots in Ramal of Guaramacal. These include: 4 families, 6 genera and 13 species of pteridophytes; 5 families, 13 genera and 19 species of monocots; 68 families, 170 genera and 355 species of dicots; and 1 gymnosperm species Podocarpus oleifolius var. macrostachyus. From the total of 388 morphospecies, 309 were identified to species level, 55 to genus, 9 to family and 15 were not identified. An additional 177 species of vascular epiphytes, herbs and small shrubs were annotated and collected for forest description, but not documented in the plot surveys. All the species registered and collected from the plots are listed in Appendix 1. Table 2.1 presents the most speciose families and genera based on the plot data from this study. Six families were represented by 20 or more species, while 3 genera were found with 10 or more congeners. Forest structure Table 2.2 (a and b) summarizes the structural parameters of the different plots by sector, slope exposure and elevation. A total of 14,895 individuals with dbh ≥ 2.5 cm were recorded in a total of 3,705 ha of accumulated forest plot. The number of individuals per 0.1-ha plot varied from 154 to 602, with an average density of 372. 17 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes On the North slope, density in 0.1 ha plots increased with altitude up to 2480 m, decreasing towards 2890 m. However, in forest plots (SARF) over 2900 m altitude a high density of low diameter individuals occurs with an average density of 110.02 individuals in 100 m2 plots (about to 1100 individuals extrapolated to 0.1 ha). The canopy height was variable within plots, but generally decreased with altitude. Taller emergent trees were found at every altitude. Maximum and mean diameter was variable among plots, the individual with the greatest diameter (127.3 cm) found at 2480 m. Table 2.1. Most diverse woody plant families with dbh ≥ 2.5 cm (>10 species) and genera (>5 species) in the plots of the montane forests of Ramal de Guaramacal, Andes, Venezuela. Families LAURACEAE RUBIACEAE MELASTOMATACEAE MYRTACEAE ASTERACEAE MYRSINACEAE ERICACEAE EUPHORBIACEAE Species 34 30 27 24 20 12 12 10 Genera Ocotea Miconia Eugenia Piper Persea Palicourea Psychotria Cybianthus Species 21 19 13 8 7 6 6 5 Table 2.2(a) Summary of structural parameters for each forest 0.1 ha plot by slope and Sector of Ramal de Guaramacal, Venezuela. Species richness, number of individuals, basal area, mean and maximum height, canopy height, mean and maximum diameter (in cm). Slope Sector Guaramacal North Agua Fría North- (Qda. west Honda) 18 Num Alt. m Plot Nr. spp Num Ind Basal Area 1850 1960 2070 2100 2170 2300 2350 2400 2480 2580 2750 2870 2890 1830 1900 2100 2260 1880 2100 2250 4.57 2.66 6.64 3.31 5.00 8.57 5.19 6.91 4.59 5.67 5.2 4.35 3.65 4.94 7.08 5.15 5.43 4.65 5.35 4.03 5 1 19 2 18 3 20 4 17 16 39 37 35 14 25 26 27 21 22 23 36 41 46 35 41 50 60 59 36 33 41 18 27 53 60 44 61 43 55 35 182 358 446 401 316 377 479 547 602 413 458 231 423 390 320 492 438 227 324 257 Tree height Max 4 20 24 18 26 21 22 19 23 19 17 16 12 24 28 26 24 32 30 18 Diameter Med Canopy Max Med 7.3 10-20 64.0 9.2 8.0 10-15 38.2 7.2 7.6 10-18 114.6 7.9 6.5 10-15 62.1 7.1 9.4 10-20 90.0 9.3 7.1 8-15 111.4 10.5 8.1 8-15 60.0 7.9 6.5 6-15 108.2 8.3 7.0 6-14 127.3 6.3 8.6 6-14 69.0 9.4 9.8 7-14 42.7 8.6 8.2 6-12 44 10.1 6.7 5-10 40 8 7.3 10-20 64.0 9.2 10.8 8-24 116.5 7.8 9.4 9-23 61.0 6.9 9.1 7-18 105 8.2 11.6 14-29 83 9.9 10.4 13-26 70 8.5 8.6 7-14 50 9.5 The forest vegetation of Ramal de Guaramacal _______________________________________________________ Slope Sector Guaramacal South Agua Fría Num Alt. m Plot Nr. spp Num Ind Basal Area 1950 2100 2300 2470 2580 1330 1450 1550 1600 1770 1800 1875 1880 1950 2125 4.62 2.82 2.98 2.98 3.78 3.76 3.63 5.44 4.95 4.37 5.96 3.73 4.01 5.96 5.37 4.78 167.3 7 9 8 6 24 28 29 13 10 31 11 30 15 12 32 36 29 31 31 34 40 45 47 52 45 42 38 43 42 42 Average Total 500 301 306 378 309 154 191 265 328 376 482 342 472 506 420 371.74 13011 Tree height Max 22 20 21 13 18 28 27 24 25 28 26 26 25 18 24 Diameter Med Canopy 8.9 9-18 7.7 9-13 7.9 9-16 6.5 8-11 8.6 8-14 10.4 10-24 8.8 10-24 11.7 13-22 7.3 12-20 11.5 11-24 7.2 12-20 11.5 11-22 7.2 15-22 6.7 9-13 9.9 9-18 Max Med 76 6.32 76 7.84 41.4 8.3 50 7.7 56 8.0 69 11.7 82 8.6 123 8.68 105 7.93 34 9.1 90 6.73 61 8.9 66 6.82 85 7.28 56 6.5 8.29 Table 2.2(b) Summary of structural parameters for forest plots (< 0.1 ha) in Ramal de Guaramacal, Andes, Venezuela. Slope Sector North South Alt. m Average Tree height Diameter Total Plot Plot Num Num Basal Num Nr. area spp Ind/100 Area Max. Med. Canopy Max. Med. Ind/plot m2 2474 33 300 29 175 58.3 0.97 6.1 6-10 27 6.8 Guaramacal 2810 38 200 21 407 203.5 0.91 8.3 4.5 12 3-6 13 4.7 2830 PL3 100 10 41 41.0 0.19 4.3 2.8 2-4 16 6.8 2870 36 500 21 172 34.4 1.71 5.8 5-10 3050 34 200 18 263 131.5 0.81 6.5 4.1 3-5 21 5.3 3050 44 100 12 131 131 0.26 6 3.5 3-4 17 4.1 2950 41 400 22 272 68.0 1.77 10 6.2 5-8 25 6.9 Guaramacal 2950 40 200 19 277 138.5 1.1 6 3.6 3-5 27.5 5.6 3060 43 50 14 92 184 0.25 5 3.1 3-5 12.8 5.2 12 41.5 7.7 Forest classification The interpretation of the TWINSPAN table, based on affinities of floristic composition and relative species abundance, allowed recognition of seven vegetation communities at association level, grouped in three alliances and one major group equivalent to order level (Table 2.3). Three subandean forest (LMRF) communities and four Andean - high Andean forest (UMRF-SARF) communities are distinguished. The classification and description of the forest vegetation communities of Ramal de Guaramacal are presented below. 19 20 Plot No. 13 28 29 5 21 22 11 14 10 25 2 3 18 1 7 12 19 26 32 15 30 31 4 17 20 23 Area 1x10 (m2) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 No. of Species (DBH ≥ 2.5 cm) 47 40 45 36 43 55 42 53 52 60 35 50 41 41 36 42 46 44 42 43 38 45 59 36 60 35 E 1 1 1 1 1 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 l 4 3 4 8 8 1 8 6 6 9 1 3 1 9 9 9 0 1 1 8 8 7 4 4 3 2 e 5 3 5 5 8 0 0 5 0 0 0 0 7 6 5 5 7 0 2 8 7 7 5 8 5 5 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 0 0 Slope exposure S S S N NO NO S N S N N N N N S S N N S S S S N N N NO Park sector B B B A C C B B B B A A A A A B A B B B B B A A A C Meliosma tachirensis - Alchornea grandiflora montane forest order group Order Alliance Geonomo undatae -Posoq. coriaceae Farameo killipii - Prunion moritzianae 1 2 Association 3 1.2 3.1 Subassociation 1.1 4.1 Variant 3.2 Subandean forests (LMRF) Assoc. 1. Simiro erythroxylonis - Quararibeetum magnificae . . . . . . . . . . . . . . . . . . . . . 1 5 3 1 3 Simira erythroxylon . . . . . . . . . . . . . . . . . . . . . Parathesis venezuelana 1 3 1 2 1 . . . . . . . . . . . . . . . . . . . . . Urera caracasana 2 1 1 4 . 4 3 . 4 1 . . . . . . . . . . . . . . . . . . . . Quararibea magnifica . 1 3 . 3 . . . . . . . . . . . . . . . . . . . . . Cuatresia riparia . 1 1 . 1 1 . . . . . . . . . . . . . . . . . . . . Picramnia sp. . . 1 2 . . . . . . . . . . . . . . . . . . . . . . Aegiphila floribunda 1 . . . 3 . . . . . . . . . . . . . . . . . . . . . Diplazium hians 1 1 . 1 . . . . . . . . . . . . . . . . . . . . . . Inga edulis . 1 . 1 . . . . . . . . . . . . . . . . . . . . . . Vasconcella microcarpa . . . . 1 . . . . . . . . . . . . . . . . . . . . . Ocotea cernua 1 . . 1 . . . . . . . . . . . . . . . . . . . . . . Huertea glandulosa 1 Subassoc. 1.1. typicum . . . . . . . . . . . . . . . . . . . . . . Aphelandra macrophylla 3 1 2 . . . . . . . . . . . . . . . . . . . . . . . Psychotria trichotoma 3 2 1 . . . . . . . . . . . . . . . . . . . . . . . Alchornea glandulosa 1 1 1 . . 1 . . . . . . . . . . . . . . . . . . . . . . . Cecropia sararensis 3 3 2 . . . . . . . . . . . . . . . . . . . . . . . Ocotea sp. C . 2 3 . . . . . . . . . . . . . . . . . . . . . . . Stylogyne longifolia . . 2 . . . . 1 . . . . . . . . . . . . . . . . . . Hippotis albiflora 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . Matisia sp. . . . . . . . . . . . . . . . . . . . . . . . . . Nectandra aff. membranacea 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . 2 4 7 4 N B . . . . . . . . . . . . . . . . . . . . . 2 4 7 0 S A . . . . . . . . . . . . . . . . . . . . . 4.2 2 1 0 0 S A . . . . . . . . . . . . . . . . . . . . . 2 5 8 0 S A 34 . . . . . . . . . . . . . . . . . . . . . 2 3 0 0 S A 31 2 8 9 0 N A 27 2 8 7 0 N A 21 2 8 7 0 N A 18 100 2 8 1 0 N A 17 20 3 0 6 0 S A 9 5 3 0 5 0 N A 10 10 2 8 3 0 N A 10 10 3 0 5 0 N A 18 20 2 9 5 0 S A 19 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 5 0 S A 22 40 40 41 Ruilopezio paltonioides - Cybianthion marginati 5 6 7 5.1 2 7 5 0 N A 41 2 5 8 0 N A 29 2 2 6 0 N B 31 29 40 39 35 36 37 38 43 44 PL3 34 33 8 61 24 30 9 6 100 100 100 100 100 100 27 16 33 100 100 Table 2.3. Phytosociological table of montane forests of Ramal de Guaramacal, Venezuela. 1: Simiro erythroxylonis - Quararibeetum magnificae; 1.1: typicum; 1.2: bunchosietosum armeniaceae. 2: Conchocarpo larensis - Coussaretum moritzianae. 3: Croizatio brevipetiolatae - Wettinietum praemorsae; 3.1: hedyosmetosum cuatrecazanum; 3.2: var. Protium tovarense . 4: Schefflero ferrugineae - Cybianthetum laurifolii; 4.1: typicum; 4.2: miconietosum suaveolentis. 5: Geissantho andini - Miconietum jahnii; 5.1: Subcommunity of Freziera serrata . 6: Libanothamnetum griffinii. 7: Gaultherio anastomosantis - Hesperomeletum obtusifoliae. Flora, vegetation and ecology in the Venezuelan Andes 1 1 . . . Trichilia pallida . . . . . . Zygia bisingula 2 . . . . . Ficus sp. 2 . . . . . Paullinia capreolata 2 2 . . . . Tammsia anomala . 2 . . . . Trichilia hirta . . 2 . . . Piper hispidum . Subassoc. 1.2. bunchosietosum armeniaceae . . 4 . . Acalypha macrostachya . . . 4 1 2 Psychotria fortuita . . . 2 1 . Bunchosia armeniaca . . 1 1 4 . Pleurothyrium costanense . . 1 1 1 . Ficus tonduzii . . . 3 . . Saurauia tomentosa . . . . 2 . Diplazium celtidifolium . . . . 2 2 Piper s p. (Liana) . . . 2 . . Hydrangea aff. peruviana . . . . 1 1 Cestrum bigibbosum . . . . 1 1 Solanum nudum . Assoc. 2. Conchocarpo larensis - Coussaretum moritzianae . . . . 2 Coussarea moritziana . . . . . . Conchocarpus larensis 4 . . . . 1 Alsophila erinacea . . . . 1 1 Sloanea guianensis . . . . . 1 Miconia lonchophylla . . . . . . Meliosma pittieriana . . . . . 1 Cyathea kalbreyeri . . . . . . Eschweilera perumbonata . . . . . . Chrysophyllum cf. cainito 1 . . . 1 1 Sloanea rufa . . . . . 2 Mouriri barinensis 1 . . . . . Asplundia vagans . . . . . . Pseudolmedia rigida . . . . 1 1 Dussia coriacea . . . . . . Eugenia grandiflora . . . . . . Eugenia sp. 1 . . . . . 1 Inga aff. densiflora . . . . . . Machaerium cf. floribundum . . . . . . Picramnia sp. A 1 . . . . . Ocotea rubrinervis . . . . . 1 Stylogyne sp. A . . . . 1 3 Eugenia sp. 3 . . . . . 2 Chionanthus sp. . . . . . . Tocoyena costanensis . . . . . . . . . . . . . . . . . . . 1 1 4 1 1 1 2 . . . . 3 1 . . . . 1 1 . . . . 2 . . . . . . . . . . . . . . . . . . 1 5 . 1 1 1 . 1 1 . . . . 1 1 1 1 . . 1 . . . . 3 5 . 1 1 1 1 1 2 1 1 . 1 . 1 . . . . 1 . . . . . . . . . . . . . . . 1 . . . . . . 3 . 1 1 3 . . 2 1 1 . . 1 . . 1 . 1 1 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 3 . . . . 2 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . . 1 1 . . . 1 . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 3 1 . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forest vegetation of Ramal de Guaramacal 21 Plot No. 13 28 29 5 21 22 11 14 10 25 2 3 18 1 7 12 19 26 32 15 30 31 4 17 20 23 Area 1x10 (m2) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 No. of Species (DBH ≥ 2.5 cm) 47 40 45 36 43 55 42 53 52 60 35 50 41 41 36 42 46 44 42 43 38 45 59 36 60 35 E 1 1 1 1 1 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 l 4 3 4 8 8 1 8 6 6 9 1 3 1 9 9 9 0 1 1 8 8 7 4 4 3 2 e 5 3 5 5 8 0 0 5 0 0 0 0 7 6 5 5 7 0 2 8 7 7 5 8 5 5 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 0 0 Slope exposure S S S N NO NO S N S N N N N N S S N N S S S S N N N NO Park sector B B B A C C B B B B A A A A A B A B B B B B A A A C Meliosma tachirensis - Alchornea grandiflora montane forest order group Order Geonomo undatae -Posoq. coriaceae Farameo killipii - Prunion moritzianae Alliance Association 1 2 3 Subassociation 1.1 1.2 3.1 4.1 Variant 3.2 . . . . . . . 2 . . . . . . . . . . . . . . . . . Petrea pubescens . . . . . . 2 . . . . . . . . . . . . . . . . . . . Piper arboreum . . . . . . . 2 . . . . . . . . . . . . . . . . . . Eugenia sp. . . . . . . . 1 . 1 . . . . . . . . . . . . . . . . Salacia aff. cordata . . . . . . . . . 1 . . . . . . . 1 . . . . . . . . Clusia sp. 1 . . . 2 . . . 1 . . . . . . 1 . 1 . . . . . . . . . Cecropia telenitida . . . . . 1 . . . . . . . . . . . . . 1 . . . . . . Eugenia sp. 2 . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . Prunus cf. skutchii . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . Simira lezamae . Alliance 1. Geonomo undatae - Posoquerion coriaceae 2 . 1 1 1 . 1 1 . . . . . . . . . . . . . Guarea kunthiana 1 1 3 2 2 . . . 1 1 2 1 2 2 . . . 2 . . 1 . . 1 . . . . . . Pouteria baehniana 5 . 1 4 1 . . . . . . . . . . . . 1 . . . . Geonoma undata 1 1 4 . 1 . 1 . 3 5 1 2 . 1 1 . . . . . . . . . . . . . . . Calatola venezuelana . . 2 1 2 2 . 2 1 1 . . . . . . . . . . . . . . . . Posoqueria coriacea 1 . 1 . 2 . . 2 3 2 . . . . . . . . . . . . . . . . Rudgea nebulicola . . 1 1 1 1 . . . . . . 1 . . . 1 2 . . . . Matayba camptoneura 1 1 1 . 1 . . . . . . 2 3 . . . . . . . . . . . . . . . . . Mabea occidentalis 3 . 1 . 1 1 1 1 . 1 1 . 1 . . . . . . . . . . . . . Persea peruviana . 1 1 2 . 2 . . . . . . . . . . . . . . . . . . . . Eugenia moritziana . . 1 . 1 1 . . . . . . . . . . . . . . . . . . . . Marcgravia brownei . . . . . . . . 1 1 . . . . . . . . . . . . . . . . Tapirira guianensis 1 . . 1 . . 1 . 1 . . 1 . . . . . . . . . . . . . . Gordonia fruticosa . . . 1 . . . 1 . . . . . . . . . . . . . . . . . . Psychotria longirostris . . 1 . . . . 1 . . . . . . . . . . . . . . . . . . Rollinia mucosa . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . Trigynaea duckei . 1 . . . 1 . . . . . . . . . . . . . . . . . . . . Hydrangea cf. preslii . 1 . . . . . 1 . . . . . . . . . . . . . . . . . . Ficus nymphaeifolia . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . Nectandra aff. purpurea . 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 7 4 N B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 7 0 S A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 2 1 0 0 S A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 8 0 S A 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 0 0 S A 31 2 8 9 0 N A 27 2 8 7 0 N A 21 2 8 7 0 N A 18 100 2 8 1 0 N A 17 20 3 0 6 0 S A 9 5 3 0 5 0 N A 10 10 2 8 3 0 N A 10 10 3 0 5 0 N A 18 20 2 9 5 0 S A 19 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 5 0 S A 22 40 40 41 Ruilopezio paltonioides - Cybianthion marginati 5 6 7 5.1 2 7 5 0 N A 41 2 5 8 0 N A 29 2 2 6 0 N B 31 29 40 39 35 36 37 38 43 44 PL3 34 33 8 61 24 30 9 6 100 100 100 100 100 100 27 16 33 100 100 Flora, vegetation and ecology in the Venezuelan Andes . 1 . . . Paullinia cf. latifolia . Assoc. 3. Croizatio brevipetiolatae - Wettinietum praemorsae . . . . . Croizatia brevipetiolata . . . . . . Wettinia praemorsa . . . . . 1 Meriania grandidens . . . . . . Aniba cf. cinnamomiflora . . . . . . Cybianthus cuspidatus . . . . . . Miconia cf. minutiflora . . . . . 1 Elaeagia ruiz-teranii . . . . . . Ocotea sp. A . . . . . . Miconia lucida . . . . . . Hedyosmum cf. gentryi . . . . . . Faramea guaramacalensis . . . . . . Maytenus sp. A . . . . . . Ocotea aff. puberula . . . . . . Myrcia acuminata . 3.2. var. Protium tovarense . . . . . Protium tovarense . . . . . . Coccoloba cf. llewelynii . . . . . . Aiphanes stergiosii . . . . . . Persea meridensis . . . . . . Miconia sp. B . . . . . . Myrcia sp.1 . Subassoc. 3.1. hedyosmetosum cuatrecazanum Hedyosmum cuatrecazanum . . . . . . . . 1 . . Palicourea demissa . . . . . . Sapium stylare . . . 1 . . Aegiphila ternifolia . . . . 2 3 Casearia tachirensis . . . . . . Palicourea puberulenta . . . . 2 1 Meriania macrophylla . . . . . . Perrottetia quinduensis . . . . . 1 Guettarda crispiflora . . . . . 1 Turpinia occidentalis . . . . . . Cestrum darcyanum . . . 1 . . Miconia amilcariana . Andean Forest (UMRF) Assoc. 4. Schefflero ferrugineae - Cybianthetum laurifolii . . . . . Cybianthus laurifolius . . . . . . Myrsine coriacea . . . . . . Schefflera ferruginea . . . . . . Hedyosmum crenatum . . . . . . Miconia ulmarioides . . . . . . Ilex laurina . 1 . 3 . 1 . . . . . 1 . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . 5 2 . 2 . 1 . . . 1 1 1 . 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 2 . 1 3 . . . . 1 . . . . . . . . . . . . . . 1 . . . . . . . . 2 . . . . . 1 4 . 3 . . . 1 1 1 . . . . . . . . . . . 2 2 2 1 1 2 2 1 1 1 . 1 . . . . . . 5 2 1 1 . 1 1 . . . . . . . . . . . . 1 . 2 3 1 1 1 3 . . . . 1 . . . . . . . 5 . 2 . 1 . 4 1 . . . . . . . . . . . . . 3 2 2 1 3 . 2 3 1 1 1 . . . . . . . 5 2 1 . . 1 . . . . . . . . . . 1 . . . . . . . . . 2 . . . . . . . . . 1 . . 2 5 . 3 2 1 1 . 2 . . . 2 . . . . . . . . . . . . . . . . . . . . 2 . . . . . . 5 1 . . . . 1 . . 1 1 . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . 4 5 1 1 1 1 1 1 1 . 1 1 . 2 . . . . . . . . . . . 1 . 1 . . . . . . . . 1 . . 4 4 2 2 . . 1 . 1 1 . . 2 . . . . . . . . . . . . . . . . . . . . . 2 . 1 . . 5 5 1 . . . . . 1 1 1 . . . . . . . . . 1 . . . . . . . . . . . . . 1 1 . 2 . 2 5 1 . . . 1 . 2 . 1 1 . 1 . . . . . . . . . . . . . . . . . . . 4 2 2 1 . 2 . 2 . 2 3 . . 1 1 1 . . . . . . . . . . 1 . . . . . . . . . . . . 5 1 1 2 . . . 1 . 2 . 1 . . 1 2 . . . 1 . . . . . 2 . . . . . . . . . . . . . 4 2 2 2 . 1 1 1 . 2 . 1 . . . 2 1 . . 2 . 2 1 1 3 3 1 . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2 4 2 1 . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . 1 1 1 3 3 . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 4 1 1 2 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 1 2 2 1 . . . . . . . . . . . . . 1 . . . . . 3 . . . . 1 . 1 . . . . . . 4 1 1 2 . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 2 . 2 1 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1 1 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 2 . . . . 1 . . . . . . . . . . . 3 . . . . . . . . . . . . . 3 1 2 3 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 . 1 1 . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forest vegetation of Ramal de Guaramacal 23 Plot No. Area 1x10 (m2) No. of Species (DBH ≥ 2.5 cm) E l e v Slope exposure Park sector Order Alliance Association Subassociation Variant Drimys granadensis Prestoea acuminata Palicourea apicata Weinmannia glabra Rhipidocladum geminatum Podocarpus oleifolius Ilex myricoides Persea aff. mutisii Weinmannia fagaroides Byrsonima sp. Ocotea jelski Ilex sp.2 Persea sp.1 Byrsonima karstenii Viburnum tinoides Arthrostylidium venezuelae Palicourea jahnii Pentacalia vicelliptica Subassoc. 4.1. typicum Calyptranthes cf. meridensis Brunellia cf. integrifolia Panopsis suaveolens Myrcia aff. guianensis Dioicodendron dioicum Gaiadendron punctatum Ilex truxillensis var. bullatissima Meliosma venezuelensis Symplocos bogotensis Ocotea sericea 24 1 3 3 0 S B 1 4 5 0 S B 1 1 2 8 8 1 5 8 0 0 0 0 N NO NO A C C 11 14 1 8 0 0 S B 42 1 6 5 0 N B 53 100 100 10 1 6 0 0 S B 52 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . Geonomo undatae -Posoq. coriaceae 1 2 1.1 1.2 1 4 5 0 S B 43 55 36 40 47 45 22 100 5 21 13 28 29 100 100 100 100 100 25 2 3 18 1 7 12 19 26 32 15 30 35 50 41 41 36 42 46 44 42 43 38 31 4 45 59 36 60 35 . . . . . . . . . . . . . . . . . . . . 1 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . 2 . . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . 3 1 1 1 1 1 1 1 1 . 2 1 1 1 . . . . . . 1 1 1 . 1 1 . 1 1 1 3 1 . . . . 1 . . 1 1 2 . 1 1 . 1 . . . . 1 2 2 . 1 . . . 1 . . . . . . . . 2 2 6 0 N B 61 2 . . . . . . . . . 1 . 3 3 3 2 2 2 . . 1 . 2 . . . . . 4 2 5 8 0 N A 33 . . . . . 1 . . . . . 2 . 3 . 2 3 1 2 1 1 . . 2 . . 1 . 2 4 7 4 N B 29 30 17 20 23 27 16 33 100 100 100 100 100 100 100 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 9 1 3 1 9 9 9 0 1 1 8 8 7 4 4 3 2 0 0 0 7 6 5 5 7 0 2 8 7 7 5 8 5 5 0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 0 0 N N N N N S S N N S S S S N N N NO B A A A A A B A B B B B B A A A C Meliosma tachirensis - Alchornea grandiflora montane forest order group Farameo killipii - Prunion moritzianae 3 3.1 4.1 3.2 . . . . . . . . . . . . . 1 1 1 1 . . . . . 3 . . . . . . . . . . 1 3 . . . . . . . 1 . 2 . 2 . 3 4 3 . . . . . . . . . . . 1 2 1 2 1 . . . . . . . . . . . . . . . 4 . . . . . . . . . . . 1 . . . 1 1 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 60 100 100 100 100 100 100 100 100 100 100 100 100 6 9 24 8 . . . . . . . . . . . 1 1 . . . . . . . . . . . 1 . . . 2 4 7 0 S A 31 . . . . . . . . . . . 1 . . . . . . . . . . . . . 1 . . 4.2 2 1 0 0 S A 29 . . . . . . . . . . 1 . . . 2 . . 1 4 . . 1 . . . . . . 2 5 8 0 S A 34 . . . . . . . 1 . . . 1 . . . . . . . . . 1 . . . . . . 2 3 0 0 S A 31 2 8 9 0 N A 27 2 8 7 0 N A 21 2 8 7 0 N A 18 100 2 8 1 0 N A 17 20 3 0 6 0 S A 9 5 3 0 5 0 N A 10 10 2 8 3 0 N A 10 10 3 0 5 0 N A 18 20 2 9 5 0 S A 19 20 . . . . . 1 . . . . 1 . . . 2 2 1 1 1 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 1 . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 5 0 S A 22 40 40 41 Ruilopezio paltonioides - Cybianthion marginati 5 6 7 5.1 2 7 5 0 N A 41 40 39 35 36 37 38 43 44 PL3 34 100 100 100 100 100 100 Flora, vegetation and ecology in the Venezuelan Andes . . . Ocotea sericea . Subassoc. 4.2. miconietosum suaveolentis . . . Critoniopsis paradoxa . . . . Hedyosmum sp. A . . . . Miconia suaveolens . . . . Hyeronima scabrida . . . . Aegiphila moldenkeana . . . . Chusquea purdieana . . . . Ocotea sp. B . . . . Monnina meridensis . Alliance 2. Farameo killipii - Prunion moritzianae . . . Faramea killipii . . . . Clethra fagifolia . . . . Anaectocalyx bracteosa . . . . Cyathea pauciflora . . . . Prunus moritziana . . . . Zanthoxylum melanostictum . . . . Cyathea caracasana 1 . . . Cybianthus iteoides . . . . Eugenia cf. tamaensis . Weinmannia aff. balbisiana . . . . . . . Rudgea tayloriae . . . . Aiouea dubia . . . . Miconia mesmeana . . . . Miconia tovarensis . . . . Myrcia cf. sanisidrensis . . . . Ocotea vaginans . . . . Hieronyma moritziana . . . . Symbolanthus vasculosus . . . . cf. Elaeoluma nuda . . . . Ocotea leucoxylon . . . . Mikania banisteriae . . . . Citronella costaricensis . . . . Geonoma jussieuana . . . . Diogenesia tetrandra . . . . Ocotea cf. hexanthera . . . . Saurauia yasicae . . . . Dicksonia sellowiana . . . . Mikania nigropunctulata . . . . Eugenia albida . . . . . . . . . . . . . . . . . . 2 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1 . 1 . . . . . . . . . . . . . . . . . 2 1 . . 1 . . . 3 . . 1 1 . . 2 1 . 1 . . 1 . . . 1 . . . . . . . . . . . . . . . . 1 . . . . . . . . . . 1 1 . 1 . . 1 . . . . . . . . . . . . . . . . 1 . . . 1 1 . 2 1 . . 1 . 2 . . 1 . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 2 . . 1 1 . . 2 1 1 1 . . . . . . . . 1 . . . 1 2 . . . . . . . 2 . 1 . 1 1 . 1 . 1 . . . . 1 . . 1 1 1 . . 1 . . . . . . . . . . . . . . . 1 . . . 1 2 . 2 . . . 2 . . . 1 1 . . . 2 . . . . . . . 1 . . . . . . . . . 2 1 1 2 1 . . . 1 1 2 . . . 1 . . . . 1 1 . . . 2 . . 1 . . . . . . . . . . 1 1 1 2 1 1 . 1 . 1 2 1 1 . . 1 . . . . . . . . . . . . . 1 3 . . . . . . . . . 1 . . 1 1 . 1 1 . . . . 2 . . 1 . 1 . . 1 . . . 1 . . . . . . . . . . . 1 1 1 4 1 3 . 2 . . . . . . . . . 1 1 . . . . 1 . . . . . . . . . . . . . . . . 1 . 1 1 . 1 . . . . . 1 . . 1 . . . . . . . . . . . . . . . 1 . . . . . 4 1 3 1 1 1 3 1 3 . . 1 . . . . 1 1 1 1 . 1 . . . 1 . . . 1 . . . . . . . . 3 2 3 . 1 . 3 . . . . 1 . . . . . . . . . 1 . . . . 1 . . 3 . . . . . . . . 2 1 2 . 1 2 . . 2 2 . 1 . . . 2 1 1 1 1 . . 1 1 . . . 1 . . . . . . . . . 1 1 1 3 . 2 . 2 2 . 2 . . . . 3 . . 2 . . . . . . . . . . . . . . . . . . . 1 4 . 3 2 1 1 1 1 1 . 2 1 . . 2 . . . . 1 1 . . . 2 . 1 . . . . . . . . . . . 4 1 2 1 . . . . . . . . 1 . . . . . . . . . . . . . . . 1 . . . . . . . . . 1 1 1 2 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 . 1 . 2 . . . . . . . . . . . . . . . . . . . . . . 3 1 3 1 2 3 1 2 . . 2 1 3 . 1 . . . . 1 . 4 3 . . . . . . . . . . . . . . . 4 2 1 1 1 . 1 . . . 2 1 . 1 . . . . 1 . . . . . 1 . . . . . . . 2 . . . . . 2 2 3 1 . . . . . 1 2 . 2 . . . . . . 1 . . 2 . . 1 1 . . . . 1 . . . . . . 4 4 . 2 . . . . . . 2 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The forest vegetation of Ramal de Guaramacal 25 Plot No. 13 28 29 5 21 22 11 14 10 25 2 3 18 1 7 12 19 26 32 15 30 31 4 17 20 23 Area 1x10 (m2) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 No. of Species (DBH ≥ 2.5 cm) 47 40 45 36 43 55 42 53 52 60 35 50 41 41 36 42 46 44 42 43 38 45 59 36 60 35 E 1 1 1 1 1 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 l 4 3 4 8 8 1 8 6 6 9 1 3 1 9 9 9 0 1 1 8 8 7 4 4 3 2 e 5 3 5 5 8 0 0 5 0 0 0 0 7 6 5 5 7 0 2 8 7 7 5 8 5 5 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 0 0 Slope exposure S S S N NO NO S N S N N N N N S S N N S S S S N N N NO Park sector B B B A C C B B B B A A A A A B A B B B B B A A A C Meliosma tachirensis - Alchornea grandiflora montane forest order group Order Geonomo undatae -Posoq. coriaceae Farameo killipii - Prunion moritzianae Alliance Association 1 2 3 Subassociation 1.1 1.2 3.1 4.1 Variant 3.2 Montane forest order group of Meliosma tachirensis and Alchornea grandiflora 1 . . . 1 . . . . . 1 . . 1 1 . . 2 . 2 . 2 2 3 3 Clusia trochiformis . 1 . 2 1 2 1 2 1 1 1 1 1 3 1 1 2 1 . 1 3 2 1 . 3 1 Alchornea grandiflora . . . 1 1 3 1 3 1 2 3 3 3 2 . 1 2 1 2 1 . 1 1 . 1 . Piper longispicum . . . 1 . . 1 . 1 . . . 1 . . 1 1 . . 1 . 1 . 2 . 2 Clusia alata . . . 1 . . 1 1 2 1 2 1 2 . 2 . . . 1 . . . 1 . . . Miconia theaezans . 2 2 . . . . 1 . . 2 3 1 . 2 1 1 2 3 1 . 1 1 . . . Ruagea pubescens . . 2 2 . 1 1 . 1 1 2 1 1 1 2 1 1 . . 1 . 1 . . 1 1 Geissanthus fragrans . . 1 . . . 1 1 1 1 . . . 3 . . 2 1 2 3 2 2 . 1 . . Besleria pendula . . . . . . . . . 2 . 2 1 . . 3 2 1 . 1 2 3 . . 1 . Cyathea fulva . . . . . 1 1 . . 1 1 2 1 1 1 2 1 1 . 1 1 1 . . 2 . Beilschmiedia tovarensis . . . . 1 1 1 . . 1 . 1 . 1 1 1 1 1 1 1 1 1 1 . 1 1 Billia rosea 1 . . . . 1 1 . 1 1 . 1 1 1 2 1 2 1 2 . . . 1 . 1 . Hieronyma cf. oblonga . . . 1 . . . . . . 1 1 . . . . 1 . 1 . 1 1 . 1 . 2 2 Psammisia hookeriana . 1 . . 1 1 1 . 2 . . 1 2 1 1 1 1 . 1 1 . . . . . Blakea schlimii . . . . . 2 . . . 1 1 1 1 . . . . 1 . . 1 2 1 . 1 . Meliosma tachirensis . . 1 . 1 . . . 1 . . . . . . . . . . 5 1 . . . . 1 Sphaeradenia laucheana . . . 1 1 . . 2 . . 1 1 1 1 . . 1 . 1 . . . . . 1 . Tetrorchidium rubrivenium 1 . . . . 1 . 1 . 1 . . . 3 . . 3 . . . . 1 . . . . Palicourea angustifolia . . . . . . . 1 2 1 . . . 1 . . 1 . . 1 . 2 . . . . Dendropanax arboreus 1 . . 1 . . . . . . . . . 1 1 1 1 . . . . . 1 1 1 . Ocotea karsteniana . . . . . . . 1 1 2 . . . . . . . . . . 2 . . . . . Eugenia cf. oerstediana 1 . . . . 1 . . 1 . . . . . . . . . . . 1 . Miconia cf. dolichopoda 1 1 1 1 . . . . 1 1 . . . . 1 1 1 . . . . . . . . . . 1 . . Trichilia septentrionalis . . . . . . . . 1 . 1 2 . . . . . 1 . . . . 2 . 1 . Ocotea floribunda . . . 1 . . . . . . . . . . . . . . . . 2 2 . . . . Weinmannia sorbifolia . . . . . . . 1 . 1 . . . . . . . . . 1 . . 1 . 1 1 Ocotea macropoda . . . . . . 1 . . . . . . . . . . 2 . . . . . . 2 . . Elaeagia karstenii . . . . . . 1 1 . . . . . . . . . . . . . . . 1 . Tabebuia guayacan 1 26 2 1 . 1 1 . . . 1 1 1 . . . . 2 . . . 1 . 1 . . . . . . 3 . . 1 1 . . . . . . . . . . . . . . . . . . . . 1 . . 4 4 . . 2 . . . . . . . . . . . 3 . . . . . . . . . . . . 2 4 7 4 N B 2 . . 3 1 . . . . . . . . . 1 . . 1 . . . . . . . . . . 2 4 7 0 S A 4 2 . 2 3 . 1 . . . . 1 . . . . 1 . . . 2 . . . . . . . 4.2 2 1 0 0 S A 3 . . 4 1 . . . 1 . . . 1 . . . . . . . . . 1 . . . . . 2 5 8 0 S A 34 3 . . 3 3 2 . . . . . . . . 1 . . . . . . . . . . . . . 2 3 0 0 S A 31 2 8 9 0 N A 27 2 8 7 0 N A 21 2 8 7 0 N A 18 100 2 8 1 0 N A 17 20 3 0 6 0 S A 9 5 3 0 5 0 N A 10 10 2 8 3 0 N A 10 10 3 0 5 0 N A 18 20 2 9 5 0 S A 19 20 . . . 1 . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 2 9 5 0 S A 22 40 40 41 Ruilopezio paltonioides - Cybianthion marginati 5 6 7 5.1 2 7 5 0 N A 41 2 5 8 0 N A 29 2 2 6 0 N B 31 29 40 39 35 36 37 38 43 44 PL3 34 33 8 61 24 30 9 6 100 100 100 100 100 100 27 16 33 100 100 Flora, vegetation and ecology in the Venezuelan Andes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hedyosmum translucidum . . . . . . . Freziera serrata . . . . . . . . Weinmannia auriculata . . . . . . . . Weinmannia karsteniana . . . . . . . . Macrocarpaea bracteata . . . . . . . . Ocotea calophylla . Assoc. 6. Libanothamnetum griffinii . . . . . . . Libanothamnus griffinii . Assoc. 7. Gaultherio anastomosantis - Hesperomeletum obtusifoliae . . . . . . . . Hesperomeles obtusifolia . . . . . . . . Diplostephium obtusum . . . . . . . . Gaultheria anastomosans . . . . . . . Pentacalia greenmanniana . . . . . . . . Ageratina theifolia . Alliance 3. Ruilopezio paltonioides - Cybianthion marginati . . . . . . . . Miconia tinifolia . . . . . . . . Cybianthus marginatus . . . . . . . . Myrsine dependens . . . . . . . . Vaccinium corymbodendron . . . . . . . . Pentacalia cachacoensis . . . . . . . . Ruilopezia paltonioides . . . . . . . Blechnum schomburgkii . . . . . . . . Monochaetum discolor . . . . . . . . . Symplocos tamana . . . . . . . . Ilex guaramacalensis . . . . . . . . Themistoclesia dependens . . . . . . . . Monnina sp. . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 1 . 1 . . . . . . . . . . . . . . . . . Clusia sp. A 1 . . . Sloanea brevispina . . . . Macleania rupestris . . . . Mikania stuebelii . . . . Celastrus liebmannii . . 1 . Cyathea pungens . . . . Geonoma orbignyana . Assoc. 5. Geissantho andini - Miconietum jahnii . . . . Weinmannia lechleriana . . . . Geissanthus andinus . . . Miconia jahnii . . . . . Oreopanax discolor . . . Disterigma alaternoides . . . . Thibaudia floribunda . . . . Pentacalia theifolia . Subcommunity 5.1. Freziera serrata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . . . 2 . . . . . . . 1 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 . . . . . . . . . . 1 . 1 . . . . . . . . . . . . . . . . . . . . 1 . . . . . 1 . 2 . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . 4 . . . . . 1 . . 1 . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . 1 . . 1 1 . . . 1 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 3 . . . . . 3 . . . . . . . . . . . 2 . 3 1 3 1 1 . . 1 3 1 1 . . . . . . . 3 3 3 2 1 1 5 2 1 2 1 . . . . . 1 . . . 5 4 4 1 1 1 1 1 5 2 1 1 1 2 . . . . . . . . . . 2 1 2 2 2 1 1 . . . . . . . 4 4 3 2 1 1 . . 3 2 1 1 1 4 . . . . 1 . . . . . 1 4 3 2 1 1 . . . . . . . . 5 2 3 2 2 . 1 . 3 3 . . 1 . . . . . . . . . . . . 2 4 . . 2 2 . . . 1 . . . 1 3 1 1 1 1 1 2 1 1 . 1 . . . . . 5 . . 1 1 . . 1 . 1 . . . . . . . . . . . 2 2 2 1 . . 1 . . . . . 2 1 . . 1 5 . . . . . . . . . . . . . . . . . . . . 1 4 1 . 1 1 1 . . . . . 3 . 1 . . 5 . . . . . . . . . . . . . . . . . . . . 2 5 . 3 . 2 4 2 . 2 2 . . . . . . 5 . . 2 . . . . . . . . . . . . . . . . . 1 5 2 3 1 1 3 1 1 1 . 1 3 4 3 . . 1 . . . . . . . . . 1 1 . . . . . . . . . 2 5 3 3 2 1 4 . 1 1 . . 4 2 3 1 1 . . . . . . . . 1 . 1 . 1 . . . . . . . . 3 5 4 4 2 3 . . 1 1 2 1 4 1 1 2 . . . . . . . . 1 1 . 1 . . . . . . . . . . The forest vegetation of Ramal de Guaramacal 27 28 Bredemeyera sp. 25(1) Brunellia acutangula 6(1) Calyptranthes sp. 27(1) Cecropia sp. 25(1) Cestrum buxifolium 24(1) cf. Escallonia hispida 27(1) Chrysophyllum sp. 22(1) Cissus trianae 15(1) Citharexylum venezuelense 13(1) Coccoloba sp. 28(1) Coffea arabica 10(1) Alsophila angelii 27(1) Anthurium eminens 29(1) Anthurium ginesii 24(1) Anthurium humboldtianum 27(1) Anthurium nymphaeifolium 15(1) Anthurium smaragdinum 21(1) Bacharis brachylaenoides 39(1) Ageratina neriifolia 20(1) Allophylus cf. glabratus 18(1) Plot No. Area 1x10 (m2) No. of Species (DBH ≥ 2.5 cm) E l e v Slope exposure Park sector Order Alliance Association Subassociation Variant Chusquea angustifolia Chaetolepis lindeniana . . 0 0 0 0 1 3 3 0 S B 1 4 5 0 S B 1 1 2 8 8 1 5 8 0 0 0 0 N NO NO A C C 11 14 1 8 0 0 S B 42 1 6 5 0 N B 53 100 100 10 1 6 0 0 S B 52 100 . . 0 0 0 0 . . 0 0 1 1 1 7 12 19 26 32 15 30 35 50 41 41 36 42 46 44 42 43 38 31 4 45 59 36 60 35 . . 0 1 1 0 1 4 2 5 8 0 N A 33 . . 0 1 1 0 1 2 4 7 4 N B 29 6 9 24 8 . . 0 1 1 1 0 2 4 7 0 S A 31 . . 0 1 1 1 0 4.2 2 1 0 0 S A 29 . . 0 1 1 1 0 2 5 8 0 S A 34 . . 0 1 1 1 1 2 3 0 0 S A 31 2 8 9 0 N A 27 2 8 7 0 N A 21 2 8 7 0 N A 18 100 2 8 1 0 N A 17 20 3 0 6 0 S A 9 5 3 0 5 0 N A 10 10 2 8 3 0 N A 10 10 3 0 5 0 N A 18 20 2 9 5 0 S A 19 20 1 1 1 0 1 . . 1 0 1 2 . 1 0 1 . . 1 1 0 0 . . 1 1 0 1 . . 1 1 0 1 . . 1 1 0 1 . 1 1 1 1 . . 1 1 1 1 . 1 1 1 A: Guaramacal; B: Agua Fria, C: El Santuario Solanum aturense 18(1) Solanum confine 3(1) Sphaeropteris sp. 3(1) Talauma sp. 13(1) Ternstroemia acrodantha 4(1) Ternstroemia sp. A 17(1) Ternstroemia sp.B 16(1) Vismia baccifera 7(1) Zanthoxylum acuminatum 6(1) Rhamnus sphaerosperma 27(1) Roupala barnettiae 32(1) Ruagea glabra 1(1) Ruellia tubiflora 3(1) Schlegelia spruceana 14(1) Sloanea laurifolia 1(1) Smilax kunthii 20(1) Randia cf. dioica 14(1) . . 1 0 0 2 9 5 0 S A 22 40 40 41 Ruilopezio paltonioides - Cybianthion marginati 5 6 7 5.1 2 7 5 0 N A 41 40 39 35 36 37 38 43 44 PL3 34 100 100 100 100 100 100 Panopsis sp. 31(1) Paragynoxis cuatrecasasii 39(1) Paragynoxis venezuelae 6(1) Persea ferruginea 23(1) Persea sp.2 27(1) Persea sp.3 14(1) Piper aduncum 5(1) Piper phytolaccifolium 13(1) Piper sp. 18(1) Piper veraguense 22(1) Psychotria amita 22(1) Psychotria cf. lindenii 10(1) Neea sp. 13(1) Ocotea aff. tarapotana 14(1) Ocotea auriculata 5(1) Ocotea sp. 33(1) Ocotea terciopelo 20(1) Oreopanax sp. 38(1) Ossaea micrantha 21(1) Nectandra sp. 13(1) . . 0 1 1 0 0 2 2 6 0 N B 61 30 17 20 23 27 16 33 100 100 100 100 100 100 100 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 9 1 3 1 9 9 9 0 1 1 8 8 7 4 4 3 2 0 0 0 7 6 5 5 7 0 2 8 7 7 5 8 5 5 0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 0 0 N N N N N S S N N S S S S N N N NO B A A A A A B A B B B B B A A A C Meliosma tachirensis - Alchornea grandiflora montane forest order group Farameo killipii - Prunion moritzianae 3 3.1 4.1 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 60 Markea sp. 20(1) Mascagnia sp. 10(1) Meliosma meridensis 4(1) Mendoncia tovarensis 14(1) Miconia donaeana 29(1) Miconia elvirae 41(1) Miconia sp. C (hibrido) 3(1) Mikania houstonians 22(1) Mikania sp.1 20(1) Monnina sp.2? 41(1) Morus insignis 28(1) Myrcianthes sp. 3(1) . . 0 0 1 1 0 1 Endlicheria sp. 25(1) Eschweilera sp. nov. 13(1) Eugenia sp. 33(1) Eugenia triquetra 37(1) Eugenia sp. 2 39(1) Ficus tovarensis 25(1) Fuchsia membranacea 37(1) Gaultheria erecta 38(1) Greigia albo-rosea 20(1) Hedyosmum racemosum 1(1) Heisteria acuminata 28(1) Henriettella cf. verrucosa 14(1) . . 0 0 1 1 0 18 Henriettella tovarensis 10(1) Hesperomeles sp. 36(1) Hoffmannia pauciflora 21(1) Hydrangea sp.1 22(1) Hypericum paramitanum 40(1) Ilex sp.1 5(1) Ladenbergia cf. buntingii 13(1) . . 0 0 1 0 3 Henriettella sp. 25(1) . . 0 0 0 1 2 Cyathea aff. straminea 27(1) Cybianthus stapfii 38(1) Dichapetalum pedunculatum 25(1) Disterigma sp. 27(1) Drymonia crassa 18(1) Elaeagia myriantha 5(1) Elateriopsis oerstedii 28(1) . . 0 0 0 1 25 100 100 100 100 100 100 100 100 100 100 100 100 Cupania cf. scrobiculata 13(1) . . 0 0 0 0 Geonomo undatae -Posoq. coriaceae 1 2 1.1 1.2 1 4 5 0 S B 43 55 36 40 47 45 22 100 5 21 13 28 29 100 100 100 100 100 Flora, vegetation and ecology in the Venezuelan Andes The forest vegetation of Ramal de Guaramacal _______________________________________________________ MONTANE FOREST ORDER GROUP OF MELIOSMA TACHIRENSIS AND ALCHORNEA GRANDIFLORA Physiognomy: This group of forests concerns humid montane cloud forest communities belonging to both subandean and Andean forest. These forests are dense, with a high number of thin-stemmed individuals and a medium-high canopy (25-30 m) in subandean forests to medium-low (15-20 m) in Andean forests. The presence of a high bryophyte cover on tree trunks is characteristic. Composition and syntaxonomy: Among the characteristic large tree canopy species of this forest group are Alchornea grandiflora, Beilschmiedia tovarensis, Billia rosea, Elaeagia karstenii, Hieronyma cf. oblonga, Miconia cf. dolichopoda, Ruagea pubescens, Tetrorchidium rubrivenium. Common hemiepiphitic trees are Clusia trochiformis and Clusia alata. Also are frequent the lianas and vines Blakea schlimii, Celastrus liebmannii, Macleania rupestris, Mikania stuebelii and Psammisia hookeriana. Besleria pendula and the tree ferns Cyathea fulva and C. pungens are also common among the smaller trees of up to 6 m tall. Diagnostic species of the subcanopy are Geissanthus fragans, Meliosma tachirensis, Miconia theaezans, Piper longispicum var. glabratum This group of forests with Meliosma tachirensis and Alchornea grandiflora could be considered as a provisional order, in which, the following two alliances are recognized: Geonomo undatae - Posoquerion coriaceae and Farameo killipii Prunion moritzianae. Ecology and distribution: The forest communities belonging to the montane forest order group of Meliosma tachirensis - Alchornea grandiflora are found from 1350 m on the South slope, from 1650 m on the North slope and up to around 2600 m on Ramal de Guaramacal. GEONOMO UNDATAE – POSOQUERION CORIACEAE Cuello & Cleef 2009 Typus: Simiro erythroxylonis – Quararibeetum magnificae. Table 2.3 Subandean forests of the Geonoma undata - Posoqueria coriacea alliance Physiognomy and composition: The forest communities of this alliance are humid forests of medium to high stature, up to 25-30 m tall, characterized by the presence of high trees of: Rubiaceae, Euphorbiaceae, Lauraceae, Sapotaceae, Melastomataceae, Moraceae, Bombacaceae, Meliaceae and Rutaceae being among the most important according to abundance, frequency and basal area. The most diverse families by species represented are Rubiaceae, Lauraceae, Melastomataceae, Myrtaceae, Euphorbiaceae and Meliaceae. Among the canopy species can be found Calatola venezuelana, Ficus nymphaeifolia, Gordonia fruticosa, Matayba camptoneura, Mouriri barinensis, Nectandra aff. purpurea, Persea peruviana, Posoqueria coriacea, Pouteria baehniana, Tapirira guianensis and Trigynaea duckei. In the subcanopy are common: Eugenia moritziana, Geonoma undata, Guarea kunthiana, Mabea 29 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes occidentalis, Psychotria longirostris, Rollinia mucosa and Rudgea nebulicola. Some lianas can also be found in these forests, such as: Hydrangea cf. preslii, Marcgravia brownei, Paullinia cf. latifolia and Salacia aff. cordata. Syntaxonomy: This alliance is defined on the basis of ten 0.1-ha plots that include 211 species with dbh ≥ 2.5 cm, corresponding to 123 genera and 60 families of vascular plants. The diagnostic species in the canopy are Posoqueria coriacea and Pouteria baehniana. In the subcanopy small trees of Matayba camptoneura and Guarea kunthiana, and the palm Geonoma undata are also diagnostic. This alliance includes two associations: Simiro erythroxylonis - Quararibeetum mag-nificae and Conchocarpo larensis - Coussareetum moritzianae. Ecology and distribution: The Geonoma undata - Posoqueria coriacea alliance of subandean forest groups the forest communities located on the lower slopes of Ramal de Guaramacal, in particular areas of remnant forests near and beyond the border of the National Park. 1. Simiro erythroxylonis – Quararibeetum magnificae Cuello & Cleef 2009 Typus: Cuello Plot No. 28. 1880 m, Table 2.3 Subandean forests of Simira erythroxylon and Quararibea magnifica Physiognomy and composition: The subandean forests of Simira erythroxylon var. meridensis and Quararibea magnifica display a medium stature and density, mainly composed of mature trees with an average diameter greater than 10 cm and a few thin individuals. The canopy of the forest is composed of trees of between 10 to 28 m with a dense cover; Simira erythroxylon var. meridensis, Quararibea magnifica, Ocotea cernua and Posoqueria coriacea being the most abundant species. In some areas there are some emergent trees of up to 32 m, such as: Pleurothyrium costanense, Casearia tachirensis, Sloanea aff. guianensis and Simira erythroxylon var. meridensis, being among the most abundant. Simira erythroxylon var. meridensis is also common in the subcanopy (5-10 m), together with treelets of Parathesis venezuelana, Aegiphila floribunda, Inga edulis, Miconia cf. dolichopoda, Trichilia pallida, Vasconcella microcarpa, the small trees, Cuatresia riparia, Picramnia sp. C. and the tree ferns Cyathea pungens and C. caracasana. Among the most abundant lianas and climbers present are: Anthurium eminens, A. smaragdinum, Campyloneuron ophiocaulon, Elateriopsis oerstedii, Paullinia capreolata, Piper sp., Smilax spinosa, Sphaeradenia laucheana and Trichomanes radicans. Epidendrum unguiculatum, Guzmania mitis, Maxillaria nigrescens, Mezobromelia capituligera, Peperomia ouabianae, P. peltoidea, P. portuguesensis and Polytaenium lineatum stand out among the epiphytes. The understory is rich in terrestrial ferns, such as: Asplenium alatum, Didymochlaena truncatula, Diplazium celtidifolium, D. hians, Polystichum muricatum, some of them reaching heights of up to 2 m. The terrestrial orchid Corymborkis flava, the palm Chamaedorea pinnatifrons, and shrubs like Urera caracasana, 30 The forest vegetation of Ramal de Guaramacal _______________________________________________________ Psychotria fortuita and several species of the genus Piper, such as P. hispidum, P. dilatatum and P. aduncum, are also present, among others. Syntaxonomy: This association is defined on the basis of ten 0.1-ha plots with 127 species with dbh ≥ 2.5 cm. The diagnostic species are Simira erythroxylon in the canopy, and Parathesis venezuelana in the subcanopy. Two subassociations can be recognized: subass. typicum and bunchosietosum armeniacae. Ecology and distribution: The subandean forest of the association Simiro erythroxylonis – Quararibeetum magnificae can be found on the southern slope of Ramal de Guaramacal, sector Agua Fría, in the surroundings of Río Frío, (13001500 m); in the northwestern sector of Qda. Honda (1800-2100 m); and on the northern slope, around the recreative area Laguna de los Cedros (1800-1900 m) (Photo 2.1). Photo 2.1. Aspect of the subandean forest of the North slope of Ramal de Guaramacal. Forests with whitish canopies of Cecropia telenitida above of the recreative area “Laguna de los cedros” at 1800 m. Simiro erythroxylonis – Quararibeetum magnificae 1.1 subassociation typicum Cuello & Cleef 2009 Typus: Cuello Plot No. 28, 1450 m. Photo 2.2 Subassociation of Simira erythroxylon 31 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Physiognomy and composition: The canopy trees reach 10-24 m with a dense cover. The composition is as described for the association; Simira erythroxylon, Pouteria baehniana and Quararibea magnifica, also being abundant, along with other species like Cecropia sararensis, Eugenia moritziana, Hippotis albifora, Tammsia anomala and Trichilia pallida. The subcanopy differs from that of the association by the major presence of Alchornea glandulosa, Hippotis albiflora, Rudgea nebulicola, Simira lezamae, Stylogyne longifolia and the palm Geonoma undata, which can reach heights of 14 m. Among the small trees and shrubs of 3 to 6 m, Aphelandra macrophylla, Cuatresia riparia and Psychotria trichotoma are prominent. Further occurances of the shrubs: Palicourea petiolaris, Piper phytolaccifolium, Psychotria patria, Randia dioica, Ruellia tubiflora var. tetrastichantha, Winterigia solanacea; stranglers like Dioscorea coriacea; epiphytes as Dichaea sp., Elleanthus graminifolius, Jacquiniella teretifolia and Peperomia peltoidea; ferns like Asplenium uniseriale; large perennial herbs like Heliconia hirsuta and Sphaeradenia laucheana; and small herbs: Heppiella viscida, Ichnanthus nemorosus, Solanum pentaphyllum, Sanicula liberta, and Begonia trispathulata are also present in the ground layer. Syntaxonomy: The subassociation is defined on the basis of three 0.1-ha plots with 83 species with dbh ≥ 2.5 cm. The diagnostic species in the canopy are Alchornea glandulosa, Cecropia sararensis and Ocotea sp. C. Aphelandra macrophylla and Psychotria trichotoma are diagnostic in the subcanopy. Other species found in the forest only of this subassociation, albeit at very low density and frequency, are: Citharexylum venezuelense, Coccoloba sp., Cupania cf. scrobiculata, Eschweilera sp. nov. (Cuello 1832), Heisteria acuminata, Ladenbergia cf. buntingii, Nectandra sp. (Cuello 1838), Neea sp. (Cuello 1851), Morus insignis, Miconia donaeana and Talauma sp. (Cuello 1745). Ecology and distribution: The forests of the Simiro erythroxylonis Quararibeetum magnificae subassociation typicum are located between 1300 and 1500 m, on the South slope, near the border of Portuguesa-Trujillo states and also in the surroundings of the Río Frío (sector B - Agua Fría). These forests represent the few remaining extensions of undisturbed mature forest of this altitudinal zone. Simiro erythroxylonis – Quararibeetum magnificae 1.2. subassociation bunchosietosum armeniacae Cuello & Cleef 2009 Typus: Cuello Plot No. 5, Fig. 2.2 Subassociation of Bunchosia armeniaca Physiognomy and composition: Physiognomy and composition as described for the association; Acalypha macrostachya, Calatola venezuelana, Cecropia telenitida, Ficus tonduzii and Pleurothyrium costanense being more abundant in the canopy. This subassociation differs from the typicum subassociation by the subcanopy presence of Bunchosia armeniaca, Cestrum bigibbosum, Hydrangea aff. peruviana, Psychotria fortuita, Saurauia tomentosa and Solanum nudum, and the high density of Diplazium celtidifolium in the understory. 32 The forest vegetation of Ramal de Guaramacal _______________________________________________________ Syntaxonomy: The forests of the subassociation bunchosietosum armeniacae are represented by two 0.1-ha plots, with a total of 67 species with dbh ≥ 2.5 cm. The diagnostic species of the subassociation are Bunchosia armeniaca, Psychotria fortuita and Pleurothyrium costanense. Photo 2.2. Interior of plot 29 of the subandean forest of the association Simiro erythroxylonis - Quararibeetum magnificae subassociation typicum at 1450 m in the Agua Fría-Río Frío sector on the South slope. Ecology and distribution: The forests of the subassociation of Bunchosia armeniaca are those patches of subandean forest between 1800 and 1900 m on the northern and northwestern slope of Ramal de Guaramacal. Their extension is limited by the Park border. In general this altitudinal interval is occupied by human activities throughout the North slope. This community can be recognized from distance by presence of Cecropia telenitida (“yagrumo blanco”) due to its conspicuous white color leaf pubescence (Photo 2.1). This species typically 33 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes constitutes a zone of forest on the North slope in Guaramacal, generally corresponding to the zone of cloud cover accumulation at around 1800-2000 m. Subandean forest with Cecropia telenitida or vicariant species can also easily be observed elsewhere in the Andes of both Venezuela and Colombia (Cuatrecasas 1958; Smith 1985; Cleef et al. 2003). Figure 2.2. Subandean forest of the association Simiro erythroxylonis - Quararibeetum magnifcae subassoc. bunchosietum armeniacae. Plot 5: 1850 m, North slope. Af: Aegiphila floribunda; Ba: Bunchosia armeniaca; Ct: Cecropia telenitida; Em: Eugenia moritziana; Gk: Guarea kunthiana; Hp: Hydrangea peruviana; Md: Miconia cf. dolichopoda; Pc: Pleurothyrium costanense; Pf: Psychotria fortuita; Poc: Posoqueria coriacea; Pv: Parathesis venezuelana; Se: Simira erythroxylon; Uc: Urera caracasana. 34 The forest vegetation of Ramal de Guaramacal _______________________________________________________ 2. Conchocarpo larensis – Coussareetum moritzianae Cuello & Cleef 2009 Typus: Cuello Plot No. 10. Table 2.3, Fig. 2.3 Subandean forests of Conchocarpus larensis y Coussarea moritziana Physiognomy and composition: The canopy height is between 10 and 25 m, with emergent trees of up to 30 m and a species compositon as described for the alliance. Some of the most abundant species in the canopy are Coussarea moritziana, Miconia lonchophylla, Aniba cf. cinnamomiflora, Protium tovarense, Eschweilera perumbonata, Chrysophyllum cf. cainito, Tocoyena costanensis subsp. andina and Sloanea guianensis. Among the subcanopy trees (3-10 m tall), Piper longispicum var. glabratum, Mabea occidentalis, Croizatia brevipetiolata, Hedyosmum cf. gentryi, Conchocarpus larensis, Meliosma pittieriana, Tabebuia guayacan, Rudgea nebulicola, Faramea guaramacalensis, Petrea pubescens, Eugenia cf. tamaensis, and the palms Geonoma undata and Wettinia praemorsa stand out. Lianas are also abundant in this community. Among them are Clusia sp.1, Dichapetalum pedunculatum, Hydrangea sp. 1 (Cuello 2211), Machaerium cf. floribundum, Mascagnia sp. A, Mendoncia tovarensis, Mikania houstonians, Salacia aff. cordata, Schlegelia spruceana, the climber Asplundia vagans and hemiepiphytic trees such as Clusia alata y C. trochiformis. The most common epiphytic species are the ferns Asplenium raddianum, Microgramma percusa, the bromeliads Guzmania mitis and Mezobromelia capituligera, and the orchids Pleurothallis biserrula, Scaphyglottis summersii and Trichocentrum pulchrum. Among the common small trees and shrubs less than 3 m tall are: Besleria pendula, Dendropanax arboreus, Eugenia cf. oerstediana, Psychotria amita, P. cf. lindenii, Piper aequale, and the tree ferns Alsophila erinacea, Cyathea kalbreyeri and C. fulva. In some places there are also dense colonies of large-leaved perennial herbs such as Sphaeradenia laucheana, Heliconia hirsuta and Renealmia nicolaioides. Small herbs like Heppiela viscida and ferns such as Danaea moritziana, Arachniodes denticulada, and Asplenium radicans are present in the ground layer. Syntaxonomy: The association of Conchocarpo larensis - Coussareetum moritzianae is defined on the basis of five 0.1 ha-plots, with 145 species with dbh ≥ 2.5 cm. This forest association can be distinguished from the other two forest associations of the alliance by the diagnostic presence of Conchocarpus larensis, Coussarea moritziana, Meliosma pittieriana, Hedyosmum cf. gentryi, Pseudolmedia rigida and Cyathea kalbreyeri. Other diagnostic species in this association, although of lesser abundance and frequency, but absent elsewhere are: Alsophila erinacea, Asplundia vagans, Eugenia grandiflora, Machaerium cf. floribundum, Petrea pubescens, Piper arboretum, Salacia aff. cordata and Tocoyena costanensis. 35 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes The canopy species Aniba cf. cinnamomiflora, Protium tovarense, Miconia lonchophylla, Sloanea guianensis and Wettinia praemorsa present in this association, are also absent from the previous association of the alliance, but are common in the forest of the Croizatio brevipetiolatae - Wettinietum praemorsae of the Farameo killipii - Prunion moritzianae. Ecology and distribution: The forests of the Conchocarpo larensis - Coussareetum moritzianae are located mainly at the northeastern end of Ramal de Guaramacal (sectors Laguna Negra, El Mogote, El Alto) at altitudes between 1600 and 1900 m on both the North and South slopes, as well as at 2100 m in the northwestern sector of Qda. Honda. Figure 2.3. Subandean forest of the association Conchocarpo larensis - Coussaretum moritzianae. Plot 10: 1650 m, South slope. Cc: Chrysophyllum caimito; Ccu: Cybianthus cuspidatus; Cm: Coussarea moritziana; Cl: Conchocarpus larensis; Da: Dendropanax arboreus; Gu: Geonoma undata; Ho: Hyeronima oblonga; Mo: Mabea occidentalis; Mb: Mouriri barinensis; Mp: Meliosma pittierana; Pp: Petrea pubescens; Pl: Psychotria cf. lindenii; Wp: Wettinia praemorsa. 36 The forest vegetation of Ramal de Guaramacal _______________________________________________________ FARAMEO KILLIPII – PRUNION MORITZIANAE Cuello & Cleef 2009 Typus: Croizatio brevipetiolatae - Wettinietum praemorsae. Table 2.3 Subandean and Andean forests of the Faramea killipii and Prunus moritziana alliance Physiognomy and composition: These are humid forests with a moderate to high density of trees of medium to tall height. The most important trees with regards to abundance, frequency and basal area belong to the families Euphorbiaceae, Melastomataceae, Rubiaceae, Arecaceae, Clusiaceae, Lauraceae, Cyatheaceae, Chloranthaceae, Myrtaceae and Cunoniaceae. The top ten most diverse families are: Melastomataceae, Lauraceae, Rubiaceae, Euphorbiaceae, Myrtaceae, Myrsinaceae, Cyatheaceae, Clusiaceae, Arecaceae and Chloranthaceae. The main canopy species are the same as mentioned for the forest group of Meliosma tachirensis and Alchornea grandiflora. Additionally, important canopy species for the forest of this alliance are: cf. Elaeoluma nuda, Hieronyma moritziana, Prunus moritziana, Ocotea leucoxylon, O. vaginans, Weinmannia balbisiana and Zanthoxylum melanostinctum. Common subcanopy species are Faramea killipii, Clethra fagifolia and Eugenia cf. tamaensis. In these forests lianas and vines, like Mikania banisteriae, Diogenesia tetrandra, Mikania nigropunctulata are also common. Very common shrubs in the understory are: Cybianthus iteoides and Symbolanthus vasculosus. Syntaxonomy: Two associations are recognized in this alliance, defined from 23 plots that include 228 species with dbh ≥ 2.5 cm belonging to 118 genera and 60 families. Prunus moritziana and Zanthoxylum melanostictum are diagnostic in the canopy; Faramea killipii and Clethra fagifolia in the subcanopy. For this alliance, Miconia tovarensis, Rudgea tayloriae, the tree ferns Cyathea caracasana and C. pauciflora and the treelets Anaectocalyx bracteosa and Cybianthus iteoides are also considered diagnostic. This alliance contains the subandean forest association of Croizatio brevipetiolatae - Wettinietum praemorsae, and the Andean forest association of Schefflero ferrugineae - Cybianthetum laurifolii. Ecology and distribution: The alliance of Faramea killipii and Prunus moritziana includes subandean and Andean forest communities present at altitudes between 1770 and 2600 m on the South slope, and from 1950 to ~2600 m on the North slope. 3. Croizatio brevipetiolatae –Wettinietum praemorsae Cuello & Cleef 2009 Typus: Cuello Plot No. 1. Table 2.3, Fig. 2.4, 2.5. Subandean forests of Croizatia brevipetiolata and Wettinia praemorsa Physiognomy and composition: These forests are of medium stature and density. They display a canopy that reaches between 15 to 25 m in height, with some 37 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes emergent trees of 26 to 30 m tall. Among the canopy species, besides those mentioned for the alliance and higher group, Aniba cinnanomiflora, Elaeagia ruizteranii, Protium tovarense, Miconia lucida and Sloanea guianensis are more prominent. The height of the subcanopy reaches between 5 and 15 m with the dominance of the palm Wettinia praemorsa, occasionally reaching up to 25 m. Croizatia brevipetiolata is very abundant in the subcanopy layer, together with Palicourea angustifolia, Piper longispicum var. glabratum and Geissanthus fragrans, among others. The parasitic Aethanthus nodosus is also a regular occurance in the canopy. Common epiphytic species are the ferns Asplenium auriculatum, A. cuspidatum, A. harpeodes, Elaphoglossum cuspidatum, E. eximium, Hymenophyllum polyanthus, Melpomene xiphopteroides, Polypodium fraxinifolium, P. funckii, Polytaenium lineatum, Terpsichore subtilis, T. taxifolia and T. xanthotrichia. Bromeliads such as Guzmania mitis, Mezobromelia capituligera and species of Aechmea, Racinaea and Tillandsia are present. Epiphytic Philodendron fraternum is characteristic for the canopy as well. Among the species of the lower treelets layer (up to 5 m): Besleria pendula, the little palms Geonoma jussieuana, Geonoma undata, the tree ferns Cyathea fulva, C. pauciflora, C. kalbreyeri, C. caracasana, Dicksonia sellowiana and the perennial large herbs Sphaeradenia laucheana and Anthurium nymphaeifolium stand out. Syntaxonomy: The association Croizatio brevipetiolatae - Wettinietum praemorsae is defined on the basis of twelve 0.1-ha plots which contained 154 species with dbh ≥ 2.5 cm. The diagnostic species in the canopy are: Wettinia praemorsa, Meriania grandidens, and Miconia lucida; and Croizatia brevipetiolata as well as Wettinia praemorsa in the subcanopy. In this association one subassociation and one variant are recognized: the subassociation of hedyosmetosum cuatrecazanum and the variant of Protium tovarense. Ecology and distribution: The forests of the Croizatia brevipetiolata and Wettinia praemorsa association include a more or less homogenous zone between 1700 and ca.~2300 m altitude along both slopes of Ramal de Guaramacal. The locally known “mapora palm” (Wettinia praemorsa) is common, and these forests are consequently known as “maporales”. These forests can display some variations in composition and structure between 1700 and 1900 m on the southern slope (variant of Protium tovarense), and between 2100 and ~2300 m on the northern slope (subass. hedyosmetosum cuatrecazanum), generally however, they maintain a more uniform composition between 1900 and 2200 m on both slopes. Croizatio brevipetiolatae – Wettinietum praemorsae 3.1. subassociation hedyosmetosum cuatrecazanum Cuello & Cleef 2009 Typus: Cuello Plot No. 2. Table 2.3, Fig. 2.5. Subassociation of Hedyosmum cuatrecazanum 38 The forest vegetation of Ramal de Guaramacal _______________________________________________________ Physiognomy and composition: The canopy of the forest reaches between 10 and 25 m in height; emergent trees reaching up to 28 m. The composition is in agreement with the description for the association. Casearia tachirensis, Perrottetia quinduensis, Meriania macrophylla, Miconia theaezans var. longifolia, Sapium stylare and Turpinia occidentalis are important in the canopy. Species that may sometimes reach the canopy as well are: Aegiphila ternifolia, Hedyosmum cuatrecazanum, Trichilia septentrionalis and the palm Wettinia praemorsa. Among the smaller trees, 5 to 10 m tall, are: Croizatia brevipetiolata, Eugenia cf. tamaensis, Geissanthus fragrans, Hedyosmum cuatrecazanum, Meriania grandidens, Palicourea demissa, P. puberulenta, Piper longispicum var. glabratum and Prunus moritziana. In the layer of small trees and shrubs from 2 to 5 m, the tree ferns Cyathea fulva and Sphaeropteris sp., as well as treelets of Cestrum darcyanum, Gordonia fruticosa, Guarea kunthiana, Miconia amilcariana, M. mesmeana subsp. longipetiolata, Persea peruviana, Saurauia yasicae, Solanum confine and Trichilia hirta; the shrubs Cybianthus cuspidatus and Ruellia tubiflora var. tetrastichantha and the low palms Geonoma orbigniana and G. jussieuana were recorded. Syntaxonomy: The subassociation of hedyosmetosum cuatrecazanum is defined on the basis of three 0.1-ha plots with 72 woody species with dbh ≥ 2.5 cm. The diagnostic species in the canopy are Casearia tachirensis, Hedyosmum cuatrecazanum, Palicourea demissa and Sapium stylare. Diagnostic species in the subcanopy are: Aegiphila ternifolia, Cestrum darcyanum, Croizatia brevipetiolata and Trichilia septentrionalis. Ecology and distribution: The subandean forests of the subassociation hedyosmetosum cuatrecazanum are located between 2100 and 2300 m altitude on the northern slope of Guaramacal. These forests (example at 2300 m) are on slopes of 20-25% inclination, and on soils of variable depth (0 to 100 cm), with sandy textures with 20-50% of coarse fragments, dark brown reddish colors in the superficial layers (0 to 20 cm) and yellowish red colors in the deep layers (20-100 cm). pH increases with depth from 4 to 4.4; while the percentage of organic matter diminishes from 7.5 to 3%. 3.2. Variant of Protium tovarense Representative rel.: Cuello Plot No. 30. Table 2.3, Photo 2.3 Physiognomy and composition: The forests of the variant of Protium tovarense are of medium stature and density. They display a dense canopy, of 15 to 25 m in height with some emergent of trees of up to 30 m. Basically, they are made up by the same species indicated for the association, but differing in the higher abundance of Protium tovarense, Coccoloba cf. llewelynii, Weinmannia sorbifolia, Hedyosmum cf. gentryii, Weinmannia glabra, Myrcia acuminata, Meliosma tachirensis, Miconia lucida, among others. The subcanopy layer reaches between 8 and 12 m. Common species are Aiphanes stergiosii, Cyathea pauciflora, C. fulva, C. kalbreyeri, Eschweilera perumbonata, Eugenia tamaensis, Matayba camptoneura, Myrcia cf. sanisidrensis, Palicourea apicata and Weinmannia 39 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes glabra. Further observed in this community are, the vine Cissus obliqua, the epiphytes Columnea sanguinea, Mezobromelia capituligera; the climbing fern Hypolepis nigricens, the shrubs Notopleura steyermarkiana, Symbolanthus vasculosus, Cavendishia bracteata, the little palm Geonoma jussieuana and the terrestrial clubmoss Huperzia reflexa. Figure 2.4. Subandean forest of the association of Croizatio brevipetiolatae - Wettinietum praemorsae. Plot 1: 1960 m, North slope. Ac: Aniba cinnamomiflora; Ag: Alchornea grandiflora; Bp: Besleria pendula; Br: Billia rosea; Cb: Croizatia brevipetiolata; Cc: Cybianthus cuspidatus; Er: Elaeagia ruiz-teranii; Gf: Geissanthus fragrans; Mth: Miconia theaezans; Op: Ocotea puberula; Pa: Palicourea angustifolia; Pp: Palicourea puberulenta; Pm: Persea meridensis; Pl: Piper longispicum var. glabratum; Pb: Pouteria baheniana; Sc: Symbolanthus calygonus; Sg: Sloanea guianensis; Wp: Wettinia praemorsa. Syntaxonomy: The variant of Protium tovarense is defined on the basis of three 0.1-ha plots with a total of 75 species with dbh ≥ 2.5 cm. These forests are distinguished by the presence of the character species Protium tovarense and Weinmannia sorbifolia, as well as the palm Aiphanes stergiosii (6 to 12 m). This 40 The forest vegetation of Ramal de Guaramacal _______________________________________________________ palm, although abundant in these forests, seems to have a very restricted distribution since its existence is known only from this community from where the species was originally described. Ecology and distribution: The forests of the variant of Protium tovarense are located between (1600) 1700 and 1900 m of altitude on the South slope of Ramal de Guaramacal, sector Agua Fría, in the border zone between Portuguesa and Trujillo states (“Alto de La Divisoria de La Concepción”) and above of the small village “La Peña de Agua Fría”. These forests are on sites with very steep slopes and shallow wet soils with a large amount of great rock fragments. Because of their inaccesibility they remain very pristine forests. In the forests near Alto de La Divisoria de La Concepción, trees of Podocarpus oleifolius could be observed growing close to the top of the mountain to around 1900 m altitude. Figure 2.5. Subandean forest of the association Croizatio brevipetiolatae – Wettinietum praemorsae subassoc. hedyosmetosum cuatrecazanum. Plot 2: 2100 m, North slope. Ag: Alchornea grandiflora; Bt: Beilschmiedia tovarensis; Ct: Casearia tachirensis; Cb: Croizatia brevipetiolata; Dt: Dussia tessmannii; Er: Elaeagia ruiz-teranii; En: Elaeoluma nuda; Gf: Geissanthus fragans; Hc: Hedyosmum cuatrecazanum; Pd: Palicourea demissa; Pl: Piper longispicum var. glabratum; Pm: Prunus moritziana; Pp: Palicourea puberulenta; Rp: Ruagea pubescens; Th: Turpinia heterophylla; Wp: Wettinia praemorsa. 41 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Photo 2.3. Interior of the subandean forest of plot 30 of Croizatio brevipetiolatae – Wettinietum praemorsae variant of Protium tovarense at 1875 m. South slope, Agua Fría-La Peña sector. 4. Schefflero ferrugineae – Cybianthetum laurifolii Cuello & Cleef 2009 Typus: Cuello Plot No. 4. Table 2.3, Fig. 2.6, 2.7 Andean forests of Schefflera ferruginea and Cybianthus laurifolius Physiognomy and composition: Humid cloud forests, with a canopy height of between 8-18 m, with some emergent isolated trees up to 22 m. Among the most common canopy species are: Eugenia cf. tamaensis, Ilex myricoides, Miconia tinifolia, Ocotea aff. karsteniana, Podocarpus oleifolius var. macrostachyus, Trichilia septentrionalis and Weinmannia glabra. The community structure is dominated by a great abundance of small diameter individuals (<10 cm dbh). Species with high abundance include Calyptranthes meridensis, Clethra fagifolia, Critoniopsis paradoxa, Cybianthus laurifolius, Eugenia cf. tamaensis, Faramea killipii, Hedyosmum crenatum, Ilex laurina, Miconia ulmarioides, Myrsine coriacea, Palicourea apicata, Schefflera ferruginea, Weinmannia glabra, among others. Hemiepiphytic trees like Clusia alata and C. trochiformis are also common in the canopy. Epiphytes are very abundant; among them: Pecluma divaricata, Peperomia peltoidea, Racinaea sp., a diversity of orchid species of the genera Pleurothallis (P. semiscabra, P. archidiaconi, P. siphoglossa, P. bivalvis, among others), and Stelis. The parasitic Aetanthus nodosus and the hemiepiphytic climber Sphaeradenia laucheana are also present, as well as several species of vines of the Ericaceae and Asteraceae 42 The forest vegetation of Ramal de Guaramacal _______________________________________________________ families, such as Diogenesia tetrandra, Macleania rupestris, Mikania nigropunctulata, M. stuebelii, Pentacalia vicelliptica and Themistoclesia dependens. In the lower layer, small melastomataceous trees (2-3 m tall) or shrubs abound, such as: Anaectocalyx bracteosa, Miconia ulmarioides and M. suaveolens. The tree ferns Cyathea fulva, C. caracasana, C. pauciflora and Dicksonia sellowiana are very common. Colonies of the bamboo Rhipidocladum geminatum are also very abundant. Very common shrubs in the understory belong to Notopleura steyermarkiana. The small palms Geonoma jussiaeana and G. orbigniana and the small shrub Psychotria aubletiana are also frequent. Among the terrestrial herbs Lycopodium jussiaei, Rhynchospora tuerckheimii, R. immensa and the terrestrial short-stemmed fern Culcita coniifolia are distinguished. Figure 2.6. Andean forest of the association Schefflero ferrugineae - Cybianthetum laurifolii. Plot 4: 2450 m., North slope. Cl: Cybianthus laurifolius; Cf: Cyathea fulva; Fk: Faramea killipii; Im: Ilex myricoides; Mt: Miconia tinifolia; Po: Podocarpus oleifolius var. macrostachyus; Sf: Schefflera ferruginea; Ta: Ternstroemia acrodontha; Wg: Weinmannia glabra. 43 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Syntaxonomy: The forest association Schefflero ferrugineae – Cybianthetum laurifolii is defined based on eleven plots (ten of 0.1-ha and one of 0.03-ha) with 158 species with dbh ≥ 2.5 cm. Diagnostic species are: Cybianthus laurifolius, Hedyosmum crenatum, Miconia ulmarioides, Myrsine coriacea and Schefflera ferruginea. Ecology and distribution: The forest community of the association Schefflero ferrugineae - Cybianthetum laurifolii represents a transitional type between the subandean and Andean forests, located over 2300 m altitude on the northern slope and to even lower altitudes (2100 - 2250 m) in areas near crests or lower summits. Characteristic of these sites is a greater density of thin-stemmed treelets with a low canopy. A group of tree species of much smaller leaves like those of the Andean forest, is also found intermingled with common large-leaved species of the subandean forest. This transitional condition seems similar to that described by Kelly et al. (1994). Schefflero ferrugineae – Cybianthetum laurifolii 4.1. subassociation typicum Cuello & Cleef 2009 Typus: Cuello Plot No. 4. Table 2.3, Fig. 2.6 Subassociation of Cybianthus laurifolius Physiognomy and composition: Forest structure and composition as described for the association. Additionally important canopy species are: Dioicodendron dioicum, Gaiadendron punctatum, Ilex truxillensis var. bullatisima, Meliosma venezuelensis, Myrcia aff. guianensis, Ocotea sericea and Symplocos bogotensis. Syntaxonomy: The forest Schefflero ferrugineae – Cybianthetum laurifolii subassociation typicum is defined on seven plots, with 96 species with dbh ≥ 2.5 cm. The diagnostic species are Brunellia cf. integrifolia, Calyptranthes cf. meridensis, Palicourea apicata and Panopsis suaveolens. Ecology and distribution: The forests of the subassociation of Cybianthus laurifolius are located between 2350 -2580 m on the North slope of Guaramacal sector. This community was also observed throughout the mountain ridge between 2260 and 2570 m on the North slope of Agua Fría sector, and in the same conditions at 2250 m on the North-West slope in El Santuario sector. Schefflero ferrugineae – Cybianthetum laurifolii 4.2. subassociation miconietosum suaveolentis Cuello & Cleef 2009 Typus: Cuello Plot No. 6. Table 2.3, Fig. 2.7. Subassociation of Miconia suaveolens Physiognomy and composition: These forests have a very irregular canopy between 8 and 15 m and a few emergent isolated trees that can reach up to 18 or 20 m. Some of the highest trees are: Alchornea grandiflora, Miconia theazans, M. 44 The forest vegetation of Ramal de Guaramacal _______________________________________________________ tinifolia, M. tovarensis and Prunus moritziana. Hemiepiphytic trees Clusia trochiformis and C. alata, with multiple aerial roots are also abundant. Common canopy species are Aegiphila moldenkeana, Clethra fagifolia, Critoniopsis paradoxa, Cybianthus laurifolius, Hedyosmum translucidum, Hedyosmum sp. A, H. crenatum, Ilex laurina, Weinmannia lechleriana and W. fagaroides. The presence of tree ferns is very common, being Cyathea pauciflora the most abundant. Small trees of Melastomataceae, like: Miconia suaveolens, M. mesmeana subsp. longipetiolata, M. theaezans and Anaectocalyx bracteosa; and shrubs like Symbolanthus vasculosus, the bamboo Chusquea purdieana and the palm Geonoma jussieuana, are frequent in the understory. Figure 2.7. Andean forest of the association Schefflero ferrugineae - Cybianthetum laurifolii. subassoc. miconietosum suaveolentis. Plot 6: 2500 m, South slope. Ca: Clusia alata; Cf: Clethra fagifolia; Cp: Critoniopsis paradoxa; Cp: Cyathea pauciflora; Gj: Geonoma jussieuana; Hs: Hyeronima scabrida; Mth: Miconia theazans; Ms: Miconia suaveolens; Mto: Miconia tovarensis; Mv: Meliosma venezuelensis; Hsp: Hedyosmum sp. A; Wl: Weinmannia lechleriana. Rt: Rudgea tayloriae. Syntaxonomy: The forests of subassociation miconietosum suaveolentis are represented by four 0.1-ha plots with 73 species with dbh ≥ 2.5 cm. These forests differ from those of the subassociation typicum by the diagnostic presence of Critoniopsis paradoxa, Hedyosmum sp. A, Hyeronima scabrida and Miconia 45 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes suaveolens, which, with the exception of Critoniopsis paradoxa, are absent from that subassociation. Ecology and distribution: The forests of the subassociation of Miconia suaveolens are located between 2100 and 2600 m on the South slope of Guaramacal sector. These rain forests are located in areas with very steep slopes apparently affected more by landslides. Mass movements are frequent and widely observed at the highest elevations of the South slope triggered by the high precipitation. In general these forests have a low diversity of species; some species common to the stable sites at the same altitude on the North slope are absent. A greater abundance of species with stilt roots, indicative of plant adaptation to steep surfaces under a wet climate, are present (Cleef et al. 1984). RUILOPEZIO PALTONIOIDES – CYBIANTHION MARGINATI Cuello & Cleef 2009 Typus: Geissantho andini - Miconietum jahnii. Table 2.3 High Andean forests of the Ruilopezia paltonioides - Cybianthus marginatus alliance Physiognomy and composition: Dense and low rain forests with a canopy of 5 (3) to 12 (14) m in height, conformed by thin-stemmed, small-leaved trees. Asteraceae, Ericaceae, Myrsinaceae, Melastomataceae, Cunoniaceae and Aquifoliaceae are the most diverse and predominant families. These forests share the diagnostic canopy species Cybianthus marginatus, Ilex guaramacalensis, Miconia tinifolia, Myrsine dependens, Symplocos tamana and the espeletinioid species Ruilopezia paltonioides. Other common species are the small trees Monochaetum discolor, Pentacalia cachacoensis, Vaccinium corymbodendron, the tree fern Blechnum schomburgkii in the understory, and the liana Themistoclesia dependens. Syntaxonomy: Three associations are recognized in this alliance, defined from 11 variably sized plots that include 69 species with dbh ≥ 2.5 cm, belonging to 47 genera and 28 families of vascular plants. The forest communities grouped in this alliance are (1) Geissantho andini Miconietum jahnii, with a possible subassociation of Freziera serrata; (2) Gaultherio anastomosantis - Hesperomeletum obtusifoliae association, and (3) the conspicuous dwarf forest association Libanothamnetum griffinii. Ecology and distribution: The alliance of Ruilopezia paltoniodes and Cybianthus marginatus groups Andean and high Andean forests located between 2750 and 2950 m direct under the summit zone of Ramal de Guaramacal. This altitudinal zone is characterized by high relative humidity, permanent fogs and frequent rain showers, indicated by a high cover of epiphytic mosses and liverworts. 5. Geissantho andini – Miconietum jahnii Cuello & Cleef 2009 Typus: Plot No. 37. Table 2.3, Fig. 2.8, Photo 2.5 46 The forest vegetation of Ramal de Guaramacal _______________________________________________________ Andean/high Andean forests of Geissanthus andinus and Miconia jahnii Physiognomy and composition: These Andean/high Andean forests are of low stature with a high density of individuals, having an open lowermost layer and a thick litter layer. A high density of epiphytes, mainly ferns, orchids, mosses and liverworts is a characteristic feature. The canopy reaches up to 6 to 14 m in height with some emergent trees of up to 16 m, among them are: Ilex guaramacalensis, Miconia jahnii, Myrsine dependens and Symplocos tamana, which are also the most abundant in the canopy together with Cybianthus marginatus, Geissanthus andinus, Weinmannia lechleriana and Oreopanax discolor, among others. In these forests lianas and vines are very common, such as: Fuchsia membranacea, Pentacalia theaefolia, Thibaudia floribunda, Disterigma alaternoides, Mikania stuebelii, Themistoclesia dependens and Pentacalia vicelliptica. Striking are the vascular epiphytes: Guzmania squarrosa, Odontoglossum schillerianum, Raccinaea tetrantha, and several fern species of Polypodium and Asplenium. The bamboo Chusquea angustifolia can be found inside the forest, forming dense clumps with multiple culms that can reach up to 8 m in height and 3 cm in diameter. The presence of the shrub Macrocarpaea bracteata, rosettes of Bromeliaceae (Cuello 2816) and low shrubs like Psychotria dunstervillorum are common in the understory. Trailing herbs like Hydrocotyle venezuelensis and Drymaria ovata; the terrestrial orchid Cranichis antioquensis growing on the litter, and the tall erect Cyrtochilum megalophium with inflorescences of up to 2 m in length; small crawling herbs like Sibthorpia repens and species of Pilea and Rhynchospora guaramacalensis and Carex jamesonii are additionally common occurances. Syntaxonomy: The association of Geissantho andini - Miconietum jahnii is based on four plots (three of 0.1 ha and one of 0.04 ha) with 53 species with dbh ≥ 2.5 cm. These low forests are distinguished by the presence of Miconia jahni, Geissanthus andinus and Weinmannia lechleriana as diagnostic canopy species. In this association, a subcommunity of Freziera serrata is distinguished. Ecology and distribution: The humid dwarf forests of Geissanthus andinus and Miconia jahnii cover considerable spatial extent in the zone of the Páramo El Pumar to the center-west summit of Ramal de Guaramacal, at 2800-2950 m. Geissantho andini – Miconietum jahnii 5.1. Subcommunity of Freziera serrata Physiognomy and composition: The community of Freziera serrata concerns a dense forest, which displays a higher canopy than the forests of the association Geissantho andini - Miconietum jahnii, reaching 6 to 14 m with some emergent trees up to 18 m. Besides of the listed ones for the association, the most common canopy species are: Freziera serrata, Hedyosmum translucidum, Weinmannia auriculata, W. karsteniana, and Podocarpus oleifolius var. macrostachyus. 47 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Under the canopy are dense colonies of the high bamboo Rhipidocladum geminatum and small trees like Cybianthus laurifolius, Miconia mesmeana subsp. longipetiolata, Baccharis brachylaenoides, Cestrum darcyanum, Oreopanax discolor, the tree fern Cyathea fulva, and the shrub Macrocarpaea bracteata. Also observed are the vine Passiflora truxillensis and the epiphytic fern Terpsichore xanthotrichia. In the underbrush dense dwarf bamboo colonies of Neurolepis glomerata and individuals of Rhynchospora guaramacalensis are present. Syntaxonomy: The Andean forest of the Freziera serrata community could be considered as a subassociation of the Geissantho andini - Miconietum jahnii. This community is recognized from a single 0.1-ha plot with 40 woody species of dbh ≥ 2.5 cm. The diagnostic canopy species are: Freziera serrata, Hedyosmum translucidum, Weinmannia auriculata and W. lechleriana. Figure 2.8. High Andean forest of the association Geissantho andini - Miconietum jahnii. Plot 37: 2890 m. Páramo El Pumar. Cm: Cybianthus marginatus; Cha: Chusquea angustifolia; Da: Disterigma alaternoides; Dg: Drimys granadensis; Ga: Geissanthus andinus; Ig: Ilex guaramacalensis; Md: Myrsine dependens; Mj: Miconia jahnii; Mt: Miconia tinifolia; Vc: Vaccinium corymbodendron. Ecology and Distribution: The subcommunity of Freziera serrata is found at 2750 m in an area of very steep slopes and difficult access on the North slope of Ramal de Guaramacal. This forest stand is bounded on one side by the road leading to the antennas at the summit, and by a clearing made for maintenance below the electricity cables that lead to the antennas (Photo 2.4). 48 The forest vegetation of Ramal de Guaramacal _______________________________________________________ Photo 2.4. (left) Aspect of the forest stand of the association Geissantho andini Miconietum jahnii subcommunity of Freziera serrata at 2750 m on the North slope. Photo 2.5. (right) Interior of plot 37 of the Andean forest of the Geissantho andini Miconietum jahnii at 2890 m in Páramo El Pumar. 6. Libanothamnetum griffinii Cuello & Cleef 2009 Typus: Cuello Plot No. 38. Table 2.3, Fig. 2.9, Photo 2.6, 2.7 High Andean dwarf forest of Libanothamnus griffinii Physiognomy and composition: This community is represented by very dense dwarf forests with a conspicuous broad-leaved white-grayish canopy conformed by thin-stemmed small trees of 3 to 5 m high, and dominated by a great density of the espeletinioid species Libanothamnus griffinii. Other species are scarce and include: Clethra fagifolia, Cybianthus marginatus, Miconia jahnii, M. tinifolia, Monnina sp., Monochaetum discolor, Palicourea jahnii, Weinmannia auriculata, W. karsteniana and W. lechleriana. The high cover of liverworts is noticeable, mainly comprising species of Plagiochila (Cuello 3040, 3043), further species of Riccardia and of filmy ferns of Trichomanes sp. (Cuello 2938), and Lellingeria myosuroides over tree trunks. The understory is open and species poor. There are dispersed colonies of the terrestrial fern Culcita coniifolia, individuals of the slender Eriosorus flexuosus and the tree fern Blechnum schomburgkii. The orchid Brachionidium tuberculatum, the clubmoss Huperzia sp. (Cuello 2822), and the stoloniferous Psychotria dunstervillorum, as well as dense cushions of bryophytes like Plagiochila 49 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes sp. (Cuello 3042) and Sphagnum meridense grow on top of a thick litter layer. Towards the forest edges of the upper forest line the terrestrial orchid Cyrtochilum ramosissimum, ground rosettes of species of Puya and Greigia and the endemic sedge Rhynchospora guaramacalensis can be found. Figure 2.9. High Andean dwarf forest of the association of Libanothamnetum griffinii. Plot 38: 2810, North slope. Cm: Cybianthus marginatus; Lg: Libanothamnus griffinii; Mt: Miconia tinifolia; Pc: Pentacalia cachacoensis; Pj: Palicourea jahnii; Wa: Weinmannia auriculata; Wk: Weinmannia karsteniana. Photo 2.6. Exterior aspect of a high Andean dwarf forest of the Libanothamnetum griffinii at the upper forest line (~2800-2900 m) on North slope of Ramal de Guaramacal. 50 The forest vegetation of Ramal de Guaramacal _______________________________________________________ Syntaxonomy: This association is based on four plots with 27 species with dbh ≥ 2.5 cm, Libanothamnus griffinii being the character species. Photo 2.7. Interior of plot 38 of the high Andean dwarf forest of the Libanothamnetum griffinii at 2810 m on the North slope. Ecology and distribution: The Libanothamnus griffinii dwarf forests are present over large extensions along the upper forest line. They grow over convex slopes with inclinations of between 20-30 degrees. On the North slope, they are observed to extend continuously from lower elevations (2800 m) with a taller stature and closer canopy cover than on the South slope, where their presence appears to start at around 3000 m. On the northern slopes, the Libanothamnus griffinii forests are observed to grow in wind protected areas, on relatively deep soils with presence of small coarse fragments (1 cm diameter) from 70 cm depth, and clay-sandy textures, with gray colors in the upper layer, turning light to dark brown and dark reddish with depth. On the wind exposed southern slopes, Libanothamnus griffinii treelets grow shorter with altitude forming a more open canopy. Here they occur on relatively shallow ground, with rock fragments from 45 cm depth; with clay to clay-sandy 51 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes textures and gray colors turning from spotted orange to dark brown with depth. Libanothamnus griffinii can also form shrub páramo communities with other páramo species as described for the Páramo vegetation of Guaramacal in Chapter 3. 7. Gaultherio anastomosantis – Hesperomeletum obtusifoliae Cuello & Cleef 2009 Typus: Cuello Plot No. 34. Table 2.3, Fig. 2.10, Photo 2.8, 2.9 High Andean dwarf forests of Gaultheria anastomosans and Hesperomeles obtusifolia Physiognomy and composition: The dwarf forests of the Gaultheria anastomosans - Hesperomeles obtusifolia association are very low in stature, very dense in the number of individual treelets and exhibit an almost closed cover allowing little light penetration. The canopy reaches between 4 and 6 m in height with some emerging individuals reaching 8-10 m, such as: Miconia tinifolia and Weinmannia lechleriana and the stem rosettes of Ruilopezia paltonioides. The most abundant species of the canopy are (in order of abundance) Cybianthus marginatus, Hesperomeles obtusifolia, Vaccinium corymbodendron, Myrsine dependens, Gaultheria anastomosans, Diplostephium obtusum, Miconia tinifolia and Pentacalia cachacoensis. Less abundant are, Ilex guaramacalensis, Monnina sp., Oreopanax discolor, Pentacalia greenmanniana and Symplocos tamana. Vines and lianas are very common, especially those of the Ericaceae family. The most abundant include: Disterigma alaternoides, Psammisia hookeriana, Themistoclesia dependens and Thibaudia floribunda. Epiphytic ferns are also very abundant; Grammitis sp. and Melpomene flabelliformis grow among a dense cover of bryophytes. Most prominent are Campylopus trichophorus, Herbertus acanthelius, and species of Lepidozia and Plagiochila. Figure 2.10. High Andean dwarf forest of the association of Gaultherio anastomosantis Hesperomeletum obtusifoliae. Plot 34: 3050 m. Bs: Blechnum schomburgkii; Cha: Chusquea angustifolia; Cm: Cybianthus marginatus; Dv: Diplostephium obtusum; Ga: Gaultheria anastomosans; Gsp: Greigia sp.; Ho: Hesperomeles obtusifolia; Md: Myrsine dependens; Mt: Miconia tinifolia; Psp. Puya sp.; St: Symplocos tamana. 52 The forest vegetation of Ramal de Guaramacal _______________________________________________________ The open understory, with a conspicuous thick litter layer, is poor in species. Only in more open sites are colonies of the tree fern Blechnum schomburgkii and Bromeliaceae (Cuello 2816). Further may be noted: dispersed individuals of the terrestrial orchid Gomphichis costaricense, patches of stoloniferous dwarf shrub Psychotria dunstervillorum growing in the litter layer, and bamboo clumps of Chusquea angustifolia and Neurolepis glomerata. A diversity of bryophytes growing on the base of trunks and over tree roots, are distinguished, such as Bryum grandifolium, Campylopus pilifer, C. nivalis, Dicranum frigidum, Herbertus juniperinus, Leptodontium longicaule, Plagiochila cf. aerea, Plagiochila sp., Scapania portoricensis, Sphagnum meridense and Tetraplodon mnioides, among others. Syntaxonomy: The Gaultherio anastomosantis - Hesperomeletum obtusifoliae association, is based on three plots with 31 species with dbh ≥ 2.5 cm. The diagnostic species of this association are Diplostephium obtusum, Gaultheria anastomosans and Hesperomeles obtusifolia. Cybianthus marginatus besides of being diagnostic for the alliance is also diagnostic for the association. Photo 2.8. Aspect of the humid high Andean dwarf forests on the South slope of Ramal de Guaramacal. Southeast of „Las Antenas‟ area, 2900-3000 m. Ecology and distribution: The dwarf forests of the Gaultherio anastomosantis Hesperomeletum obtusifoliae association are situated in the summit areas of Ramal de Guaramacal, between 2950 and 3050 m. They form patches, or islands, of forest among the páramo vegetation, especially over, wind protected concave areas on the North slope. On South facing slopes these forests are observed growing on larger extensions of continuous forest on steep surfaces with slopes up to 22 degrees. They are found on shallow soils with the presence of rock fragments from 15 cm 53 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes depth and bed rock at 45 cm, with clayey-loamy textures, dark gray in color turning to more clear with orange spots at greater depths, and pH 3.6 to 3.9 in the upper soil layers rising to 4.1 to 4.9 at increased depth. Together with the dwarf forest of Libanothamnetum griffinii these forests constitute the upper forest line on Ramal de Guaramacal Photo 2.9. Interior of plot 34 of the high Andean dwarf forest of the Gaultherio anastomosantis - Hesperomeletum obtusifoliae at 3050 m. 2.5 DISCUSSION Forest phytosociological classification and methodology limitations The phytosociological classification of the montane forests of Ramal de Guaramacal has resulted in three new alliances and seven associations. Subassociations are described for four associations. Variants are still to be confirmed; only one variant was described. Classes and orders cannot yet be defined on the basis of the present number of relevés and the information available in Table 2.3, and, due to the lack of data from montane forests in the region and elsewhere in Venezuela and adjacent Colombia. It is to be expected that subandean forests (LMRF), and Andean - high Andean forests (UMRF-SARF) respectively, as ecologically very different ecosystems, will belong to separate orders and classes of equatorial montane rain forests. A major forest group of Meliosma tachirensis - Alchornea grandiflora was recognized, which could be considered as equivalent to order. However, the species in common in that group could also belong to a supra-class unit (Table 54 The forest vegetation of Ramal de Guaramacal _______________________________________________________ 2.3), which covers the wide-spread formation of equatorial montane forests of the Andes. This is the main reason we do not propose a proper syntaxon for the order level. A surprise was the Farameo killipii - Prunion moritzianae, which includes forest associations of both LMRF and UMRF (see below). This is the first time that LMRF in the lower part and UMRF in the upper part were included into one phytosociological alliance. Thus far, as experienced in the seven studied altitudinal transects of ECOANDES programme in Colombia, the alliances only accounted for either LMRF plots or UMRF-SARF plots. There may be two reasons: (1) the steep slopes of Guaramacal with bamboo páramo on top (3120 m) result in a type of „compressed forest zonation‟. In a short altitudinal interval under almost permanent high environmental humidity with only slight temperature change sharp vegetation limits/borders may become obscured. We think this is the most likely explanation. (2) The other possibility is that the alliance is an artifact due to a lack of phytosociological resolution; more relevés in this altitudinal interval could provide more information for the forest classification and altitudinal zonation. The forest vegetation has been described on the basis of a relatively low number of relevés. Only outside the Guaramacal sector are they not homogeneously distributed over the altitudinal gradient. Although most plots were 1000 m2 (significantly larger as those of mostly 500 m2 in the ECOANDES transects in Colombia), some of the forest plots between 2800-3000 m were of 100 to 400 m2. The experience of the second author in the UMRF-SARF plots in Colombia and North Ecuador suggests this corresponds rather to the minimum area. In tropical montane rain forests species diversity decreases with altitude. The 0.1 ha plots of this study most probably do not represent the minimum area for LMRF, but are apparently sufficiently representative for the UMRF sampling (see also Westhoff & Van der Maarel 1973). In the SARF dwarf forests, we used smaller plot size also according to the conditions of the forest cover of predominantely very steep terrain. The ECOANDES forest plot size of 500 m2 (0.05 ha) was established for practical reasons. Because most of the sites were very remote and difficult to reach, the plot size of 500 m2 corresponded more to the effort and time required to sample a plot of this size in one day by 2-3 researchers, representing a more practical approach (Cleef et al. 1984). The methodology adopted includes only the census of woody species with diameter ≥ 2.5 cm. Thus, forest communities are defined based mainly on diagnostic tree species from understory and canopy, respectively, rather than on other growth forms. In our opinion however, the resulting forest classification is clearly visible for the montane forests of Ramal de Guaramacal. It is the first attempt for phytosociological classificaction of montane rain forests of the Venezuelan Andes based on a quantitative data set for an entire mountain range. Altitudinal zonation The altitudinal zonation of the montane forests of Ramal de Guaramacal is depicted in Fig. 2.11. TWINSPAN classification for montane forest plots of Ramal de Guaramacal arranged forest types in Table 2.3 according to the altitudinal 55 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes gradient. Based on physiognomy and floristic composition, these forest types can easily be grouped into zones corresponding to LMRF, UMRF and SARF classes of Grubb (1977), or to subandean, Andean and high Andean forests, respectively, according to Cuatrecasas (1934, 1958); also having been applied by Cleef et al. (1984, 2003) and Rangel-Ch. et al. (2003, 2005, 2008) for the ECOANDES transect studies. Elsewhere in the Colombian Andes, Rangel-Ch. & Franco-R. (1985), Rangel-Ch. & Lozano (1989) and Rangel-Ch. (1994) have published details on montane forest transects. For Ecuador, reference is made to forest transect studies by e.g. Bussmann (2002), Lauer et al. (2001) and Moscol & Cleef (2009b). The first division of the TWINSPAN classification of Guaramacal montane forests separates the less diverse Andean and dwarf high Andean forest (UMRF-SARF) communities above 2750 m from the species-rich subandean-andean (LMRF and UMRF) communities present up to 2600 m. The second division separates the lower from the upper subandean (LM) forests and includes, in the second group, a forest type belonging more to Andean (UMRF) forest. LMRF of Ramal de Guaramacal can be found from 1350 m on the South slope and from 1650 m on the North slope in some parts of the mountain range. However, most LMRF extends from 1800 to about 2300 m. The limit of 1800 m is determined by the Park boundaries, below that, disturbed areas occupy the LMRF zone, especially on the North slope. UMRF is present from 2300 to ~2800 m on the North slope of Guaramacal sector; on top of small ranges on South or NorthWest slopes UMRF is also present near 2100 m. SARF in Ramal de Guaramacal is present at the same altitude as páramo vegetation, from 2800 to 3050 m. Most probably exposition vs. protection to strong trade wind, low temperature and extremes and availability of substrate to support a dwarf forest may be responsible (see forthcoming paper Cuello et al. in prep.). Forest zonation is variable between the North and South slope of Guaramacal. Fig. 2.11 shows that on the windward South slope, forest zones of UMRF tend to reach lower elevations than on the opposite and drier North slope. In the first instance, temperature is probably most accountable for this phenomenon. Almost permanent humidity prevents higher temperatures and causes slightly lower values for the medium annual temperature. Also the frequent landslides on the steeper and wetter slopes at mid-high elevation may play a role. LMRF forests also display a lower position as longer gradient and more forest extensions are present below 1800 m. This asymmetric configuration of forest zones on equatorial mountains has also been reported elsewhere (e.g. Kappelle et al. 1995; Cleef 1981). In general, there are dry and a humid to wet slopes opposing each other. Furthermore, it is noticeable that there is a low altitudinal upper limit of the forest (Upper Forest Line or UFL) exists in Ramal de Guaramacal, apparently caused by the “top effect” (Grubb 1971) with UMRF (including SARF) found at lower altitude (Grubb 1977). Previously, this phenomenon was also known as the „telescope‟ effect of mountain mass elevation (Van Steenis 1961, 1972) and, when looked at from a different angle, the „Massenerhebung‟ effect (Schröter 1926). In the Mérida Andes, the upper forest line is situated at an average elevation of around 3400 m (Monasterio 1980; Schneider 2001), a vertical difference of some 56 The forest vegetation of Ramal de Guaramacal _______________________________________________________ 350 m compared to Guaramacal UFL. With a lapse rate of 0.6 oC per 100 m altitudinal interval would indicate a mean annual temperature of about 2 oC colder in the summit zone of Guaramacal range. The first temperature records of the Davis Pro 2 climate station installed near the summit of Guaramacal (3100 m) by the first author since December 2006, registered a diurnal temperature variation from 4-6 oC to 14-16 oC; the lowest temperatures recorded being between 1.3-4 oC; the highest between 16-18 oC, with a mean temperature of 8.6 oC between January and June 2007. In a forthcoming study (Cuello et al, in prep.) after the completion of a year climate measurements, we hope to provide more detail on the low UFL phenomenon. Also, differences in humidity from the drier North and the wetter South slope affect the altitudinal position of vegetation zones between slopes (Fig. 2.11). Another effect of the low altitudinal position of the UFL is the compression of the montane forest zones; they are situated in shorter vertical distances (Fig. 2.11). The sequence of forest zones along the steep South slope is shortest in distance. Figure 2.11. Semi-schematic profile of Ramal de Guaramacal, Andes,Venezuela. The altitudinal zonation of montane forests and bamboo páramo along the North and South slopes is depicted with the respective plots numbers. Vertical exaggeration 5.0 x. 57 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes WSW of Bogotá, the UFL has been located at 1900-2000 m during the coldest phase of the Last Glacial Maximum (Hooghiemstra & Van der Hammen 1993). It is most probable that during the same cold period of the Last Glacial, conditions in the Venezuelan study area were almost similar, likely resulting in a much more compressed altitudinal montane forest zone relative to that of today. Paleoecological studies of lake sediments, e.g. the promising peat land at c. 2000 m near the Park Rangers house of the Guaramacal National Park, may provide more clues. Forest composition and diversity Montane forests of Ramal de Guaramacal show a floristic composition and diversity that change along altitude. Family composition shows the same trend as observed in other Andean forests (Gentry 1992, 1995; Rangel-Ch. 1991). In Lower Montane Rain Forests of Guaramacal, Rubiaceae, Lauraceae and Melastomataceae are the most speciose of woody families. In Upper Montane Rain Forests, the Lauraceae family is still the most diverse, followed by Melastomataceae and Myrtaceae, while in Subalpine rain forests the Asteraceae and Ericaceae are the most species rich families (Table 2.4). Table 2.4. Most species-rich families by forest zones. LMRF (1300~2300 m) Family Rubiaceae Lauraceae Melastomataceae Myrtaceae Euphorbiaceae Piperaceae Myrsinaceae Cyatheaceae Meliaceae Arecaceae Moraceae Sapindaceae Solanaceae 67 families UMRF ~2350 ~2900 m # spp. 29 24 22 17 10 8 7 7 6 6 6 6 6 266 SARF (2800 – 3060 m) Family Lauraceae Melastomataceae Myrtaceae Asteraceae Rubiaceae Ericaceae Myrsinaceae Cyatheaceae Euphorbiaceae Cunoniaceae Aquifoliaceae # spp. 19 13 13 11 9 8 7 6 6 6 5 51 families 169 Family Asteraceae Ericaceae Myrsinaceae Melastomataceae Cunoniaceae Araliaceae Polygalaceae Rosaceae 20 families # spp. 11 7 5 5 4 2 2 2 50 Species diversity and composition also change along the altitudinal gradient with some variations caused by slope exposure and sectors. Species richness generally decreases with elevation; however, local increase in species richness per 0.1 ha 58 The forest vegetation of Ramal de Guaramacal _______________________________________________________ plot was observed between 2300-2400 m on the North slope of Guaramacal in the LMRF - UMRF limit zone (Table 2.2). This diversity trend and its relation to increasing humidity with elevation from the dry interandean Boconó valley to the top of the mountain has been previously discussed (Cuello 1996, 2002). However, the mid slope diversity peak for bryophytes and lichens reported by Wolf (1993) may not be ruled out. Here we also confirm, as Schneider (2001) reported for the first time from a montane forest transect near Mérida, a mid slope diversity bulge for vascular species at the transition from LMRF to UMRF. Lower limit of LMRF is represented by the Simiro erythroxylonis - Quararibeetum magnificae, which, on the North slope, shows a distinct set of species as in the bunchosietosum armeniacae subassociation, while on the South slope the vicariant forest type is represented by that of the typicum subassociation. Characteristic is the LMR forest of the Croizatio brevipetiolatae - Wettinietum praemorsae, which is present on both slopes of Guaramacal with the same altitudinal range. However, a LMR forest variant of Protium tovarense is obviously characteristic for the South slope and the LMR forest of the subassociation hedyosmetosum cuatrecazanum is present at the uppermost limit of LMRF zone on the North slope. The composition of the forest variant of Protium tovarense is also indicative of the high atmospheric humidity occurring on the South slope. The presence of some large-leaved species of Hedyosmum, of Weinmannia and several species of Cyathea are some examples. UMR forest is represented by the Schefflero ferrugineae - Cybianthetum laurifolii and the subcommunity with Freziera serrata of the Geissantho andini Miconietum jahnii. On the South slope the lower limit of UMRF is observed at 2100 m, being represented by the miconietosum suaveolentis of the Schefflero ferrugineae - Cybianthetum laurifolii; on the North slope at 2350 m by the typical subassociation, which is also found at 2250 m on the North-West slope. The forest of the typical subassociation on the North slope presents a mixed composition with a set of species from both LM and UMRF converging in these forests. Rain forest of the subcommunity of Freziera serrata of the Geissantho Miconietum at 2750 m, represents the upper limit of the UMRF on the North slope in Guaramacal sector. UMR forest association of Geissantho - Miconietum can reach altitudes of up to 2890 m, as observed in Páramo El Pumar at the center-west summit of Ramal de Guaramacal. Distinctive forest composition is also noticeable in the SARF zone (2800-3050 m) of UMRF, where two low species diverse dwarf forest associations, one of Libanothamnus griffinii and the other of Gaultheria anastomosans and Hesperomeles obtusifolia with high density of Cybianthus marginatus combined with bamboo páramo vegetation to characterize the upper forest line. SARF, in our opinion, belongs as a subzone to the domain of UMRF, as not only ecology but also floristics and soil characteristics are shared as have been shown by the ECOANDES studies (Van der Hammen et al. 1983-2008). 59 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Forest structure The structure of the montane forests of Ramal de Guaramacal becomes more compressed towards higher elevations. With an increase of altitude, an increase in stem density and a decrease in stem diameter and canopy height is also observed (Table 2.2 a,b, Fig. 2.12). LMRF are dense and of medium height, with canopies up to 25 m tall, while UMRF canopies can reach up to 18 m, and those of SARF are only 6-8 (10) m tall. Basal area was slightly increased on the North than on the South slopes and shows different patterns against altitude between slopes. On the South slope basal area decreases with altitude, while on the North slope still high values have been documented between 2300-2400 m (Fig. 2.12). This lower basal area is probably due to the effect of disturbance by landslides on the steeper South slope. Diversity and density of growth forms also varies with elevation among vegetation zones (Table 2.5). More diversity and density of palms, lianas and climbers is clearly observed in LMRF. Although diversity and the density of lianas decrease with altitude, an important, and substantial, percentage of the total species richness of SARF forest is represented by liana species (16.3%). There might be a relationship with the obviously increased forest dynamics as a consequence of steep slopes and consequently landslides. Hemiepiphytic trees as Clusia are present in both LMR and UMR forests, but with a greater density in UMRF. Density of tree ferns decreases with elevation, yet more diversity of tree ferns is observed in UMRF, but the tree ferns are definitely more conspicuous in LMRF. Table 2.5. Number of species and individuals of different growth forms in altitudinal zones of montane forests of Ramal de Guaramacal. LMRF UMRF SARF Growth forms Total trees≥ 2.5 cm Trees ≥10 cm Tree ferns Hemiepiphytic trees (Clusia) Large herbs (incl. ferns and cyclant.) Bamboos Climbers Lianas Palms Shrubs Stem rosette Total Total area of samples (ha) Spp. # (%) 215 (77.9) 168* 78.1* 7 (2.5) Indiv. # (%) 5615 (72.0) 1430 25.5* 325 (4.2) # 145 94 8 Spp. (%) (77.5) 64.8* (4.3) Indiv. # (%) 3876 (81.8) 833 21.5* 216 (4.6) # 37 27 2 Spp. Indiv. (%) # (%) (75.5) 2128 (92.2) 73.0* 316 14.8* (4.1) 63 (2.7) 3 (1.1) 113 (1.4) 3 (1.6) 339 (7.2) - - - - 4 1 3 37 6 ** 276 (1.4) (0.4) (1.1) (13.4) (2.2) ** - 149 1 39 223 1338 ** 7803 (1.9) (0.0) (0.5) (2.9) (17.1) ** - 2 3 2 19 4 1 187 (1.1) (1.6) (1.1) (10.2) (2.1) (0.5) - 33 136 4 88 44 3 4739 (0.7) (2.9) (0.1) (1.9) (0.9) (0.1) - 1 8 ** 1 49 (2.0) (16.3) ** (2.0) 7 67 ** 44 2309 (0.3) (2.9) ** (1.9) 2.2 1.13 0.36 *percentage of the total trees≥2.5 cm; ** shrubs present in LM and SARF were <2.5 cm diameter. 60 The forest vegetation of Ramal de Guaramacal _______________________________________________________ (a) 9 LMRF UMRF 8 7 6 N Basal area (m2) S 5 4 3 2 1 13 30 14 50 15 50 16 00 17 70 18 00 18 50 18 75 18 80 19 50 19 60 20 70 21 00 21 25 21 70 23 00 23 50 24 00 24 70 24 80 25 80 27 50 28 70 28 90 0 Altitude (m) (b) 700 UMRF LMRF 600 N S Individuals 500 400 300 200 100 28 90 28 70 27 50 25 80 24 80 24 70 24 00 23 50 23 00 21 70 21 25 21 00 20 70 19 60 19 50 18 80 18 75 18 50 18 00 17 70 16 00 15 50 14 50 13 30 0 Altitude (m) Figure 2.12. Distribution of basal area (a) and number of woody individuals (b) per 0.1-ha plots of montane forest for the North and South slope of Ramal de Guaramacal, Andes, Venezuela. 61 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Comparison with other montane forests in the Venezuelan Andes Few studies on composition and diversity of montane forests in the Venezuelan Andes are available for comparison with the montane forests of Ramal de Guaramacal. No recent studies, with the exception of the few and local studies of Vareschi (1953), address the phytosociological classification and description of vegetation communities in the Venezuelan Andes. Only general descriptions of UMRF-SARF of the Mérida Andes s.l. have been delivered by Monasterio (1980) and Veillon (1955). Berg & Suchi (2000) also reported a forest of Podocarpus oleifolius up to 3100-3200 m altitude, as well a dwarf forest (SARF) community of Libanothamnus cf. lucidus, Ugni myricoides and Cybianthus marginathus in Páramo La Aguada in Sierra Nevada National Park, Mérida state. Bono (1996) delivered species lists of montane forests of Táchira state, mostly structured according to vegetation layers. The UMRF association of Schefflero ferrugineo - Cybianthetum laurifolii in Guaramacal displays floristic and physiognomical affinities with UMRF in Mérida state, as those forest characterized by the presence of Podocarpus oleifolius var. macrostachyus described for Mérida state in La Mucuy around 3000 m (Vareschi 1953), Sierra Nevada National Park between 3000-3200 m (Berg & Suchi 2001) and Valle San Javier at 2950-3000 m (Schneider 2001). Clear floristic affinity is found with the forests of La Montaña (‘teleférico’ or cable car) Sierra Nevada National Park at 2550-2650 m (Kelly et al. 1994), where at least 16 (41%) of the 39 tree species reported in La Montaña are present in the Schefflero ferrugineae Cybianthetum laurifolii of Guaramacal, among them some diagnostic ones such as Brunellia integrifolia, Hedyosmum crenatum, Myrsine coriacea, Schefflera ferruginea and Weinmannia glabra. The forest subcommunity of Freziera serrata of the Geissantho andini Miconietum jahnii at 2750 m in Guaramacal Sector displays some floristic affinity with a succesional forest stand at 2600-2700 m in Valle San Javier, Mérida described by Schneider (2001). This forest community in Guaramacal must have been affected by disturbance due to the proximity to the road, man made clear cuts and steep slopes, and evidenced by the presence of some species (such as Brunellia integrifolia, Clethra fagifolia and Freziera serrata) which are also common (but not restricted) in secondary Andean forests of Sierra Nevada de Mérida (Vareschi 1953). Dwarf forest of Libanothamnus griffinii could be comparable in physiognomy and some companion species (of Hypericum, Vaccinium, Weinmannia) with the dwarf forest dominated by Libanothamnus neriifolius described for the Cordillera de Mérida and the Cordillera de la Costa (Vareschi 1953, 1955; Monasterio 1980), as well with those of Libanothamnus glossophyllus from the Sierra Nevada de Santa Marta, Colombia (Cleef & Rangel 1984) and the Cordillera de Perijá (Rangel & Arellano 2007). In Venezuela, Libanothamnus neriifolius dwarf forests are present in the lower limit (2700-3200 m) of dry páramos of the Sierra Nevada de Mérida and páramos of the Lara-Trujillo state border (Cendé, Tuñame, Los Nepes) on sedimentary rocks of lutites and sandstones (Monasterio & Reyes 1980; Monasterio 1980). However, the Libanothamnus neriifolius/glossophyllus dwarf forests of the Sierra Nevada de Santa Marta, Colombia, are present on wind 62 The forest vegetation of Ramal de Guaramacal _______________________________________________________ protected steep slopes between 3700-3900 m in comparable ecological conditions as Polylepis forest in the Eastern Colombian Cordillera and the Sierra Nevada de Mérida (Cleef & Rangel 1984). The Libanothamnus griffinii dwarf forests of Guaramacal are present on similar bed rock and altitudinal range as Libanothamnus neriifolius dwarf forests; under much wetter conditions however. Libanothamnus griffinii, originally described as endemic from Guaramacal, has also been reported for Lara state (Briceño & Morillo 2002). In total there are 11 species of Libanothamnus reported, most of them for Venezuela (Luteyn 1999); few of them however, constitute dwarf forests. Human influence and conservation Ramal de Guaramacal is surrounded by at least 12 small villages and towns (Fig. 2.1). There has been a long history of agricultural activity in the region, now occupying premontane and part of lower montane forest zone mainly for coffee plantation, slash and burn cultivation and extensive cattle ranging, among other land uses (Barbera 1999). However, the high ridges and steep slopes of Guaramacal have kept most of the montane forest areas with minimum disturbance. Only few paths crossing the range North-South existed in the past, providing commercial connections between towns located South of Ramal de Guaramacal and the city of Boconó and surroundings on the North side. These paths were soon abandoned during the 1960’s after the road for the installation of the antennas complex near the summit (3080 m) of Ramal de Guaramacal continuing to the village of Guaramacal (c. 1300 m) on the South slope of the massif, was constructed. Ramal de Guaramacal has been, and continues to be, protected as a National Park since 1988, keeping most human activities and impacts outside the park borders. Fires are known to have occurred in the past, especially in páramo areas close to the antennas, as well as in an area known as Cerro El Diablo on the West side of the Ramal where some cattle were kept ranging in an extensive way. Timber extraction is known to be selective, occurring at very low intensity and generally takes place in close proximity to the park limits. Currently, Ramal de Guaramacal and its montane ecosystems is one of the best conserved national parks in Venezuela. We can only hope this situation will continue into the future. 63 Chapter 3 The páramo vegetation of Ramal de Guaramacal, Trujillo, Venezuela. 1. Zonal communities Nidia L. Cuello A. and Antoine M. Cleef PHYTOCOENOLOGIA, 39 (3), 295–329. 2009 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities 3.1 INTRODUCTION Andean páramos play an essential role in the evolution and the ecology of the Andes (Vuilleumier & Monasterio 1986; Luteyn 1999; Hofstede et al. 2003; Hooghiemstra et al. 2006) and represent strategic ecosystems due to the environmental services they offer in the regional hydrological balance and agricultural production (Molinillo & Monasterio 1997, 2002; Monasterio & Molinillo 2003; Hofstede et al. 2003). Andean páramos are also, however, highly fragile ecosystems as a function of mounting demographic pressures, the expansion of agricultural and mining activities and of global warming, all of which represent major threats to the maintenance of environmental services and for the conservation of Andean biodiversity (Hofstede 2002; Van der Hammen 2002; Llambi et al. 2005). Since the publication of the 'Flora de los Páramos de Venezuela' by Vareschi (1970), a substantial number amount of studies in but a few Venezuelan páramos has been published. The ecological studies by M. Monasterio and (own staff/foreign) collaborators (Monasterio 1980a; Sarmiento et al. 2003) were developed primarily in the central core of dry páramos in the state of Mérida. They remain ongoing in these páramos with highest altitude and most extension of the Cordillera of Mérida. At present, a great number of studies by researchers from the ICAE-ULA-Mérida, are available (see Sarmiento 2006 CD-ROM). These studies are mostly concerned with ecophysiology and functional processes in both natural and agro-ecosystems of the páramo and as such, remain unique in that there are not similar groups of this magnitude and focus elsewhere in the tropical Andes and high mountains of Central America and Mexico. Despite a great environmental variability throughout a number of páramo areas and their associated vegetation communities along of the Cordillera de Mérida (Monasterio & Reyes 1980; Monasterio 1980b; Luteyn, 1999), little is currently known about páramo vegetation communities and their flora in other sectors of the Venezuelan Andes beyond the borders of Mérida state. To date, local floristic listings have appeared that include páramo areas such as those from Táchira and Trujillo states (Bono 1996; Dorr et al. 2000), there is a list of flowering plants of Venezuelan páramos (Briceño & Morillo 2002, 2006) and phytogeographical analyses of the páramo flora (Ricardi et al. 1997, 2000). Studies of classification and characterization of the vegetation communities in páramos of the Venezuelan Andes are limited to the descriptions of different sectors of Sierra Nevada de Mérida (Vareschi 1953, 1956; Baruch 1984; Berg 1998; Berg & Suchi 2000; Yánez 1998) and, as outlined above, to a general descriptive account for the whole region (Monasterio 1980b), floristic lists with comments on vegetation communities of páramos of Táchira state (Bono 1996) and a brief description of a selected area of Páramo Cendé in Trujillo state (Niño et al. 1997). In comparison, a much larger body of literature on plant diversity and vegetation exists for Colombian páramos (Cuatrecasas 1934, 1958; Cleef 1981; Sturm & Rangel 1985; Van der Hammen et al. 1983, 1984, 2003, 2005, 2008; Rangel 2000a, among others). Luteyn (1999) and Rangel (2000a) provide a summary of the flora and vegetation studies conducted throughout the last century in Colombian páramos. 67 Flora, vegetation and ecology in the Venezuelan Andes Previous studies divided the north Andean páramo vegetation into several zones related to altitude (for a complete review we refer to Luteyn 1999). The Cuatrecasas (1934, 1958) altitudinal classification of superpáramo, páramo and subpáramo has since been widely adopted (Cleef 1981; Acosta-Solís 1984; Ramsay 1992; Jørgensen & Ulloa 1994; Hooghiemstra et al. 2006). For Venezuelan páramos, Monasterio (1980b) recognises two altitudinal zones called „pisos altitudinales‟: a High Andean zone or „Piso Altiandino‟ (4000-4800 m) and the Upper Andean zone or „Piso Andino Superior‟ (2800-4000 m) with a total of seven vegetation formation types and thirty four vegetation communities or “associations”. There are three vegetation types from the „Piso Altiandino‟, called 1) the High Andean Desert Páramo or „Páramo Desértico Altiandino‟, 2) the High Andean Periglacial Desert or „Desierto Periglacial Altiandino‟ and 3) the High Andean Forest of Polylepis sericea. Many authors agreed that the „Piso Altiandino‟ and the Superpáramo represent equivalent vegetation zones (Berg 1998; Luteyn 1999; Berg & Suchi 2000). In the „Piso Andino‟ zone, the four vegetation types recognized are 4) the Andean Páramo or „Páramo Andino‟, which includes heterogeneous páramo vegetation associations dominated either by rosettes or shrubs; 5) the Andean Grass Páramo or „Pajonal Paramero Andino‟, including páramo vegetation associations with high cover of tussock grasses; 6) the Andean Pasture Páramo or „Pastizal Paramero Andino‟, which is represented by vegetation associations with high cover of other non-tussock grasses; and 7) the Andean Páramo Forest or „Bosque Paramero Andino‟ (Monasterio 1980b). The wet páramo of Guaramacal found on the high summits of Ramal de Guaramacal (Fig. 1), has previously been reported as an important center of diversification of the genus Ruilopezia of the Espeletiinae (Cuatrecasas 1986). Moreover, due to its relative isolation, Ramal de Guaramacal is also an area with an endemic flora (Steyermark 1979; Ortega et al. 1987; Dorr et al. 2000). An important number of new and endemic species have been described from the forests and páramos of Guaramacal (Morillo 1988; Axelius & D' Arcy 1993; Carnevali & Ramírez 1998; Aymard et al. 1999; Benítez & Sawyer 1999; Taylor 2002; Stančik 2004; Stergios & Dorr 2003; Niño et al. 2005; Cuello & Aymard 2008). Endemic species of the Guaramacal subpáramo - páramo flora include: Elaphoglossum appressum Mickel, Epidendrum guaramacalense Hágsater, Festuca guaramacalana Stančik, Ilex guaramacalensis Cuello & Aymard, Libanothamnus griffinii (Ruiz-Terán & López-Fig.) Cuatrec., Miconia aymardii Wurdack, M. elvirae Wurdack, Rhynchospora guaramacalensis Strong and Ruilopezia lopez-palacii (Ruiz-Terán & López-Fig.) Cuatrec., among others. The zonal vegetation of the Páramo of Guaramacal is generally characterized by a mosaic of subpáramo formations (shrub páramo, bunchgrass páramo, most common bamboo páramo), intermingled with patches of dwarf forests. The páramo vegetation is distributed between 2800 and 3130 m. Due to its low altitude, the Páramo of Guaramacal has been catalogued by some authors as a subpáramo (Cuatrecasas 1986; Luteyn 1999). For the purpose of this paper, subdivison of subpáramo and grasspáramo, each in a lower and higher subzone, we refer to Cleef (1980, 1981). 68 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Zonal and azonal vegetation is defined sensu Walter (1979). Zonal vegetation corresponds to the present vegetation as a function of the actual regional macroclimate. Zonal vegetation occurs on zonal soils and represents the majority of vegetation within the study area. Azonal vegetation is dependent on the special substrate conditions, such as where stress by water or dryness is experienced. Azonal vegetation communities in concave terrain is represented by peat bogs, mires or aquatic vegetation in the Guaramacal bamboo páramo, were treated separately (Cuello & Cleef 2009c). The primary goal of the present study is to identify, define and characterize the zonal vegetation of Páramo de Guaramacal, and to establish a syntaxonomic scheme based on analysis of physiognomy, floristic composition, ecological relations and the altitudinal distribution of the different vegetation communities also in comparison to bamboo páramos elsewhere. This work was carried out within the wider framework of a project aiming to study the diversity of flora and vegetation of the Guaramacal National Park (Cuello 1999, 2000, 2002, 2004; Dorr et al. 2000). Classification of forest vegetation and azonal páramo communities in Ramal de Guaramacal are described separately in Chapter 2 and 4 (Cuello & Cleef 2009a, c). 3.2 STUDY AREA Zonal páramo communities of the summit of Ramal de Guaramacal have been studied between 2800-3100 m, in the surroundings of 'Las Antenas' area (9 o 14‟ 1.02” N; 70o 11‟ 6.47” W) and Páramo El Pumar (9o 12‟ 45.6” N; 70o 12‟ 5.55” W), 2.5 km Southwest of 'Las Antenas'. Ramal de Guaramacal is an outlier of the Venezuelan Andes, located South from the town of Boconó, Trujillo state, approximately 120 km Northeast of Mérida, in the centre of the Sierra Nevada de Mérida (Fig. 3.1). The climatic characteristics of high humidity with permanent fog favour the development of great ground cover of Sphagnum spp. characteristic of the zonal shrub páramo vegetation associations and border of forests. This condition is very common all over the páramo areas of Ramal de Guaramacal and is not considered here as an azonality. First climatic records from a Davis Pro 2 climate station installed near the summit of Guaramacal (3100 m) by the first author since December 2006 to December 2007 (monthly precipitation in mm and monthly temperature in Celsius), registered a total amount of yearly rainfall of at least 2995.4 mm (some data were lost during some days in the most rainy months of june and july 2007). Relative humidity is extraordinary high, with a mean humidity of 96.88% throughout the year. The lowest mean relative humidity was observed in the month of February with a value of 92.35%. Mean temperature is 8.6oC, the lowest temperatures of 1.3oC are recorded in December and January and the highest temperature of 18.6oC in March. Detailed data of the Davis Pro 2 climate station are intended to be published in a forthcoming paper on the upper forest line (Cuello et al. in prep.). For a more complete description of the study area the reader is referred to Chapter 2 and Cuello (1999). 69 Flora, vegetation and ecology in the Venezuelan Andes Figure 3.1. Location of study area in the Venezuelan Andes. 3.3 METHODS Field Sampling: Fieldwork on the zonal páramo vegetation of the Guaramacal range was conducted over a short altitudinal gradient between 2800 and 3100 m. Observations, general collections and quantitative sampling using line-intercept methods (Barbour et al. 1987), were conducted here. Lines of 10 m were laid down at ca. 10 m altitudinal 70 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities intervals on patches of vegetation with an apparently homogenous structure and composition; however, on occasion, it happened that the line also crossed other vegetation type(s). To avoid this, each line was divided into two sections of 5 m, a perpendicular 5 m line was then situated close to the first 5 m of the line to complete the 10 m. In few cases, some of those 5 m line segments on mixed vegetation were later excluded for the analysis. The horizontal measurement of interception of every plant species (vascular plants and cryptogams) touching the line was performed. The measurement of height and location of the plant with respect to the line was also registered, and together with measurements of relief variation each 25 cm, were used for drawing of vegetation and land form profiles. For the delineation of relief a cord extended horizontally along the length of the line (tape measure) leveled with a bubble level, was used as a reference. Soil sampling with an auger from 15 cm depth were conducted at the centre of each 5 m line interval. Soil pH and conductivity were later determined in the laboratory. A total of fifty observations sites and a hundred 5 m line sections were surveyed. At each observation site, information on topography, exposition, slope, geographic position (UTM coordinates), altitude and floristic composition were recorded. Botanical vouchers of all recorded species, including those with doubt as to their identification, equally found beyond the lines of interception as within were collected. Photographs, where possible, were also taken. The collected botanical material was processed, identified and deposited at Herbario Universitario PORT of UNELLEZ. For vascular plants, the nomenclature follows that of Dorr et al. (2000). Duplicates of mosses and lichens were sent to Dr. D. Griffin III (FLAS) and Dr. H.J.M. Sipman (B), respectively, for their identification. Additional duplicates were also deposited in MER, VEN and US. The collection number referred to is that of the first author. Processing and data analysis: Data for each survey were stored and processed using Microsoft Excel. For each species in each line section of zonal vegetation surveyed, the sum of the intersection and a percentage value of cover and relative cover were calculated. Percentage cover for each species is equal to the total sum of intersection for the species, multiplied by 100, then divided by the length of the line. Relative cover for each species is equal to the total sum of intersection for the species in the line, multiplied by 100, then divided by the total sum of intersections of all species. The number of individuals, relative abundance and the frequency of a species, based on the number of appearances of the species throughout 1 m sections of the line, were also computed. A data matrix containing the percentage of relative cover of 91 vascular species recorded for ninety one 5 m-line surveys was processed with TWINSPAN (Hill 1979) using program PC-Ord 4 (McCune & Mefford 1999). Vegetation data were then interpreted in terms of syntaxonomical classification, based on cover and floristic affinities, following the Zürich-Montpellier approach (Braun-Blanquet 1979) and the International Code of Phytosociological Nomenclature (Weber et al. 2000). 71 Flora, vegetation and ecology in the Venezuelan Andes The diverse subunits, recognized in a progressive way by the TWINSPAN procedure, were hierarchized in associations, and higher (alliances, order) and lower syntaxa (subassociations and variants). In order to explore relationships between the species composition of vegetation types and some of the environmental variables measured in this study (altitude, slope angle, soil and humus depth), an ordination analysis, using canonical correspondence analysis (CCA), also available in the PC-Ord package, was performed. 3.4 RESULTS Zonal subpáramo plant communities Interpretation of the TWINSPAN table allowed recognition of 5 vegetation communities at association level, grouped into two alliances and one order (Table 3.1). The zonal subpáramo plant communities recognized in Ramal de Guaramacal are summarized as follows: A. RUILOPEZIO LOPEZ-PALACII – CHUSQUEETALIA ANGUSTIFOLIAE Cuello & Cleef 2009 I. HYPERICO PARAMITANUM – HESPEROMELETION OBTUSIFOLIAE Cuello & Cleef 2009 1. Ruilopezio paltonioides – Neurolepidetum glomeratae Cuello & Cleef 2009 1.1. variant of Disterigma alaternoides 1.2 variant of Ugni myricoides 2. Disterigmo acuminatum – Arcytophylletum nitidum Cuello & Cleef 2009 2.1. pentacalietosum cachacoensis Cuello & Cleef 2009 2. 2. subassociation typicum Cuello & Cleef 2009 II. HYPERICO CARDONAE – XYRIDION ACUTIFOLIAE Cuello & Cleef 2009 3. Cortaderio hapalotrichae – Hypericetum juniperinum Cuello & Cleef 2009 3.1. subassociation typicum Cuello & Cleef 2009 3.2. disterigmetosum acuminatum Cuello & Cleef 2009 4. Puyo aristeguietae – Ruilopezietum lopez-palacii Cuello & Cleef 2009 5. Rhynchosporo gollmeri – Ruilopezietum jabonensis Cuello & Cleef 2009 72 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Lower Subpáramo The zonal vegetation of the Guaramacal subpáramo corresponds to very dense shrub formations, growing on concave or wind protected slopes, forming the transition to high Andean forest (Subalpine rain forest or SARF). The subpáramo vegetation is represented by the new alliance Hyperico paramitanum Hesperomeletion obtusifoliae, composed of two new associations Ruilopezio paltonioides - Neurolepidetum glomeratae and Disterigmo acuminatum Arcytophylletum nitidum. Several species of small trees (typical) of the highAndean forest are common, especially from the Ruilopezio paltonioides Cybianthion marginati (Cuello & Cleef 2009a). They are growing in combination with high densities of tussock grasses dominated by Cortaderia hapalotricha, and the bamboo Chusquea angustifolia together with shrubs (up to 2 m) and proper woody páramo species, such as Hypericum juniperinum, Arcytophyllum nitidum, Chaetolepis lindeniana, among other species of Hypericum, Asteraceae and Ericaceae. Upper Subpáramo The zonal upper subpáramo vegetation corresponds to open vegetation pertaining to the new Hyperico cardonae - Xyridion acutifoliae alliance. This upper subpáramo vegetation extends in greater proportion on low inclined convex slopes, and is represented by grasspáramo of the Puyo aristeguietae - Ruilopezietum lopezpalacii; bordered by or combined, with the vegetation of the new association Cortaderio hapalotrichae - Hypericetum juniperinum. There, the grasses Cortaderia hapalotricha and Chusquea angustifolia also predominate, with variable densities of rosettes of Ruilopezia lopez-palacii and Puya aristeguietae, prostrate herbs and a variable density of woody individuals among which the singlestemmed leptophyllous dwarfshrub (1.5 m) Hypericum juniperinum stands out. Towards the highest altitude (2900-3100 m), the open páramo vegetation of the (new) association Rhynchosporo gollmerii - Ruilopezietum jabonensis, located on concave slopes or in small depressions, is present. In this, the small (prostrate and erect) shrubs are absent (or very rare) and the 'frailejón' that dominates is the ground rosette Ruilopezia jabonensis. Cushion Cyperaceae, like Rhynchospora gollmerii, and prostrate herbs occur more commonly. Another vegetation type present in Páramo de Guaramacal is the bamboo-páramo ('chuscales') of the Carici bonplandii–Chusqueetum angustifoliae association (Chapter 4, Cuello & Cleef, 2009c), characterized almost exclusively by Chusquea angustifolia. The 'chuscales' of this association are located on humid, slightly sloping, ground of valleys or adjacent to lakes. They are considered azonal vegetation since they are periodically influenced by flood. As one move away from the chuscales, the density of individuals of Hypericum juniperinum increases, the number of clumps of Chusquea angustifolia bamboos decrease, and other grasses, rosettes and small shrubs appear conforming the vegetation of the corresponding association which is either Cortaderio hapalotrichae - Hypericetum juniperinum or that of Puyo aristeguietae - Ruilopezietum lopez-palacii. 73 Flora, vegetation and ecology in the Venezuelan Andes Table 3.1. Phytosociological table of zonal páramo vegetation of Ramal de Guaramacal, Andes, Venezuela. Releve number 1 Releve (field number) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 47a 47b 48b 32b 48a 39a 39b 11a 32a 3a 12a 12b 2 2 2 32 33 3 3 2 3 3 2 2 2 2 36 37 38 17a 17b 37b 7b 2 3 3 2 3 2 3 3 3 2 3 3 2 3 0 8 0 8 8 8 8 8 9 9 9 0 0 9 0 0 8 0 0 9 9 9 0 8 8 0 0 0 9 9 0 0 0 0 9 0 0 6 0 6 6 6 6 8 5 5 8 4 4 8 8 8 3 6 6 5 2 5 4 5 5 0 0 4 6 6 3 4 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NW NW N SE N NW NW NW SE SE S S W 30 30 30 17 20 25 30 1 2 2 2 1 1 1 1 1 95 106 45 38 60 >90 25 34 40 18 2 34 35 7a 0 18 2 30 31 3 19 2 29 3 30 2 28 0 45 2 26 27 3 45 3 24 25 T Slope angle (degrees) 2 23 L Slope exposition 3 22 19a 19b 2b 46a 46b 3b 45a 45b 29b 37a 29a 18b 34a 34b 43a 43b 18a 31a 31b 49b A (m) 3 20 21 2a 3 3 4 0 0 0 0 0 0 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 5 0 NW NW W SE SE NE SW SW NE S NE N NW NW S S N NE NE NW SE N N S SE 13 37 22 22 22 20 35 36 10 29 24 25 25 37 23 28 18 25 10 29 2 2 2 1 1 1 2 2 1 1 1 2 35 >110 53 56 17 30 25 12 24 12 21 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Soils depth (cm) 30 50 50 46 13 >55 10 10 41 4 33 67 60 56 75 62 20 35 pH 4 4.0 4.0 3.7 4.0 3.6 3.9 3.7 3.9 3.9 3.7 3.8 4.0 4.0 3.3 3.5 3.7 3.9 4.0 4.1 4.1 4* 3.5* 3.5* 3.70 3.7 3.7 4.5 4.5 3.7 3.7 3.8 4.2 4.2 3.8 3.7 3.4 3.7 Soils texture Fa aF FAa La FLa aF aF a aF La La Fa aF a A FLA No. vascular species 17 8 15 17 10 12 14 12 17 19 16 17 18 18 16 22 17 20 19 11 13 18 17 21 17 14 18 18 14 16 17 15 11 15 16 17 13 13 Fa F La FL a Fla aL FaL FaL aL <1 <1 Fa a <1 <1 Fa <1 <1 <1 aL <1 a aL FaL <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 30 80 50 70 10 15 15 25 60 45 50 25 70 55 85 100 60 50 15 15 70 65 85 45 70 40 45 30 5 35 20 35 25 30 35 30 20 5 5 15 30 10 5 10 5 10 20 20 40 39 20 30 20 25 45 50 45 5 10 20 20 20 10 45 35 5 30 25 15 15 20 30 15 10 % Cov. Grasses & rosettes > 10 cm 100 75 80 45 100 85 60 90 65 30 65 25 65 15 20 30 10 15 30 10 20 40 20 45 35 60 85 65 80 90 35 45 45 65 25 35 40 50 % Cov. Ground < 10 cm (including Cryptogams) 20 5 5 40 25 10 25 45 10 25 50 45 25 30 40 10 60 25 5 15 15 45 15 35 35 5 15 30 40 50 35 60 35 10 45 RUILOPEZIO LOPEZ-PALACII - Order <1 a 35 45 <1 a % Cov. Small shrubs < 60 cm 35 <1 aF % Cov. Shrubs & dwarf trees >60 cm 10 <1 a 40 % outcrops and/or bare soil 15 <1 FL 53 >80 45 1 35 Slope shape HYPERICO PARAMITANUM - HESPEROMELETION OBTUSIFOLIAE Alliance 1. Ruilopezio - Neurolepidetum glomeratae Association 2. Disterigmo acuminatum - Arcytophylletum nitidum 2.1. pentacalietosum cachacoensis Subasociacion 2.2. typicum Variant 1. Ruilopezio paltonioides - Neurolepidetum glomeratae . . 4 3 4 1 . 3 2 2 1 . 1 . . . . 2 1 . . . 2 . . 2. Disterigmo acuminatae - Arcytophylletum nitidum Disterigma acuminatum 1 . . . . Gaultheria hapalotricha 1 . . . . Arcytophyllum nitidum 1 . . . . Ageratina theifolia . . . . . Galium hypocarpium . . . . . Polypodium funckii . . . . . Eriosorus flexuosus . . . . . Hymenophyllum myriocarpum . . . . . 2.1. pentacalietosum cachacoensis Pentacalia cachacoensis . . . . . Vaccinium corymbodendron . 4 3 . . Melpomene moniliformis . . . . . Gaultheria anastomosans . . . . . Themistoclesia dependens . . . . . Hesperomeles sp. . . . . . 2.2. typicum Ugni myricoides . . . . 1 Rubus acanthophyllos . . . . . Ilex guaramacalensis . . . . . Valeriana quirorana . . . . . Ruilopezia paltonioides Disterigma alaternoides Nertera granadensis Pentacalia greenmaniana Sphyrospermum buxifolium 2 . . . . . . 1 . . 4 . . . . 3 . . . . 3 . 1 . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . 3 . . . 3 . . . . . . . . . . . . . . 4 . . . . . . . . . 1 . . . . . . . . . . . . . . 3 . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . 4 . . . . . . . 4 1 . 2 . . . . 5 1 . 1 . 1 . . 3 1 . . . . . . 4 2 4 1 . . . . 4 2 2 . . . 1 . 2 1 . . . . . . 5 1 4 . . . . . 4 . 2 . . . . . 4 . . 1 . . . . 5 . . . . . . . 5 . . . . . . . 2 1 . . 1 . . 1 2 . . 2 . . . . 3 1 . . 2 . . 1 4 1 4 . . . . . 3 . . . . . . . 4 1 . . . . 1 . 3 1 1 . . . . . 4 . 1 . . . . . 2 . 2 . . . . . 4 1 3 . . . . . 4 . 2 . . . . . 2 . 2 . . . . . 4 . 1 3 . . . . 4 2 4 . . . . . 4 2 4 . . . . . 4 . . . . . . . 1 . 4 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2 . . 1 1 2 . . 1 1 1 2 . . 2 1 . 2 . . . 4 . 2 . . . . 1 . 1 . 3 2 1 . 3 . 2 2 1 1 . . 2 2 3 . . . . . . . . . 1 . . . . . 2 1 . . . . 3 . . . . . 3 . 1 1 . 2 . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . 1 . . . 3 . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . 3 1 . . . . . . 1 2 . . . 2 . . 3 . 1 . 1 1 1 . . . . . 2 1 . 1 2 1 . . . . . 5 . . 1 . . . . . 2 . . . . . . . . . . . 1 2 2 4 5 . . . . . . . 2 . . . 3 1 . 4 6 . . . . . . . . 2 3 2 2 1 4 6 . . . . . . . 1 . 4 1 4 4 4 . . . . . . . . 3 . 4 2 2 1 2 . . . . 2 2 . . . . 4 2 . 4 2 . 4 1 . . . . . . . 5 2 . 2 2 2 . . . . . . . . . 2 4 . 4 . . 3 . . . . . 1 . . . 4 . . 2 . 3 . . . . . . . . 2 4 . . 2 . . . . . . . 1 . . 4 1 . . . . 5 . 3 . . 1 2 . . 5 . . . . . . 1 . . . . . . . 4 1 . 4 . . 4 . . . . . . . . 4 2 1 . 2 . . . . . . . . . . 5 . . . . . . 1 . . . . . . . 4 . . . . . . . 1 . . . 1 . . 4 4 4 1 1 4 . . . . . . . . . 4 3 . . . . . . . . . . . . . . 2 4 . . . . 1 . . . . . . . 4 1 3 1 . . . . . . . . . . . 4 2 5 . . . . . . . . . . . . . 3 . . . . . . . . . . . . . 3 3 . . . . . . . . . . . . . . 1 . . 1 . . 1 . . . . . . . . 3 . . 1 . . 1 . . . . . 4 . 2 . . . . . . . . . . . . . . 2 3 . . . . . . . . . . . . . HYPERICO PARAMITANUM - HESPEROMELETION OBTUSIFOLIAE Blechnum schomburgkii 1 3 3 3 4 . 1 2 2 2 Hypericum paramitanum 1 . 3 4 2 1 2 3 3 2 Neurolepis glomerata 5 5 5 . 5 5 5 3 . 2 Cybianthus marginatus . . . . 1 . 1 . . 5 Hesperomeles obtusifolia 4 3 . 4 . . . . 1 . Sphagnum meridense 4 3 2 . . . 2 3 . . Libanothamnus griffinii 1 . . . . 2 2 . . . Elaphoglossum cf. lingua 1 . . . . . . . . . Puya sp. . . . 2 1 . . . 4 2 1 . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . 3 . 1 . . 2 . . . 2 1 3 3 6 . . . . . . . . 2 . . . . . . . . . . . . Paepalanthus pilosus . . . . 4. Puyo aristeguietae - Ruilopezietum lopez-palacii Puya aristeguietae . . . . Chusquea tessellata . . . . Castilleja fissifolia . . . . Festuca guaramacalana . . . . Monnina sp. . . . . Bejaria aestuans . . . . Rhynchospora lechleri . . . . Oreobolus venezuelensis . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . 1 . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miconia tinifolia Muehlenbeckia tamnifolia Epidendrum frutex Myrsine dependens Diplostephium obtusum Rhynchospora sp. . . . . . . . . . . . . . 1 1 . . . 3.Hypericetum juniperinum Hypericum juniperinum Orthrosanthus acorifolius Calamagrostis sp. A 74 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 41a 41b 13a 15b 22a 22b 25b 40a 40b 8b 9a 9b 13b 1b 20a 20b 23a 23b 44a 44b 6a 6b 15a 25a 49a 10a 10b 1a 28a 28b 35a 35b 38b 42a 42b 8a 50a 50b 38a 11b 21a 21b 14a 14b 24b 5b 16a 16b 24a 4a 5a 4b 27a 3 3 3 2 2 2 3 2 3 3 3 3 3 3 3 3 2 3 3 2 2 2 2 2 2 2 3 3 2 2 2 3 0 0 0 9 0 0 0 0 0 8 9 9 0 8 0 0 0 0 0 0 0 0 9 0 0 8 8 8 8 8 8 8 8 0 0 8 0 0 8 8 8 8 9 9 0 9 9 9 0 9 9 9 0 2 2 1 8 5 5 6 2 2 8 1 1 1 2 5 5 3 3 4 4 4 4 8 6 4 4 4 2 6 6 7 7 7 2 2 8 4 4 7 0 8 8 6 6 5 9 6 6 5 6 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 0 N NE E NW N N NE E E NW NW E E E NW N N E NW N N NE NE E E E E E E E E SW 21 11 26 26 11 18 12 12 11 11 13 28 19 19 13 24 23 16 1 2 1 2 1 1 1 1 2 1 2 65 20 56 40 73 10 2 3 3 3 3 3 5 5 0 0 0 0 S S W NE SE SE E S S NW S 8 S W NE SE SE SW SW SE SE N 2 2 3 8 12 21 14 18 19 14 13 16 11 11 12 5 48 31 12 12 32 32 7 7 21 19 23 15 15 5 9 9 15 15 11 21 2 3 1 1 1 1 2 2 1 1 2 2 1 1 1 21 18 31 28 40 22 17 28 29 115 60 9 31 20 15 63 86 29 72 40 80 80 13 41 25 75 30 40 120 120 52 38 28 51 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 3 2 2 2 2 2 2 15 115 20 32 120 55 106 80 26 2 3 2 1 2 1 2 3 2 1 2 2 48 60 28 5 5 2 120 4.1 4.1 3.9 3.8 4.0 3.7 4.2 4.0 3.8 3.3 3.7 3.5 3.6 3.7 4.2 3.9 4.0 3.8 4.0 4.0 4.1 3.7 3.8 ## 4.3 3.9 3.9 4.5 4.7 4.9 3.7 3.9 3.6 3.7 3.7 3.7 4.1 4.4 3.6 4.1 4.1 4.1 4.0 3.9 3.9 4.2 3.9 3.8 4.0 4.0 4.1 4.2 3.9 FLa a L 12 14 13 11 18 15 13 14 17 9 15 11 14 10 11 15 14 11 16 10 12 15 19 13 15 11 13 10 9 8 14 16 10 11 15 12 14 10 10 10 12 17 12 12 12 7 9 12 aL aL 11 10 9 9 7 <1 aL aL aL aL La La aL a 10 5 <1 2 5 20 5 <1 1 15 <1 <1 5 10 15 <1 <1 <1 <1 5 25 5 20 10 5 10 0 5 0 0 0 10 0 0 0 25 0 2 0 30 0 0 0 0 0 0 0 0 0 0 0 0 5 1 <1 <1 15 5 5 10 10 5 2 1 5 1 5 2 2 <1 0 <1 <1 <1 3 0 4 0 50 40 50 70 50 30 45 70 45 45 60 60 25 70 25 80 55 45 75 30 55 10 40 60 75 90 70 50 75 85 75 65 90 75 70 60 100 100 90 60 65 65 60 50 60 80 70 70 70 60 85 80 75 10 10 10 5 10 5 15 40 25 50 50 20 40 15 20 20 10 40 15 35 15 10 5 25 25 30 20 25 10 50 5 5 10 1 5 1 <1 5 20 10 15 1 5 1 20 1 5 5 <1 45 1 15 40 10 5 15 15 20 15 30 15 15 15 L 10 10 30 10 20 20 50 15 40 45 20 50 20 20 30 3 30 10 5 1 aL 10 15 35 40 20 15 15 <1 aL FaL aL aL 5 5 <1 a 5 5 2 a 2 1 1 aL 15 5 15 5 5 L FaL aL 5 5 1 a <1 5 1 L LA aL aL AF Fa Fa La aL aL aF aF La FLA FL aL aL LF LF aL aL aL LF Aa 5 20 3 10 <1 a <1 5 5 aF 30 30 20 <1 10 5 10 a 15 20 10 10 10 5 0 - CHUSQUEETALIA ANGUSTIFOLIAE HYPERICO CARDONAE - XYRIDION ACUTIFOLIAE 3. Cortaderio hapalotrichae - Hypericetum juniperinum 3.1. typicum . . 1 . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 4. Puyo aristeguietae - Ruilopezietum lopez-palacii 5. R. gollmeri - Ruilopezietum jabonensis 3.2. disterigmatosum acuminatum . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . 2 . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . 3 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 2 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . 1 . 3 . . . . . 3 1 1 . . . . . 2 . 4 . . . . . 3 . 3 . . . . . 4 . 2 . . . . . 3 . . . . . . . 3 . . . . . . . 3 . . . . . . . 2 . . . . . . . 1 . . . . . . . . . 1 . . . . . 1 . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . 2 . 1 1 . . . . . 1 . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 3 . . . . . 2 . . . 4 . . . . . . . . . . . . . . . . . 1 . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . 2 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . 5 . . . . . . . . . . . . . . 4 . . 1 . . . . . . . . . . . . . . . . . . . . 2 4 . . . . . . . . . . . . . . . . 1 . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . 4 . . . . . . . . . . . . 1 . . . . . . . . 1 . . . . . 1 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1 1 . 3 . . . . . . . . 2 . . . 2 . 5 . . . . . . . . 1 1 . . 2 . . . . . . . . . . . . . . 2 . 3 . . . . . . 3 1 5 . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . 3 . 4 . . . . . . . . . . 1 . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . 3 . . . . . 1 2 . . 2 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 1 . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 . . . . 3 . . . . . . . 3 . 1 1 1 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 1 . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 4 . . . . . . 2 . . . 4 1 4 5 . 2 2 . 1 . . . 1 . . . . . . 2 3 2 . 4 . . . 2 3 1 . 2 1 . . 1 . . 1 4 2 . . 5 . . . 2 . . . 4 . . . 4 . . . 2 . . . . 3 2 2 2 . . . 3 . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 . . . . . . . . . . . . . . . . . 2 . . 2 2 3 3 . . . . 1 1 . . . . . . . . . . . . . . . 3 . . . . . . . 2 . . . 2 2 . . 3 . . . . . . . . 5 . . . . . 1 . . 4 4 3 . . . . . . . . . . . . . . . . . . . . . 3 . . . . 1 1 . 1 2 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . . . . . . . . . . . 1 3 . . . . . . . . . . . . . . . 75 Flora, vegetation and ecology in the Venezuelan Andes Releve number 1 Releve (field number) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 47a 47b 48b 32b 48a 39a 39b 11a 32a 3a 12a 12b 2 2 2 32 33 3 3 2 3 3 2 2 2 2 36 37 38 17a 17b 37b 7b 2 3 3 2 3 2 3 3 3 2 3 3 2 3 0 8 0 8 8 8 8 8 9 9 9 0 0 9 0 0 8 0 0 9 9 9 0 8 8 0 0 0 9 9 0 0 0 0 9 0 0 6 0 6 6 6 6 8 5 5 8 4 4 8 8 8 3 6 6 5 2 5 4 5 5 0 0 4 6 6 3 4 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NW NW N SE N NW NW NW SE SE S S W 30 30 30 17 20 25 30 1 2 2 2 1 1 1 1 1 95 106 45 38 60 >90 25 34 40 18 2 34 35 7a 0 18 2 30 31 3 19 2 29 3 30 2 28 0 45 2 26 27 3 45 3 24 25 T Slope angle (degrees) 2 23 L Slope exposition 3 22 19a 19b 2b 46a 46b 3b 45a 45b 29b 37a 29a 18b 34a 34b 43a 43b 18a 31a 31b 49b A (m) 3 20 21 2a 3 3 4 0 0 0 0 0 0 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 5 0 NW NW W SE SE NE SW SW NE S NE N NW NW S S N NE NE NW SE N N S SE 13 37 22 22 22 20 35 36 10 29 24 25 25 37 23 28 18 25 10 29 2 2 2 1 1 1 2 2 1 1 1 2 35 >110 53 56 17 30 25 12 24 12 21 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Soils depth (cm) 30 50 50 46 13 >55 10 10 41 4 33 67 60 56 75 62 20 35 pH 4 4.0 4.0 3.7 4.0 3.6 3.9 3.7 3.9 3.9 3.7 3.8 4.0 4.0 3.3 3.5 3.7 3.9 4.0 4.1 4.1 4* 3.5* 3.5* 3.70 3.7 3.7 4.5 4.5 3.7 3.7 3.8 4.2 4.2 3.8 3.7 3.4 3.7 Soils texture Fa aF FAa La FLa aF aF a aF La La Fa aF a A FLA No. vascular species 17 8 15 17 10 12 14 12 17 19 16 17 18 18 16 22 17 20 19 11 13 18 17 21 17 14 18 18 14 16 17 15 11 15 16 17 13 13 Fa F La FL a Fla aL FaL FaL aL <1 <1 Fa a <1 <1 Fa <1 <1 <1 aL <1 a aL FaL <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 30 80 50 70 10 15 15 25 60 45 50 25 70 55 85 100 60 50 15 15 70 65 85 45 70 40 45 30 5 35 20 35 25 30 35 30 20 5 5 15 30 10 5 10 5 10 20 20 40 39 20 30 20 25 45 50 45 5 10 20 20 20 10 45 35 5 30 25 15 15 20 30 15 10 % Cov. Grasses & rosettes > 10 cm 100 75 80 45 100 85 60 90 65 30 65 25 65 15 20 30 10 15 30 10 20 40 20 45 35 60 85 65 80 90 35 45 45 65 25 35 40 50 % Cov. Ground < 10 cm (including Cryptogams) 20 5 5 40 25 10 25 45 10 25 50 45 25 30 40 10 60 25 5 15 15 45 15 35 35 5 15 30 40 50 35 60 35 10 45 RUILOPEZIO LOPEZ-PALACII - Order <1 a 35 45 <1 a % Cov. Small shrubs < 60 cm 35 <1 aF % Cov. Shrubs & dwarf trees >60 cm 10 <1 a 40 % outcrops and/or bare soil 15 <1 FL 53 >80 45 1 35 Slope shape HYPERICO PARAMITANUM - HESPEROMELETION OBTUSIFOLIAE Alliance 1. Ruilopezio - Neurolepidetum glomeratae Association 2. Disterigmo acuminatum - Arcytophylletum nitidum 2.1. pentacalietosum cachacoensis Subasociacion 2.2. typicum Variant 5. R. gollmeri - Ruilopezietum jabonensis Ruilopezia jabonensis . . . . . . Rhynchospora gollmeri . . . . . . Isidrogalvia robustior . . . . . . Gentianella nevadensis . . . . . . HYPERICO CARDONAE - XYRIDION ACUTIFOLIAE Xyris subulata var. acutifolia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 . . . . . . . 1 . . . . . 2 4 . . . . . . . 1 . . . . . 5 . 3 4 . 1 . . 4 2 1 . . . . 4 . 2 . 1 1 . . . 2 . . 1 . . 4 . 1 . 1 2 . . . . . . . . . 4 1 1 1 . . . . . 1 . . . 1 . 2 . . . 2 1 . . . . 1 . . . . 3 . 1 1 3 1 2 . . 2 1 . 1 . 1 4 2 2 2 . 2 2 . 1 3 1 . . . . 2 . 2 . 5 3 2 . . . . . . . . 4 2 1 . 4 4 3 . . . . . . . . 3 4 . 2 . 1 . 1 . 2 . . . . . 1 3 4 1 4 2 . . . 2 . . . . . 2 3 1 4 . 1 . 1 2 2 1 . . . . 4 1 1 4 2 1 3 . . 2 1 6 1 . . 2 4 1 4 . 2 3 . . 2 . . . . . 3 4 2 4 . 1 3 . . 2 . . 1 . . 4 4 2 . . 2 2 . 1 2 . . . . . 3 4 . . 1 . 4 . 2 2 . . . . . 4 2 2 5 2 1 1 . 1 1 2 3 . . . 2 2 2 4 . 3 . 2 . . . . . . . 2 4 2 . . 2 . 3 1 . 2 . . . . . 5 3 1 . 4 . 3 3 . 2 6 . . . . 5 2 4 2 1 . 3 2 3 1 5 . . . 3 3 3 4 4 1 . 1 . . 1 5 . . . 4 4 . 2 1 3 . 2 . . . 4 . 1 . 4 5 2 2 3 1 . 3 . 4 . . . . . 4 5 3 3 2 1 . 1 . . 2 6 . . . 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 Hypericum cardonae . . . . . . . . 1 . Carex bonplandii . . . . . . . . . . Ruilopezia viridis . . . . . . . . . . Calamagrostis planifolia . . . . . . . . . . RUILOPEZIO LOPEZ-PALACII - CHUSQUEETALIA ANGUSTIFOLIAE Cortaderia hapalotricha . . . 4 . 3 4 5 3 2 Chusquea angustifolia 3 4 1 4 5 . . 3 4 2 Lycopodium clavatum subsp. contiguum 1 . . 2 . 4 4 4 3 4 Ruilopezia lopez-palacii Geranium stoloniferum Pernettya prostrata Rhynchospora guaramacalensis Rhynchospora macrochaeta Jamesonia imbricata Chaetolepis lindeniana Daucus montanus Sphagnum sparsum Hieracium avilae Hymenophyllum trichomanoides Hypericum sp. . . 1 2 . 2 . 1 . . . . 2 . 1 1 . . . . . . . . . . 1 2 . . 1 . . . . . 2 . 2 1 . 1 3 . . . . . . . 2 . . . . . . . . . 4 . 1 . 3 2 . . 5 . . . 3 . 1 . 4 1 . . 6 . . . . . 1 . . 2 2 1 . . . . 3 . 1 3 . 2 . . . . . 1 . . 1 3 . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 Cybianthus laurifolius? 3a(1) Gaultheria erecta 34b(1) Greigia sp. 44a(1) 76 Huperzia amentacea 3b(1) Hymenophyllum sp. 34a(1) Melpomene flabelliformis 17a(1) Melpomene xiphopteroides 17b(1) Polypodium sp. 34b(1) Utricularia alpina 21b(1) The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 41a 41b 13a 15b 22a 22b 25b 40a 40b 8b 9a 9b 13b 1b 20a 20b 23a 23b 44a 44b 6a 6b 15a 25a 49a 10a 10b 1a 28a 28b 35a 35b 38b 42a 42b 8a 50a 50b 38a 11b 21a 21b 14a 14b 24b 5b 16a 16b 24a 4a 5a 4b 27a 3 3 3 2 2 2 3 2 3 3 3 3 3 3 3 3 2 3 3 2 2 2 2 2 2 2 3 3 2 2 2 3 0 0 0 9 0 0 0 0 0 8 9 9 0 8 0 0 0 0 0 0 0 0 9 0 0 8 8 8 8 8 8 8 8 0 0 8 0 0 8 8 8 8 9 9 0 9 9 9 0 9 9 9 0 2 2 1 8 5 5 6 2 2 8 1 1 1 2 5 5 3 3 4 4 4 4 8 6 4 4 4 2 6 6 7 7 7 2 2 8 4 4 7 0 8 8 6 6 5 9 6 6 5 6 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 0 N NE E NW N N NE E E NW NW E E E NW N N E NW N N NE NE E E E E E E E E SW 21 11 26 26 11 18 12 12 11 11 13 28 19 19 13 24 23 16 1 2 1 2 1 1 1 1 2 1 2 65 20 56 40 73 10 2 3 3 3 3 3 5 5 0 0 0 0 S S W NE SE SE E S S NW S 8 S W NE SE SE SW SW SE SE N 2 2 3 8 12 21 14 18 19 14 13 16 11 11 12 5 48 31 12 12 32 32 7 7 21 19 23 15 15 5 9 9 15 15 11 21 2 3 1 1 1 1 2 2 1 1 2 2 1 1 1 21 18 31 28 40 22 17 28 29 115 60 9 31 20 15 63 86 29 72 40 80 80 13 41 25 75 30 40 120 120 52 38 28 51 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 3 2 2 2 2 2 2 15 115 20 32 120 55 106 80 26 2 3 2 1 2 1 2 3 2 1 2 2 48 60 28 5 5 2 120 4.1 4.1 3.9 3.8 4.0 3.7 4.2 4.0 3.8 3.3 3.7 3.5 3.6 3.7 4.2 3.9 4.0 3.8 4.0 4.0 4.1 3.7 3.8 ## 4.3 3.9 3.9 4.5 4.7 4.9 3.7 3.9 3.6 3.7 3.7 3.7 4.1 4.4 3.6 4.1 4.1 4.1 4.0 3.9 3.9 4.2 3.9 3.8 4.0 4.0 4.1 4.2 3.9 FLa a L 12 14 13 11 18 15 13 14 17 9 15 11 14 10 11 15 14 11 16 10 12 15 19 13 15 11 13 10 9 8 14 16 10 11 15 12 14 10 10 10 12 17 12 12 12 7 9 12 aL aL 11 10 9 9 7 <1 aL aL aL aL La La aL a 10 5 <1 2 5 20 5 <1 1 15 <1 <1 5 10 15 <1 <1 <1 <1 5 25 5 20 10 5 10 0 5 0 0 0 10 0 0 0 25 0 2 0 30 0 0 0 0 0 0 0 0 0 0 0 0 5 1 <1 <1 15 5 5 10 10 5 2 1 5 1 5 2 2 <1 0 <1 <1 <1 3 0 4 0 50 40 50 70 50 30 45 70 45 45 60 60 25 70 25 80 55 45 75 30 55 10 40 60 75 90 70 50 75 85 75 65 90 75 70 60 100 100 90 60 65 65 60 50 60 80 70 70 70 60 85 80 75 10 10 10 5 10 5 15 40 25 50 50 20 40 15 20 20 10 40 15 35 15 10 5 25 25 30 20 25 10 50 5 5 10 1 5 1 <1 5 20 10 15 1 5 1 20 1 5 5 <1 45 1 15 40 10 5 15 15 20 15 30 15 15 15 L 10 10 30 10 20 20 50 15 40 45 20 50 20 20 30 3 30 10 5 1 aL 10 15 35 40 20 15 15 <1 aL FaL aL aL 5 5 <1 a 5 5 2 a 2 1 1 aL 15 5 15 5 5 L FaL aL 5 5 1 a <1 5 1 L LA aL aL AF Fa Fa La aL aL aF aF La FLA FL aL aL LF LF aL aL aL LF Aa 5 20 3 10 <1 a <1 5 5 aF 30 30 20 <1 10 5 10 a 15 20 10 10 10 5 0 - CHUSQUEETALIA ANGUSTIFOLIAE HYPERICO CARDONAE - XYRIDION ACUTIFOLIAE 3. Cortaderio hapalotrichae - Hypericetum juniperinum 3.1. typicum . . . . . . . . . . . . . . . . . . . . 4. Puyo aristeguietae - Ruilopezietum lopez-palacii 5. R. gollmeri - Ruilopezietum jabonensis 3.2. disterigmatosum acuminatum . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . 1 . . . . . . . . . . . . . 2 . . . . . . . . . . . 3 . . . . . . . . . . . . 1 . . 5 4 3 3 1 4 1 1 2 2 1 1 3 1 . . . . . . . . 4 1 . . . . . . 1 1 . . . 2 1 2 . . 2 1 2 . . 3 . . . . . 1 . . . . . . . . 2 1 . . . . 1 . . . 1 . . . . . . . . . . . . . . . . . . . . 2 . . 1 . . . . . 1 1 . . . 1 . . . . . . . . . . . . . . . . . 3 . . . . . . 3 . 1 . . 2 . 1 . . . . . . . 5 . 3 . . 2 . 2 . 3 1 . . . . 4 4 3 . 5 3 . 1 . . . . 1 . . 4 3 3 5 3 2 . 3 1 . . . . 3 . 5 . 3 2 5 1 . 2 . 1 . . 1 . . 4 1 3 . 5 2 . . . 2 . . . . 2 5 2 3 4 4 2 . 1 1 . . . . . . 5 4 3 2 . 3 . . . 2 2 . . . . 4 5 3 1 . 4 . . . 1 3 1 3 3 5 2 3 . 1 . . . 5 . . . . . . 3 4 2 3 4 2 . 3 . 5 . 3 . . . 5 2 3 4 4 4 . . . 2 . . . . . 4 . 2 . 5 1 . . . . . 3 1 . . 5 3 4 3 3 1 . . 1 . . . . . . 3 . 2 . 5 2 3 . 2 . . . . . . 3 5 3 . 4 1 2 . 1 . 1 . . . . 4 4 2 . 5 3 . 2 1 . . . . . . 4 4 2 . 5 4 . . . 2 . . . . . 3 4 2 4 3 3 2 . 3 1 . . . . . 4 . 4 . 4 3 4 . . . . . . . . 5 3 3 . 5 1 1 . . . 2 . . . . 5 2 3 1 5 2 . . . . 2 2 . . . 3 3 2 4 3 1 . 3 1 2 . . 1 1 . 4 . 1 5 4 3 . 3 2 . . . 1 . . 2 5 3 3 . 3 . 3 3 1 1 6 . . . 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 Soil texture: F franco (loamy) a arena (sand) A arcilla (clay) L Limo (mud/silt) . . . . Slope shape: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2 . 5 2 2 1 5 5 5 5 1 1 3 1 . . . . . . . . 5 1 . 1 4 5 5 . . . . . . . . . 2 5 . . . 1 1 4 . . . . . . . . . . . . . . . . . 1 . 2 3 4 . . 2 2 2 2 4 3 . . . . . 1 1 1 . . . . 1 1 . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . 1 . . 4 5 1 2 1 . 1 1 . . . . . . . . 1 . . . 1 1 . . . 2 3 . . . . . . . . . . . . . 5 . 1 . . 5 3 4 5 . 2 . 3 3 . . . . . . 4 2 4 5 . 1 . 1 1 . . . . . . 5 1 3 5 2 1 . . . . . . . . . 4 5 4 4 . . 4 . . . . . 1 . . 4 3 4 5 . . 3 . . . . . . . . 5 4 2 3 . 3 4 . 1 . . . . . . 5 3 3 5 . 2 4 . 2 1 . . . . . 4 5 2 5 3 1 1 . 3 . . . 1 . . 4 1 3 5 . . 4 . 2 . . . . . . 4 3 1 5 2 1 4 . 2 2 . . . . . 3 3 4 5 1 2 . 1 . . . . . . . 4 5 3 3 . 1 . 2 2 . 4 6 . . . 2 5 . 5 . 1 . 2 4 . 1 . . . . 4 . 3 5 2 1 3 . 1 . . . 1 . . 5 . 5 . . 1 . . 1 . . . . . . 5 . 4 5 . 1 4 . 1 . . . 2 . . 4 . 3 5 . 1 3 . 4 . . . 1 . . 5 3 2 4 1 . . 2 . . . . 1 . . 5 3 3 . 2 1 . 1 . . . . . . . 5 3 1 . 1 1 . 3 . . . . 1 . . 4 1 2 . . . . 1 . . . . . . . 5 4 4 . . . . 1 . . . . . . . 4 5 2 . 2 1 . 1 2 . . . . . . 5 4 2 . . . . 2 . . . . . . . 5 4 2 . 3 1 . 3 1 . . . . . . 5 5 . 4 1 . . 3 2 . . . . . . 1 5 . . . . . . . . . . . . . 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 4 3 3 . 3 . . . 1 . . . . . . 1 convex 2 concave 77 Flora, vegetation and ecology in the Venezuelan Andes RUILOPEZIO LOPEZ-PALACII – CHUSQUEETALIA ANGUSTIFOLIAE Cuello & Cleef 2009 Representative alliance: Hyperico paramitanum - Hesperomeletion obtusifoliae Provisional order of zonal humid lower páramo of Ruilopezia lopez-palacii and Chusquea angustifolia / Orden provisional de páramo húmedo bajo zonal de Ruilopezia lopez-palacii y Chusquea angustifolia Physiognomy and composition: A vegetation mosaic of very humid subpáramo and páramo, with rosettes and bamboos growing among patches of ecotonic dwarf forest. A variety of growth forms is characteristic, including: acaulescent and stem rosettes, dwarf trees, small (upright and prostrate) shrubs; epiphytic, erect prostrate and trailing herbs, and grass tussocks and bamboos. Also noticeable are a variety of ferns and a dense cover of bryophytes and lichens. Locally appear patches of reddish Sphagnum mosses. Diagnostic species are: Chaetolepis lindeniana, Chusquea angustifolia, Cortaderia hapalotricha, Daucus montanus, Geranium stoloniferum, Hymenophyllum trichomanoides, Jamesonia imbricata, Lycopodium contiguum, Pernettya prostrata, Rhynchospora guaramacalensis, R. macrochaeta and Ruilopezia lopez-palacii. Syntaxonomy: This provisional order is defined on the basis of 91 line-intersect surveys with 85 vascular species. This order groups both the alliances of humid shrub subpáramos of Hyperico paramitanum - Hesperomeletion obtusifoliae and Hyperico cardonae - Xyridion acutifoliae of shrub páramos and grassy lower subpáramos. Ecology and distribution: The order unifies all communities of zonal vegetation (excluding dwarf forests) present in the summit region of Ramal de Guaramacal between 2800 and 3130 m. HYPERICO PARAMITANUM – HESPEROMELETION OBTUSIFOLIAE Cuello & Cleef 2009 Typus: Ruilopezio paltonioides–Neurolepidetum glomeratae. Shrubpáramo of the Hypericum paramitanumi and Hesperomeles obtusifolia alliance / Subpáramo de arbustales de la alianza de Hypericum paramitanum y Hesperomeles obtusifolia Physiognomy and composition: This alliance groups vegetation communities with a high proportion of shrubs and dwarf tree species. The shrubpáramo displays variable densities of Ruilopezia paltonioides and R. lopez-palacii stem rossettes, within a matrix of Cortaderia hapalotricha tussock grasses and Chusquea angustifolia bamboos. These shrub formations can reach heights of 1.5-2 m, occasionally reaching upwards of 3 m in wind protected areas. In the understorey, very common low shrubs of Hypericum paramitanum and prostrate shrubs of Disterigma acuminatum are present. A variable density of the tall and wide-leaved bamboo Neurolepis glomerata and an abundant turf cover of Sphagnum and other bryophytes are distinctive 78 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Dwarf tree species of high Andean forest (or subalpine rain forest, SARF) are common, such as: Cybianthus laurifolius, C. marginatus, Gaultheria erecta, Hesperomeles obtusifolia, Ilex guaramacalensis, Libanothamnus griffinii, Miconia tinifolia, Myrsine dependens, and Vaccinium corymbodendron. Also present are typical open páramo dwarf treelets, such as: Ageratina theifolia, Hypericum juniperinum and Hesperomeles sp. Between the shrubs, and distinctive in the sequence of abundance, are: Hypericum paramitanum, Chaetolepis lindeniana, Arcytophyllum nitidum, Ugni myricoides, Disterigma alaternoides, Pentacalia cachacoensis, Valeriana quirorana, Gaultheria anastomosans, Diplostephium obtusum, Pentacalia greenmaniana, Hypericum juniperinum x cardonae. Small ericaceous prostrate shrubs including: Disterigma acuminatum, Pernettya prostrata, Gaultheria hapalotricha, Themistoclesia dependens and Sphyrospermum buxifolium are also present. Apart of the prominent bamboos Chusquea angustifolia and Neurolepis glomerata are also important tussocks of Cortaderia hapalotricha, Rhynchospora guaramacalensis and R. macrochaeta. Other species include herbs like Daucus montanus, Epidendrum frutex, Hypericum cardonae, Geranium stoloniferum, Nertera granadensis and ferns and clubmosses such as: Elaphoglossum cf. lingua, Eriosorus flexuosus, Huperzia amentacea, Jamesonia imbricata, Lycopodium clavatum subsp. contiguum, Polypodium funckii, Hymenophyllum myriocarpum, H. trichomanoides, Melpomene flabellaformis, M. moniliformis and M. xiphopteroides. The trailings Rubus acanthophyllos and Muehlenbeckia tamnifolia are also present. Syntaxonomy: Thirty-eight line-intersect surveys are recognized as belonging to this alliance with a total of 65 vascular species accounting for species richness. Diagnostic species for the alliance are: Blechnum schomburgkii, Cybianthus marginatus, Hesperomeles obtusifolia, Hypericum paramitanum, Libanothamnus griffinii and Neurolepis glomerata. This new provisional alliance contains two associations: Ruilopezio paltonioides Neurolepidetum glomeratae and Disterigmo acuminatum - Arcytophylletum nitidum. Ecology and distribution: This alliance groups zonal vegetation characteristic of humid shrub subpáramo in the páramo-forest ecotone. Vegetation of this type is situated mainly on predominantly convex slopes between 2830 and 3080 m, with slopes of between 5 to 48 degrees. The soils are, in general, comparatively deep, with a layer of organic matter, sand-muddy textures and acidic (average pH 3.8) in the superficial layers. The associations of this alliance shares many species in common with those of dwarf forests alliance of Ruilopezio paltoniodes–Cibianthion marginatus, and may be contiguous in the field, however, differences in ecology (soil depth, light exposition, humidity level in underbrush) and the presence of proper open páramo diagnostic species in the shrubpáramo associations help to difference between alliances. 79 Flora, vegetation and ecology in the Venezuelan Andes 1. Ruilopezio paltonioides – Neurolepidetum glomeratae Cuello & Cleef 2009 Typus: Rel. No. 3 (Cuello L48b). Table 3.1. Figure 3.2. Photo 3.1 Humid shrub páramo of Ruilopezia paltonioides and Neurolepis glomerata / Pajonalarbustal de subpáramo húmedo de Ruilopezia paltonioides y Neurolepis glomerata Physiognomy and composition: Shrub community with a high density of tall tussock grasses and wide-leaved bamboos (1-1.5 m) and between 35-50% cover, growing among a layer of dwarf trees and dispersed shrubs (Fig. 3.2). Tall conspicuous espeletioid stem rossettes reaching 2 (3) m with 15 to 25% cover are also present. The upper layer is composed of discrete Chaetolepis lindeniana, Hesperomeles obtusifolia, Hypericum paramitanum and Ugni myricoides shrubs, together with tall (2-3 m) Ruilopezia paltonioides stem rosettes and lower ones of Ruilopezia lopez-palacii and Blechnum schomburgkii. In the tall grass layer, additional to the dominance of Neurolepis glomerata (20-40% cover), Chusquea angustifolia and Cortaderia hapalotricha are also present. Further, there is also a low herb layer containing prostrate shrubs Disterigma acuminatum and Pernettya prostrata, the sedges Rhynchospora guaramacalensis and R. macrochaeta, small herbs like Daucus montanus, and the ferns Jamesonia imbricata and Lycopodium clavatum subsp. contiguum, growing over a turf of Sphagnum sparsum and S. meridense among other bryophytes. Syntaxonomy: This association is defined on the basis of 10 line-intersect surveys, with a total of 41 vascular species. Ruilopezia paltonioides and Neurolepis glomerata are diagnostic. Other diagnostic species in this association include: Disterigma alaternoides, Pentacalia greenmaniana and Sphyrospermum buxifolium. Two provisional variants are distinguished for this association: a variant of Disterigma alaternoides and a variant of Ugni myricoides. Ecology and distribution: Transitional ecotonic shrubby vegetation of the humid sub-páramo located close to the upper forest line, consisting of (subalpine rain forests or SARF sensu Grubb, 1977) of Libanothamnus griffinii, and Gaultheria anastomosans and Hesperomeles obtusifolia dwarf forests (Cuello & Cleef, 2009). This association has been observed between 2860 to 3000 m on concave or convex slopes with NW-SE exposition and slope angles between 18 and 30 degrees. This community can also be found near rock outcrops or along fractured rocks crossed by small streams. The soils are 38-106 cm deep, loamy to loam-sandy loam in texture, with gray to brown yellowish colours and of pH, 3.6 to 3.9 in the upper layer. 1.1. variant of Disterigma alaternoides Physiognomy and composition: Dense shrubby-grass vegetation dominated by Neurolepis glomerata bamboo clumps (1-1.5 m, 35-40% cover), a layer of discrete shrubs and dwarf trees (2-3 m, 20-25% cover) and small prostrate shrubs in the interior. Species composition is as described for the association. 80 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Diagnostic species are Disterigma alaternoides, Sphyrospermum buxifolium, Pentacalia greenmaniana and Vaccinium corymbodendron. This variant is distinguished from the variant of Ugni myricoides by the low presence of Cortaderia hapalotricha and a greater presence of Chusquea angustifolia. Ecology and distribution: This variant corresponds to the vegetation of the association of Ruilopezia paltonioides and Neurolepis glomerata located at altitudes of around 3000 m, generally transitional and adjacent to dwarf forests of Libanothamnus griffinii. Photo 3.1. Closer view of a shrub páramo vegetation of the Ruilopezio paltonioides Neurolepidetum glomeratae on the border of a patch of dwarf forest at ~2890 m in Páramo de Guaramacal, Ramal de Guaramacal, Andes, Venezuela. Notice the dominance of the tall stem rosette Ruilopezia paltonioides. 81 Flora, vegetation and ecology in the Venezuelan Andes Figure 3.2. Physiognomy of the vegetation of the association Ruilopezio paltonioides Neurolepidetum glomeratae var. Disterigma alaternoides (L48b 3000 m). Bs: Blechnum schomburgkii; Cha: Chusquea angustifolia; Chl: Chaetolepis lindeniana; Da: Disterigma alaternoides; Ef: Epidendrum frutex; Hp: Hypericum paramitanum; Mp: Muehlenbeckia tamnifolia; Ng: Neurolepis glomerata; Ngr: Nertera granadensis; Pg: Pentacalia greenmanniana; Pp: Pernettya prostrata; Rgu: Rhynchospora guaramacalensis; Rp: Ruilopezia paltonioides; Sb: Sphyrospermum buxifolium; Vc: Vaccinium corymbodendron. 1.2 variant of Ugni myricoides Physiognomy and composition: Dense shrubby-grass vegetation of high Neurolepis glomerata clumps (15-20%), dispersed shrubs (15-20%) and a high 82 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities cover of low tussocks (25-30%) with a dominance of Cortaderia hapalotricha. See for species composition the association. The diagnostic species in this variant are Ugni myricoides and Disterigma acuminatum. The presence of Cortaderia hapalotricha is also significant and a greater presence and cover of Lycopodium clavatum subsp. contiguum, Ruilopezia lopez-palacii and Jamesonia imbricata distinguish this variant. Ecology and distribution: This variant corresponds to the vegetation of the association of Ruilopezia paltonioides and Neurolepis glomerata located at altitudes of 2800-2900 m. Stands are generally adjacent to both dwarf forests of Libanothamnus griffinii or those of Gaultheria anastomosans and Hesperomeles obtusifolia (Cuello & Cleef 2009a), in addition to their presence along small streams. 2. Disterigmo acuminatum – Arcytophylletum nitidum Cuello & Cleef 2009 Typus: Rel. No. 31 (Cuello L31a). Table 3.1. Figure 3.3 Humid Disterigma acuminatum and Arcytophyllum nitidum shrub páramo / Arbustal de páramo húmedo de Disterigma acuminatum y Arcytophyllum nitidum Physiognomy and composition: Dense shrubby vegetation, with a variable frequency of tall stem rosettes and tussock grasses. The aspect is a layer of shrubs and dwarf trees around 1-1.5 (3) m tall, with 20-40% cover, and a layer of tall tussock grasses that reach up to 1.5-2 m with 20 to 25% cover. In the dwarf shrub layer are ericaceous prostrate shrubs (30-50 cm and 15-18% cover), other grasses (15-45 cm and 2-6% cover) and a ground layer consisting of cushions species of Sphagnum and other bryophytes (60-80% cover). Among the shrub and dwarf tree (dt) species with substantial cover are Arcytophyllum nitidum, Chaetolepis lindeniana, Cybianthus marginatus (dt), Disterigma alaternoides, Hesperomeles obtusifolia (dt), Hypericum paramitanum, Libanothamnus griffinii (dt), Pentacalia cachacoensis (dt), Ugni myricoides and Vaccinium corymbodendron (dt). Among the bamboo and tussock grasses are Chusquea angustifolia and Cortaderia hapalotricha in the shrub layer; Rhynchospora guaramacalensis, R. macrochaeta, Orthrosanthus acorifolius and Xyris subulata var. acutifolia are present in the herb layer. The stem rosettes of Blechnum schomburgkii, Ruilopezia lopez-palacii and Ruilopezia paltonioides are conspicuous. Common small shrubs include Disterigma acuminatum, Gaultheria hapalotricha, Hypericum cardonae, Pernettya prostrata and Themistoclesia dependens, and scandents or climbers like Muehlenbeckia tamnifolia and Rubus acanthophyllos. Further, the tall erect terrestrial orchid Epidendrum frutex, small or prostrate herbs like Daucus montanus, Galium hypocarpium, Geranium stoloniferum, and a diversity of ferns and club mosses, such as Elaphoglossum cf. lingua, Eriosorus flexuosus, Huperzia amentacea, Hymenophyllum myriocarpum, H. trichomanoides, Jamesonia imbricata, Lycopodium clavatum subsp. contiguum, Melpomene moniliformis, M. 83 Flora, vegetation and ecology in the Venezuelan Andes flabelliformis, M. xiphopteroides and Polypodium funckii, are also present, among others. Syntaxonomy: This is a highly diverse association represented by 28 line-intersect surveys with 61 species of vascular plants. Diagnostic species are Arcytophyllum nitidum, Ageratina theifolia, Disterigma acuminatum and Gaultheria hapalotricha. Two subassociations are distinguished, pentacalietosum cachacoensis and the typicum one. Ecology and distribution: This subpáramo bamboo shrub is generally found surrounding areas of dwarf forests (SARF), at edges of slopes or hill tops, and in contact with communities of Ruilopezia paltonioides and Neurolepis glomerata. It represents humid shrub páramo, transitional between forest and páramo. Figure 3.3. Physiognomy of the vegetation of the association Disterigmo acuminatum Arcytophylletum nitidum subass. Typicum (L31a 2960 m). An: Arcytophyllum nitidum; Bs: Blechnum schomburgkii; Cha: Chusquea angustifolia; Cm: Cybianthus marginatus; Da: Disterigma acuminatum; Dm: Daucus montanus; Gh: Gaultheria hapalotricha; Hp: Hypericum paramitanum; Ji: Jamesonia imbricata; Lc: Lycopodium clavatum subsp. contiguum; Ng: Neurolepis glomerata; Pp: Pernettya prostrata; Ra: Rubus acanthophyllos; Rl: Ruilopezia lopez-palacii; Rm: Rhynchospora macrochaeta; Um: Ugni myricoides; V: Valeriana quirorana. Disterigmo acuminatum – Arcytophylletum nitidum 2.1. subassociation pentacalietosum cachacoensis Cuello & Cleef 2009 Typus: Rel. No. 17 (Cuello L46a). Table 3.1. Figure 3.4 Pentacalia cachacoensis subassociation / Subasociación de Pentacalia cachacoensis Physiognomy: Dense shrubby vegetation in a matrix of tussock grasses of Cortaderia hapalotricha and bamboos of Chusquea angustifolia and Neurolepis glomerata; shrubs, dwarf trees (1-1.5 (3) m) and prostrate shrubs are present at high density. There is a carpet of species of Sphagnum, together with other mosses, 84 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities as well as the presence of liverworts, such as Scapania portoricensis and species of Plagiochila. Composition and syntaxonomy: This subassociation is represented in 13 lineintersect surveys containing 50 vascular species. Diagnostic species are Pentacalia cachacoensis and Vaccinium corymbodendron, together with Ageratina theifolia, Cybianthus marginatus, Gaultheria anastomosans, Hesperomeles obtusifolia, Themistoclesia dependens and the fern Melpomene moniliformis. The ground layer of this vegetation unit is dominated by Sphagnum meridense and S. sparsum and among them Breutelia rithidoides and Cladonia furcata can also be found. Other epiphytes on small trunks are species of Riccardia (2955), Frullania (3038, 3039) and Plagiochila (2957). Some facies may be distinguished for this subassociation: a facies of Vaccinium corymbodendron, characterized also with a prominent presence of Melpomene monniliformis and Gaultheria anastomosans and another facies with a greater presence of Libanothamnus griffinii. Ecology and distribution: The shrub páramo of the subassociation of Pentacalia cachacoensis is located at altitudes between 2920-3080 m, and occuring on the edges of convex or concave slopes of 10-37 degrees. The soils attain a depth of 480 cm, with mixed textures predominantly sandy (sand-muddy to sand-silty or siltsand-loam), with pH 3.3-4.1 and dark colors in the superficial layers, varying in colour until reddish and grayish with a high clay content at increased depth. Disterigmo acuminatum – Arcytophylletum nitidum 2. 2. subassociation typicum Cuello & Cleef 2009 Typus: Rel. No. 31 (Cuello L31a). Table 3.1. Figure 3.3 Subassociation of Arcytophyllum nitidum / Subasociación de Arcytophyllum nitidum Physiognomy: Shrubs and dwarfed trees dominate (up to 2 m, 20-40% cover); with a presence of tall stem rosettes of up to 3.5 m. Composition and syntaxonomy: The subassociation is represented in 15 lineintersect surveys with a total of 50 vascular species. Diagnostic species are the same as the association as well as Ugni myricoides and Rubus acanthophyllos. Rhynchospora guaramacalensis also being a further diagnostic species. In the vegetation of this subassociation a ground layer of high bryophyte cover is common and comprised mainly Sphagnum sparsum and S. meridense. Other common species are Breutelia squarrosa, Campylopus flexuosus, C. nivalis, Scapania portoricensis, Herbertus sp. (2980), Plagiochila tabinensis and other species of Plagiochila and Frullania. Epiphytic bryophytes are also present on the smaller trunks. Some lichens, such as Cladia aggregata and Cladonia squamosa, can be found in the ground layer or over rocks. Peltigera neopolydactyla is found also on the dry leaves of Blechnum schomburgkii. Some variants may also be distinguished for this subassociation, one variant characterized with a dominance of Rhynchospora guaramacalensis and a greater 85 Flora, vegetation and ecology in the Venezuelan Andes presence of Ruilopezia paltonioides; the other variant dominated by Rhynchospora macrochaeta. Ecology and distribution: The shrubs of the subassociation typicum are located at altitudes of 2850-3040 m, at the base of convex slopes, with slopes between 10-37 degrees. Soils are 17-75 cm deep and consist of sandy, loam-sandy to silt-sandy textures, with dark brown grayish colours and pH of 3.4-4.5 in the upper layers. Figure 3.4. Physiognomy of the vegetation of the association Disterigmo acuminatum Arcytophylletum nitidum subass. pentacalietosum cachacoensis (L46a 3080 m). An: Arcytophyllum nitidum; Bs: Blechnum schomburgkii; Ch: Cortaderia hapalotricha; Cm: Cybianthus marginatus; Da: Disterigma acuminatum; Dm: Daucus montanus; El: Elaphoglossum lingua; Ga: Gaultheria anastomosans; Gh: G. hapalotricha; Gm: Geranium stoloniferum; Ho: Hesperomeles obtusifolia; Hp: Hypericum paramitanum; Lg: Libanothamnus griffinii; Mm: Melpomene moniliformis; Pc: Pentacalia cachacoensis; Pp: Pernettya prostrata; Vc: Vaccinium corymbodendron. HYPERICO CARDONAE – XYRIDION ACUTIFOLIAE Cuello & Cleef 2009 Typus: Cortaderio hapalotrichae - Hypericetum juniperinum Hypericum cardonae - Xyris subulata var. acutifolia alliance / Alianza de Hypericum cardonae y Xyris subulata var. acutifolia Physiognomy: This alliance includes zonal open grass páramo, with a high proportion of rosettes, whitin a variable density matrix of tussock grasses and bamboos. The presence of a few species of shrubs and dwarf trees varies from total absence to extreme densities. 86 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Composition and syntaxonomy: This alliance is defined on the basis of 53 lineintersect surveys represented by 64 vascular species. Diagnostic species are: Xyris subulata var. acutifolia and Hypericum cardonae. Although less frequent, Ruilopezia viridis is also a diagnostic occurance. The dwarf tree species Hypericum juniperinum is present in this alliance, present at very variable densities among the different associations. The most important species, in sequence of cover, are: Ruilopezia lopez-palacii, Cortaderia hapalotricha, Chusquea angustifolia, Geranium stoloniferum, Lycopodium clavatum subsp. contiguum, Hypericum juniperinum, Xyris subulata var. acutifolia, Pernettya prostrata, Rhynchospora guaramacalensis, Jamesonia imbricata, Puya aristeguietae, Libanothamnus griffinii, Rhynchospora macrochaeta, Disterigma acuminatum, and Chusquea tessellata, among others. This alliance contains three associations, Puyo aristeguietae - Ruilopezietum lopezpalacii; Cortaderio hapalotrichae - Hypericetum juniperinum; and Rhynchosporo gollmerii - Ruilopezietum jabonensis. Ecology and distribution: The vegetation of the associations of the alliance of Hypericum cardonae and Xyris subulata var. acutifolia can be found between 2820 and 3060 m, located over ample extensions or forming small patches, on convex or concave slopes between 5 and almost 50 degrees. 3. Cortaderio hapalotrichae – Hypericetum juniperinum Cuello & Cleef 2009 Typus: Rel. No. 45 (Cuello L25b). Table 3.1. Figure 3.5. Photo 3.2 Cortaderia hapalotricha - Hypericum juniperinum shrub-grass páramo / Páramo de arbustal-pajonal de Cortaderia hapalotricha e Hypericum juniperinum Physiognomy and composition: Páramo vegetation with low density and diversity of shrubs and dwarf trees in the upper layer. Leptophyllous dwarf treelets of Hypericum juniperinum, 0.8-1.5 (2) m, 20-25% cover, with slender twigs and canopies oriented in the wind direction are noticeable. A dense grass layer is present at 10-60 cm in height, dominated by tussock grasses and small shrubs with some rosettes. The ground layer is dominated by Geranium stoloniferum and a variable cover of mosses and lichens. Rocky outcrops and areas of bare ground are common. In the upper layer, the dominance of Hypericum juniperinum is particularly noteworthy, together with a few other species of small trees like Hesperomeles obtusifolia, Arcytophyllum nitidum and Chaetolepis lindeniana. In the medium layer common Hypericum paramitanum grows among Chusquea angustifolia bamboos, Cortaderia hapalotricha and Rhynchospora guaramacalensis tussock grasses. There are also the prostrate shrubs Disterigma acuminatum and Pernettya prostrata. Among the ground rosettes Puya aristeguietae and Ruilopezia lopez-palacii are more frequent and abundant, Ruilopezia jabonensis and R. viridis are occasionally present. In the herbaceous layer Orthrosanthus acorifolius, Hypericum cardonae, Jamesonia imbricata, Daucus montanus, Hieracium avilae and Lycopodium clavatum subsp. contiguum are present, among others. In narrow valleys and humid areas, dense carpets of Sphagnum sparsum and a diversity of lichens and bryophytes are present growing 87 Flora, vegetation and ecology in the Venezuelan Andes over rocks and bases of trunks, such as Cladia aggregata, Cladonia squamosa, C. andesita, C. pyxidata, C. arcuata, Jamesoniella rubricaulis, Herbertus juniperoides, Breutelia squarrosa, Plagiochila spp. (2961), Campylopus insignis and, Riccardia spp. (2965). In these conditions, individuals of Hypericum juniperinum and Chusquea angustifolia are found to reach their greatest heights of up to 2-2.5 m. Syntaxonomy: This association is defined on the basis of 25 line-intersect surveys containing 50 vascular species. Diagnostic species are Cortaderia hapalotricha, Geranium stoloniferum and Hypericum juniperinum. Orthrosanthus acorifolius is also diagnostic. Two subassociations are recognised, the subassociation typicum and that of disterigmetosum acuminatum. Ecology and distribution: The association Cortaderio hapalotrichae Hypericetum juniperinum is widely distributed between 2820 to 3060 m covering the entire upper ridge of Páramo of Guaramacal and Páramo El Pumar. The vegetation of this associaction extends over convex slopes with inclinations of 5 up to almost 50 degrees on hilltops or slope ridges exposed to wind. Patches of this vegetation additionally located on slope bases, concave sloping ground, or at the bottom of small valleys with slopes of 7-23 degrees. The soils are variable in depth, 9-115 cm, with predominantly sandy textures, (sandy-loam, sand silt, silt-sandy, loam-sandy), pH 3.3-4.2 and dark grayish brown colors in the upper layers. Figure 3.5. Physiognomy of the vegetation association Cortaderio hapalotrichae Hypericetum juniperinum (L9a, 2910 m). Páramo El Pumar. At: Ageratina theifolia; Ch: Cortaderia hapalotricha; Cha: Chusquea angustifolia; Chl: Chaetolepis lindeniana; Ga: Gaultheria anastomosans; Gm: Geranium stoloniferum; Hc: Hypericum cardonae; Hj: Hypericum juniperinum; Lc: Lycopodium clavatum subsp. contiguum; Oa: Orthrosanthus acorifolius; Pp: Pernettya prostrata; Rl: Ruilopezia lopez-palacii; Rm: Rhynchospora macrochaeta; Vc: Vaccinium corymbodendron. 88 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Photo 3.2. Landscape of Páramo El Pumar in the surrounding areas of Laguna El Pumar, 2880–2950 m, Ramal de Guaramacal, Andes, Venezuela. Cortaderio hapalotrichae – Hypericetum juniperinum 3.1. subassociation typicum Cuello & Cleef 2009 Typus: Rel. No. 45 (Cuello L25b). Table 3.1 Composition: This subassociation is represented in 12 line-intersect surveys with a total of 37 vascular species. The diagnostic species are the same as for the association. Orthrosanthus acorifolius, Xyris subulata var. acutifolia and Hypericum cardonae are also diagnostic in the herb layer. The presence of Calamagrostis sp. A, Paepalanthus pilosus and Carex bonplandii, as well as some cryptogams like Breutelia rhythidioides, Frullania sp. (2976), Cladia aggregata and Cladonia isabellina are distinctive. Diagnostic also is the absence of Arcytophyllum nitidum. Ecology and distribution: Vegetation belonging to this subassociation was observed at altitudes of 2890-3050 m, at the tops of hills and on convex slopes of low inclination (8-21 degrees), generally with S, SE, NE exposition. The soils are shallow, 9-30 cm in depth, on outcrops of bedrock, with sandy textures, dark grayish brown colours and pH in the range 3.3-4.2 in the upper layers. In this subasociation, shrub communities (1.5 up to 2 m), located in wind-protected areas at the base of the slopes, or along and to the base of small valleys with gently slooping ground (8-16 degrees), are also included. Soils are sandy-loam in texture, dark brown grayish or gray dark in colour and pH from 3.8 to 4.1 in the upper layers. Soil depth is 60 to 115 cm. 89 Flora, vegetation and ecology in the Venezuelan Andes Cortaderio hapalotrichae – Hypericetum juniperinum 3.2. subassociation disterigmetosum acuminatum Cuello & Cleef 2009 Typus: Rel. No. 56 (Cuello L23b). Table 3.1, Figure 3.6 Subassociation of Disterigma acuminatum / Subasociación de Disterigma acuminatum. Physiognomy and composition: The physiognomy and species composition is in agreement with that of the association. Syntaxonomy: This subassociation is represented in 12 line surveys with 36 vascular species. Diagnostic species are Arcytophyllum nitidum, in the shrub layer, as well as Rhynchospora guaramacalensis and Disterigma acuminatum, in the underbrush. Ecology and distribution: The subassociation disterigmetosum acuminatum is found at altitudes from 2820 to 3060 m, on the convex and steep slopes (5 to almost 50 degrees) of hilltops, edges and other wind exposed areas. The soils are mostly shallow, 13-41 (86) cm, in depth; consisting of sandy, dark coloured, textures with small fragments of quartz, having pH from 3.6 to 4.2 in the upper layers. Figure 3.6. Physiognomy of the vegetation of the association Cortaderio hapalotrichae Hypericetum juniperinum; subass. disterigmetosum acuminatum (L23b, 3030 m) An: Arcytophyllum nitidum; Ch: Cortaderia hapalotricha; Cha Chusquea angustifolia; Da: Disterigma acuminatum; Gm: Geranium stoloniferum; Ho: Hesperomeles obtusifolia; Hj: Hypericum juniperinum; Ji: Jamesonia imbricata; Lc: Lycopodium clavatum subsp. contiguum; Ng: Nertera granadensis; Pp: Pernettya prostrata; Rj: Ruilopezia jabonensis; Rm: Rhynchospora macrochaeta; Vc: Vaccinium corymbodendron. 90 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities 4. Puyo aristeguietae – Ruilopezietum lopez-palacii Cuello & Cleef 2009 Typus: Rel. No. 65 (Cuello L10b). Table 3.1, Figure 3.7, Photo 3.3 Puya aristeguietae - Ruilopezia lopez-palacii grass páramo / Pajonal del páramo con rosetas de Puya aristeguietae y Ruilopezia lopez-palacii Physiognomy: Páramo vegetation with great abundances of ground and stem rosettes with dominance of tussock grasses and some bamboos. The layer of big Puya aristeguietae and Ruilopezia lopez-palacii rosettes, (terminal inflorescences up to 1.5-2.5 m) attains 30-40% of cover. A layer of tall tussock grasses reaches up to 90-125 cm with a cover of 35-45%. Small rosettes and other tussocky monocots attain 45 cm. Additionally, a few low shrubs of 55-60 cm tall, 5-10% cover are present. The ground layer (4-10 cm) consists of prostrate herbs and some bryophytes. The presence of a few outcrops of rock (1.3 m) covered by abundant lichens and bryophytes is common. Photo 3.3. Páramo vegetation of the association of Puyo aristeguietae - Ruilopezietum lopez-palacii, at ~2850 m in Páramo de Guaramacal, Ramal de Guaramacal, Andes, Venezuela. Composition and syntaxonomy: This association is defined on the basis of 17 line-intersect surveys with 45 vascular species. Diagnostic species are Ruilopezia lopez-palacii, Puya aristeguietae and Rhynchospora guaramacalensis. The dominant grasses in this association are Cortaderia hapalotricha (20 - 90 cm), and the bamboo Chusquea angustifolia (50-125 cm), followed by others, such as: Chusquea tessellata, Festuca guaramacalana, and Rhynchospora guaramacalensis. Calamagrostis bogotensis and C. planifolia are common species, but conspicuous only when fertile at the beginning of the rainy season. Among the herbs Castilleja fissifolia, Daucus montanus, Hypericum cardonae, Hieracium avilae and Jamesonia imbricata are common. Also present are prostrate herbs like Geranium stoloniferum and Lycopodium clavatum subsp. contiguum as well as small cushions of Oreobolus venezuelensis and Xyris subulata var. acutifolia. Among the bryophytes Breutelia rythidioides, small cushions of Campylopus subjugorum, and Herbertus pensilis as well as Campylopus richardii growing over rocks are distinguished. Isolated and dispersed individuals of shrubs or dwarf trees 1-1.5 (2.5) m, like Bejaria aestuans, Disterigma alaternoides, 91 Flora, vegetation and ecology in the Venezuelan Andes Hypericum juniperinum, H. paramitanum, Ugni myricoides, and Vaccinium corymbodendron are occasionally present. Ecology and distribution: The open páramo vegetation of the association of Puya aristeguiate and Ruilopezia lopez-palacii extends over large surfaces of Páramo de Guaramacal between 2800-3040 m. It is present both on convex and concave slopes varying between 5-18 degrees. The soils are comparatively deep, 30-120 cm, with sandy, sand-loam to silt-loam textures of brown-grayish color and pH from 3.6 to 4.1 in the upper layers. Figure 3.7. Physiognomy of the vegetation of the association of Puyo aristeguietae Ruilopezietum lopez-palacii (L10b, 2840 m). Bs: Blechnum schomburgkii; Ch: Cortaderia hapalotricha; Cha: Chusquea angustifolia; Da: Disterigma acuminatum; Dal: D. alaternoides Ji: Jamesonia imbricata; Lc: Lycopodium clavatum subsp. contiguum; Md: Myrsine dependens; Ov: Oreobolus venezuelensis; Pa: Puya aristeguietae; Pp: Pernettya prostrata; Rle: Rhynchospora lechleri; Rm: Rhynchospora macrochaeta; Rsp: Rhynchospora sp.; Rl: Ruilopezia lopez-palacii; Um: Ugni myricoides. 5. Rhynchosporo gollmerii – Ruilopezietum jabonensis Cuello & Cleef 2009 Typus: Rel. No. 82 (Cuello L14b). Table 3.1, Figure 3.8, Photo 3.4 Ruilopezia jabonensis - Rhynchospora gollmeri grass páramo / Pajonal de páramo con Ruilopezia jabonensis y Rhynchospora gollmeri Physiognomy: Low bunchgrass páramo with a high density of small ground rosettes, cushion grasses and the presence of a few bamboos. Shrubs are absent and the dominating silvery-leaved rosette species is Ruilopezia jabonensis. The upper layer is composed of dispersed and low Chusquea angustifolia bamboo clumps and bunches of Cortaderia hapalotricha of around 40-50 cm in height with 5 to 20% cover. The layer of rosettes reaches about 20-30 cm in height, covering approximately 65%. There is a layer of small tussock and cushion grasses of up to 92 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities 10 cm in stature and 30-40% cover. An open and discontinuous ground layer (2-3 cm) consists of mosses and small prostrate herbs (1%). The presence of rocks outcrops (1%), bare ground and senescent material (3%) after fire is common. Composition and syntaxonomy: The association is represented by 11 lineintersect surveys with 22 vascular species. The diagnostic species are: Ruilopezia jabonensis, Rhynchospora gollmeri, Isidrogalvia robustior and Gentianella nevadensis. Other species with lower density and cover are small herbs, like: Carex bonplandii, Geranium stoloniferum, Hypericum cardonae, Lycopodium clavatum subsp. contiguum and Pernettya prostrata, the grasses Calamagrostis planifolia and Polypogon elongatus together with the terrestrial orchid Pterichis multiflora. In the ground layer the mosses Campylopus richardii, Rhacocarpus purpurascens and Sematophyllum swartzii, the lichens Cladia aggregata, species of Cladonia, as well as Rimelia reticulata growing over the rocks, are present. Photo 3. 4. Páramo vegetation of the association Rhynchosporo gollmerii - Ruilopezietum jabonensis at ~2950 m in Páramo El Pumar, Ramal de Guaramacal, Andes, Venezuela. Ecology and distribution: The vegetation of Rhynchosporo gollmerii Ruilopezietum jabonensis is always located at altitudes superior to 2900 m. Generally, it forms small patches, on concave slopes, or in small depressions, on gently slooping ground (11-28 degrees). The vegetation of this association is in downslope contact with that of the association of Puyo aristeguietae– Ruilopezietum lopez-palacii var. Chusquea tessellata and upslope with the association of Cortaderio hapalotrichae - Hypericetum juniperinum. It also borders 93 Flora, vegetation and ecology in the Venezuelan Andes the azonal vegetation association of Carici bonplandii - Chusqueetum angustifoliae (Cuello & Cleef, 2009c.). The soils are of variable depth, 18-115 cm (average 49.6 cm), and are of sandy, sand-loam to sand-silt-loam texture, of gray and light colour and of pH from 3.8 to 4.2 in the upper layers. Figure 3.8 Physiognomy of the vegetation of the association Rhynchosporo gollmerii Ruilopezietum jabonensis (L14b, 2960 m). Ch: Cortaderia hapalotricha; Cha: Chusquea angustifolia; Gm: Geranium stoloniferum; Ha: Hieracium avilae; Hc: Hypericum cardonae; Ir: Isidrogalvia robustior; Lc: Lycopodium clavatum subsp. contiguum; Rm: Rhynchospora macrochaeta; Rg: Rhynchospora gollmeri; Rj: Ruilopezia jabonensis; Rl: Ruilopezia lopezpalacii; Xs: Xyris subulata. Flora diversity and composition A total of 91 vascular plants, 33 species of bryophytes and 20 species of lichens have thus far been documented from fifty 10 m-line intercept transects in zonal páramo vegetation in Páramo de Guaramacal, Ramal de Guaramacal. The vascular plants include 49 species belonging to 36 genera and 18 families of dicots; 24 species, 15 genera and 8 families of monocots and 18 species, 12 genera and 9 families of ferns. All plant species recorded in the studies of páramo vegetation from Ramal de Guaramacal are listed in Appendix 4. It is expected that ongoing sampling will yield further other bryophyte and lichen species. Table 3.2. Most diverse plant families and genera in zonal paramo of Ramal de Guaramacal, Venezuela. FAMILY ASTERACEAE ERICACEAE POACEAE CYPERACEAE CLUSIACEAE MELASTOMATACEAE MYRSINACEAE ROSACEAE RUBIACEAE GRAMMITIDACEAE BROMELIACEAE 94 # GENERA 6 7 4 3 1 3 2 2 3 2 2 # SPP 13 10 7 (+3 indets) 6 4 3 3 3 3 3 (+2 indets) 3 GENERA Hypericum Rhynchospora Ruilopezia Melpomene Gaultheria Hymenophyllum Pentacalia # SPP 4 4 4 3 (+2 indets) 3 3 3 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Table 3.2 presents the most speciose families and genera for the páramo vegetation of Ramal de Guaramacal based on the line-intersect data of this study. Asteraceae and Ericaceae are the most speciose families followed by Poaceae and Cyperaceae. The most diverse genera are Ruilopezia in the Asteraceae, Rhynchospora in the Cyperaceae and Hypericum in the Clusiaceae. The flora diversity and most diverse families for each vegetation type are presented in Table 3.3. Diversity decreases from the most diverse shrubpáramo association of Disterigmo - Arcytophylletum to the open grasspáramo of Rhynchosporo gollmerii - Ruilopezietum jabonensis. Table 3.3. Flora diversity and most diverse families for each páramo vegetation association found in Ramal de Guaramacal, Venezuela. Association 1. Ruilopezio paltonioides Neurolepidetum glomeratae 2. Disterigmo acuminatum Arcytophylletum nitidum 3.Cortaderio hapalotrichae Hypericetum juniperinum 4. Puyo aristeguietae Ruilopezietum lopez-palacii 5. R. gollmeri - Ruilopezietum jabonensis # Families # spp 20 41 27 61 22 50 22 45 13 22 Most diverse families Ericaceae (7), Asteraceae (5), Clusiaceae, Cyperaceae, Myrsinaceae and Poaceae (3) Ericaceae (8), Asteraceae (6), Clusiaceae (4) Asteraceae (8), Cyperaceae, Ericaceae, Poaceae (5), Clusiaceae (4) Asteraceae, Ericaceae and Poaceae (6), Cyperaceae (5) Cyperaceae (4), Asteraceae and Clusiaceae (3) Life forms and growth forms Species number for each life and growth forms for each vegetation association registered from the line-intersect data from the páramo vegetation of Ramal de Guaramacal are presented in Table 3.4 (a and b, respectively). Generally the most representative life form in terms of both number of species and cover in the study area are the phanerophytes, especially of the microphanerophytic type, followed by hemicryptophytes of caespitose habit. The growth forms with the highest species richness are upright shrubs, represented mainly by members of the Clusiaceae, Ericaceae, Rubiaceae and Asteraceae families, followed by tussock plants of the Poaceae, Cyperaceae, Xyridaceae and Iridaceae families. The shrubpáramo association of Disterigmo - Arcytophylletum shows the greatest diversity of growth forms and species. Ordination analysis The standard canonical coefficients as well as the intra- or interset variables (Ter Braak 1986) (Table 3.5) show that the first CCA axis is mostly related to slope angle (negative relationship), and the second CCA axis to altitude. This means that slope angle and altitude are significantly related to species composition in the zonal páramo vegetation, and appear more important than other variables such as pH, and soil depth and humus thickness. 95 Flora, vegetation and ecology in the Venezuelan Andes Table 3.4. Number of species for life forms (a) and growth forms (b) for each vegetation association registered from line-intersect data from páramo vegetation of Ramal de Guaramacal. 1. Ruilopezio paltonioides - Neurolepidetum glomeratae; 2. Disterigmo acuminatum - Arcytophylletum nitidum; 3. Cortaderio hapalotrichae - Hypericetum juniperinum; 4. Puyo aristeguietae - Ruilopezietum lopez-palacii; 5. Rhynchosporo gollmerii - Ruilopezietum jabonensis. (a) Life forms phanerophyte microphanerophyte nanophanerophyte phanerophytic lignified grass rosullate phanerophyte hemicryptophyte caespitose hemicryptophyte climbing hemicryptophyte chamaephyte frutescent chamephyte reptant chamaephyte Epiphyte Total phanerophytes Total hemicriptophytes Total chamaephytes Total spp Total life forms (1) 6 6 2 1 5 4 6 1 7 20 11 10 41 10 (2) 5 11 4 1 5 9 7 3 6 3 26 19 15 61 12 Number of species by vegetation type (3) (4) (5) 3 3 1 8 9 1 4 2 2 1 2 1 7 5 2 5 5 3 12 12 8 1 5 5 2 9 4 2 1 23 21 7 17 17 11 10 7 4 50 45 22 10 9 9 Total spp 8 15 4 2 8 13 16 3 2 8 2 2 37 32 20 91 13 (b) Number of species by vegetation type Growth forms* (1) (2) (3) (4) (5) upright shrubs 9 12 10 9 2 tussocks 7 8 13 13 8 erect herbs 6 9 5 7 3 dwarf trees 6 9 6 5 2 prostrate herbs 2 8 4 2 2 ground rosettes 2 3 5 3 2 prostrate shrubs 5 5 3 2 1 cushions 1 1 1 stem rosettes 3 3 3 3 1 trailing herbs 1 3 epiphitic herbs 1 Total spp 41 61 50 45 22 * Adapted from Ramsay & Oxley, 1997 ad Hedberg & Hedberg, 1979 Total spp 18 17 14 10 9 6 6 3 3 3 2 91 The ordination diagram of the first CCA axis against the second CCA axis with the samples (transect lines) labeled by vegetation types (Fig. 3.9) shows a fairly good separation of vegetation communities established on the basis of the phytosociological table (Table 3.1). Vegtype 1 (Ruilopezio paltonioides Neurolepidetum glomeratae), and to a lesser degree Vegtype 2 (Disterigmo acuminatum - Arcytophylletum nitidum), are separated from the others towards the left, suggesting that these vegtypes are associated with higher slope angles. Similarly, vegtypes 3, 5, and to a lesser degree 4, must have rather low values of slope angles. Vegtype 4 separates well along CCA axis 2, which suggests that this vegtype occurs at the lowermost positions along the slopes. 96 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Table 3.5. Standard canonical coefficients and interset variables of CCA ordination axis for páramo vegetation of Ramal de Guaramacal. Variable 1 Alt 2 Slope angle 3 Soils depth 4 pH 5 Humus depth Canonical Coefficients Standardized Original Units Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 0.135 0.389 -0.124 0.002 0.005 -0.002 -0.495 0.018 -0.059 -0.053 0.002 -0.006 -0.054 -0.012 -0.326 -0.002 0.000 -0.011 0.075 -0.100 -0.035 0.269 -0.361 -0.125 -0.054 -0.031 0.181 -0.006 -0.003 0.019 S.Dev 0.774E+02 0.940E+01 0.302E+02 0.278E+00 0.952E+01 Figure 3.9. CCA ordination diagram of 91 vascular species recorded in 91 páramo vegetation samples (labeled by vegetation types) in Ramal de Guaramacal, Andes Venezuela. Vegtypes: 1. Ruilopezio paltonioides - Neurolepidetum glomeratae; 2. Disterigmo acuminatum - Arcytophylletum nitidum; 3. Cortaderio hapalotrichae - Hypericetum juniperinum; 4. Puyo aristeguietae – Ruilopezietum lopez-palacii; 5. Rhynchosporo gollmerii - Ruilopezietum jabonensis. 3.5 DISCUSSION Phytosociological classification and methodological constraints The phytosociological classification of zonal páramo vegetation of the Guaramacal range resulted in a provisional order (Ruilopezio lopez-palacii - Chusqueetalia angustifoliae prov.), two new alliances and five associations. Four new 97 Flora, vegetation and ecology in the Venezuelan Andes subassociations are described for two associations, two for each. Some variants have also been recognised. The zonal subpáramo plant communities of Ramal de Guaramacal are summarized in Table 3.6. A class cannot yet be defined on the basis of the Guaramacal relevés alone (Table 3.1) and the complete lack of data from other Chusquea angustifolia bamboo páramo areas in the region and from elsewhere in Venezuela and Colombia. Regional comparison, therefore, presently remains impossible. However, in order to evaluate the pattern of associated plant species and their dominancy a comparison with zonal Chusquea tessellata páramos of the Colombian Cordillera Oriental (Cleef 1981) has been undertaken (Table 3.7). The relevés are from the Colombian data set of the second author. Typical Sphagnum bogs with Chusquea tessellata have been avoided. Inspection of Table 3.7 learns that zonal Chusquea angustifolia bamboo páramo of Guaramacal shares about half of the vascular genera with the zonal Chusquea tessellata bamboo páramo of Colombia. Most important, however, is that there is no general agreement in generic pattern between both bamboo páramos, except for Chusquea. Apparently the Guaramacal bamboo páramo has more woody species, also because of its low altitude. The Colombian relevés span an altitudinal range between about 3200 and 4040 m. In conclusion, the Chusquea angustifolia bamboo páramo of Guaramacal represents a proper vegetation type not studied elsewhere. The páramo vegetation of the Guaramacal study area has been described on the basis of a relatively low number of relevés (ninety one 5 m-line surveys). Sampling effort in páramo areas of Ramal de Guaramacal was concentrated in the by road accessible sector of Las Antenas of Páramo de Guaramacal. Las Antenas area evidences most different physiognomic formations in relatively close proximity, and with a larger altitudinal range (2820~3130 m). Only a limited number of surveys were conducted in the remote areas of Páramo El Pumar, where the zonal vegetation appears more homogeneous over large areas. There, little variation in vegetation types, with a constant species composition, was observed over a shorter altitudinal range (2880~2990 m). As indicated in the methods section, line transects were laid out in apparently homogeneous and representative páramo vegetation patches. A line of 10 m was employed. The classical Zürich Montpellier approach uses plots of different size according to the structure and diversity of the vegetation. The minimum area has to be established for the different vegetation types (see also Westhoff & van der Maarel 1973; Cleef 1981). In the case of the zonal páramo of Ramal de Guaramacal, with its limited total of vascular species and few different páramo vegetation types, the line of 10 m has always been employed for documenting the presence of different species under the line with their cover abundance. To our surprise, no apparent discrepancies appeared in the TWINSPAN analysis and the final classification of the páramo plant communities. We believe a similar result would appear when plot sampling has been used. This method has, in fact, been chosen by the first author following a 1990 field course in the savannas of Bolivia organized by Tratado de Cooperación Amazónica (Cuello et al. 1991). The 98 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities method of line-intercept transects has been widely used in vegetation ecology since the papers by Canfield (1941) and McIntyre (1953). This method has been tested for laboratory teaching (Cummings & Smith 2000; Kercher et al. 2003). It is possible that the line intercept technique used here could yield higher cover estimates but lower species richness estimates than the plot method, since plots (of generally 5 m x 5 m) would cover larger area than single 10 m lines. We consider, however, the resulting páramo classification is clearly visible for Páramo de Guaramacal. Páramo communities at association level may be representative of most páramo areas of Ramal de Guaramacal. A greater sampling effort, in a balanced way, over the study area would be necessary to refine the classification into infra association level. Table 3.6. Presence degree table of zonal subpáramo plant communities of Ramal de Guaramacal. I (0–20 %), II (21–40 %), III (41–60 %), IV (61–80 %) and V (81– 100 %). Community group 1 Number of relevés 10 1. Ruilopezio paltonioides - Neurolepidetum glomeratae Ruilopezia paltonioides IV Disterigma alaternoides II Nertera granadensis II Pentacalia greenmaniana I Sphyrospermum buxifolium I Cybianthus laurifolius I 2. Disterigmo acuminatum - Arcytophylletum nitidum Disterigma acuminatum II Gaultheria hapalotricha I Arcytophyllum nitidum I Ageratina theifolia . Galium hypocarpium . Polypodium funckii . Eriosorus flexuosus . Hymenophyllum myriocarpum . 2.1. pentacalietosum cachacoensis Pentacalia cachacoensis . Vaccinium corymbodendron I Melpomene moniliformis . Gaultheria anastomosans . Themistoclesia dependens . Hesperomeles sp. . Huperzia amentacea . 2.2. typicum Ugni myricoides II Rubus acanthophyllos . Ilex guaramacalensis . Valeriana quirorana . Gaultheria erecta . Hymenophyllum sp. . Melpomene flabeliformis . Melpomene xiphopteroides . Polypodium sp. . HYPERICO PARAMITANUM – HESPEROMELETION OBTUSIFOLIAE 2 28 2.1 13 2.2 15 3 25 3.1 12 3.2 13 4 17 5 11 II II . . . . II I . . . . I . . . . . I . I . . . I . I . . . I . II . . . I I . . . . . . . . . . V III III II I I I I V IV II II I I I I V III IV I I . I I III I II I . . . . . I . II . . . . V I III . . . . . II . . I . . . . . . I . . . . . II II II II I I I IV III III III I I I I I . I I . . . II I I . I . . II I II . I . . II . I . . . . I . I . . . . . . . . . . II II I I I I I I I I . . . . . . . . III II I I I I I I I I . . . . . . . . . . I . . I . . . . . I . . I . . . . . . . . . . . . . . I . . . . . 99 Flora, vegetation and ecology in the Venezuelan Andes Community group 1 2 2.1 2.2 3 3.1 Blechnum schomburgkii . . V IV IV IV Hypericum paramitanum I II V V V IV Neurolepis glomerata II II I . IV III Cybianthus marginatus II II I I I IV Hesperomeles obtusifolia II II I III IV III Libanothamnus griffinii II I II I I . Elaphoglossum cf. lingua I II I II . . Puya sp. II I I I . . Miconia tinifolia I I I . . . Muehlenbeckia tamnifolia I I I . . . Epidendrum frutex I I I . . . Myrsine dependens . I II I . . Diplostephium obtusum I I I I I II Rhynchospora sp. I I I . I I 3.Cortaderio hapalotrichae- Hypericetum juniperinum Hypericum juniperinum . II II I V V Orthrosanthus acorifolius . I I I II III Calamagrostis sp. A . . . . I II Paepalanthus pilosus . . . . I I Greigia sp. . . . . I . 4. Puyo aristeguietae - Ruilopezietum lopezpalacii Puya aristeguietae I I . I I . Chusquea tessellata . . . . . . Castilleja fissifolia . . . . . . Festuca guaramacalana . . . . . . Monnina sp. . . . . . Bejaria aestuans . . . . . . Rhynchospora lechleri . . . . . . Oreobolus venezuelensis . . . . . . Festuca sp. . . . . . . Utricularia alpina . . . . . 5. R. gollmeri - Ruilopezietum jabonensis Ruilopezia jabonensis . . . . I I Rhynchospora gollmeri . . . . I . Isidrogalvia robustior . . . . I . Gentianella nevadensis . . . . . . Calamagrostis planifolia . . . . . . HYPERICO CARDONAE - XYRIDION ACUTIFOLIAE Xyris subulata var. acutifolia . I . I III V Hypericum cardonae I I I . III V Carex bonplandii . . . . I III Ruilopezia viridis . . . . I I RUILOPEZIO LOPEZ-PALACII - CHUSQUEETALIA ANGUSTIFOLIAE Cortaderia hapalotricha III V V V V V Chusquea angustifolia IV IV III V IV IV Lycopodium contiguum IV IV IV V V V Ruilopezia lopez-palacii III IV III IV III IV Geranium stoloniferum . III III III IV IV Pernettya prostrata V V IV V V V Rhynchospora guaramacalensis II II I . III III Rhynchospora macrochaeta I II I III III IV Jamesonia imbricata II I II I III III Chaetolepis lindeniana II IV IV III III III Daucus montanus I II II II III III Hieracium avilae . I I I I I Hymenophyllum trichomanoides . I I I I I Hypericum sp. I I I . I I 100 3.2 II I I I IV II . . . . . . I I 4 II II I I . I I . . . I I . I 5 . I I . . . . . . . . . . . V I . I I II . . . . II . . . . I . . . . . . . . . IV II II I I I I I I I . . . . . . . II . . I . I . . . . I . . V IV I I I II II I I IV I . I V III . . V IV V III V V II II III II II II I . V IV V V II V III II IV I I II . . V V V I IV II . V II . . I . . The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Table 3.7. Table of presence of the zonal Guaramacal Chusquea angustifolia bamboo páramo associations combined with that of the zonal Chusquea tessellata bamboo páramo community of the Colombian Cordillera Oriental based on unpublished releves of the second author. The predominant genera are underlined. I (0–20 %), II (21–40 %), III (41–60 %), IV (61–80 %) and V (81– 100 %) . Number of relevés 10 28 25 17 11 25 Cord. Oriental Association 1 2 3 4 5 Colombia Ageratina . II I I . . Aragoa . . . . . I Arcytophyllum I II . I III III Azorella . . . . . I Bartsia . . . . . V Bejaria . . . I . . Blechnum . II . I V IV Breutelia I I I I IV Calamagrostis . . I . I V Campylopus I I I V Carex . . I . . II Castilleja . . . II . I Castratella . . . . . I Chaetolepis II I . . IV III Chusquea IV IV IV V V V Cortaderia II III V V V V Cybianthus II II I I . . Cyperus . . . . . I Daucus I II I . . III Diplostephium I I I . . I Disterigma II . II III V III Elaphoglossum I II . I . . Epidendrum I I . I . . Eriosorus . I . . . . Eryngium . . . . . I Espeletia . . . . . IV Festuca . . . I . II Galium . I . . . . Gaultheria I I .I . III Gentiana . . . . . II Gentianella . . . . I IV Geranium . II I III IV IV Greigia . . I . . . Halenia . . . . . I Hesperomeles II . . . III III Hieracium . I I II I I Huperzia . I . . . I Hydrocotyle . . . . . I Hymenophyllum . I I . . . Hypericum I V V V III V Hypochaeris . . . . . III Ilex . I . . . . Isidrogalvia . . I I I . 101 Flora, vegetation and ecology in the Venezuelan Andes Number of relevés 10 28 25 17 11 Association 1 2 3 4 5 III . II IV . I I . I . II IV . . . . . I V . . II . V . V . . III I . II . I . . . II . I IV . II I . I I . I . . . I . II V . I I . IV II IV . . III . I II . II I . I II . I V . I . . . . I I . . . II I . V . . I . V . V . . I . . I . II I . III IV . I V . . . I . I . I . I . . . . V . . IV . V . V . . I . . I . I I . IV II . . V . . . . . . . I . II . . . . II . . . . V . V . . Jamesonia Laestadia Libanothamnus Lycopodium Lysipomia Melpomene Miconia Monnina Muehlenbeckia Myrsine Nertera Neurolepis Niphogeton. Oreobolus Oritrophium Orthrosanthus Paepalanthus Pentacalia Pernettya Plantago Polypodium Puya Rhacocarpus Rhynchospora Rubus Ruilopezia Scirpus Sisyrinchium Sphagnum Sphyrospermum Themistoclesia Ugni Utricularia Vaccinium Valeriana Xenphyllum Xyris . . . . . . . V 25 Cord. Oriental Colombia I I . II I . . . . . II . I III III . I III I I . I II I . . I I III . . . I I I . Páramo flora composition and diversity From a total of fifty 10 m-line intersect surveys, it was possible to register at least 48.2% from a total of 193 vascular species known to date, from páramo areas of Ramal de Guaramacal. With a limited altitudinal span (2820-3130 m), the Páramo de Guaramacal exceeds a total surface area of not more than 10 km 2. Most species are, in general, located in the lower part of the páramo belt. However, taking into account the actual degree of isolation (presently separated ca. 30 km Southwest and 35 km Northeast from the nearest páramo zones), the limited surface area and altitudinal span, the presence of only some 200 vascular páramo species (alpha 102 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities diversity), compared to the number of 1544 vascular species reported from Venezuelan páramos [1437 angiosperms species reported by Briceño & Morillo (2002, 2006) plus 107 fern species reported by Luteyn (1999)] is quite understandable. Judging from periglacial evidence in the Guaramacal páramo it is clear that glaciation took place during the Last Glacial Maximum (LGM), and that the páramo zone extended downslope. Connectivity to other páramos of the Cordillera de Mérida was probably more functional during the LGM than is the case today. Repeated isolation during interglacials in the past has triggered a number of endemic species, and maybe even the highest species diversity of Ruilopezia rosettes, thus far, reported in the Venezuelan Andes to date. Up to date, about 50 endemic vascular species are known from Ramal de Guaramacal which represent ca. 4% from a total of about 1400 vascular species. Physiognomy: life forms and growth forms Páramo vegetation of Ramal de Guaramacal is dominated mainly by woody growth forms, particularly upright shrubs with bamboo groves and clumps, which give an overall appearance of a mostly shrub páramo vegetation. Two out of five associations are dominated by the presence of upright shrubs, and two out of the three bunchgrass dominated associations, also contain a high number of shrub species. The only grass páramo community almost devoid of shrubs is that of the low diverse Rhynchosporo gollmerii - Ruilopezietum jabonensis. The only two shrubby species registered in this association may be a consequence of sampling near the border with the surrounding shrubby páramo of Cortaderio hapalotrichae Hypericetum juniperinum. The high relative humidity and the low altitudinal range, coupled with the close proximity of the dwarf forests of the upper forest line zone, may explain in part the dominance of shrubby growth forms in páramo vegetation of Ramal de Guaramacal. From other extremely wet páramos the predominance of shrubs has also been reported, e.g. the Biosphere reserve of Podocarpus in South Ecuador (Bussmann 2002; Richter 2003; Becking et al. 2004 and the Tatamá páramo in the West Cordillera of Colombia (Cleef et al. 2005). Phytosociological classification and environmental variables Twinspan classification of Páramo de Guaramacal (Table 3.1) arranges vegetation types in a sequence from shrub páramo to open páramo. This sequence could be directly related to a decrease in temperature with increasing altitude. Additionally, the CCA ordination analyses show that species composition in the zonal páramo vegetation is foremost related to slope angle and altitude. On a later occasion (Cuello in prep.) the results of the ordinations will be more detailed. In the studied altitudinal range from 2800-3100 m in Páramo de Guaramacal, it is generally observed that different vegetation types can be found occupying the same altitude, with the exception of the grass páramo of Rhynchosporo gollmeri– Ruilopezietum jabonensis, which is always found above 2900 m. Other vegetation types, however, can be present above this altitudinal range; particularly, the shrub páramo of Cortaderio hapalotrichae - Hypericetum juniperinum, which is always present at the top of slopes. 103 Flora, vegetation and ecology in the Venezuelan Andes In the sector surrounding Las Antenas area, as shown in Fig. 3.10, on North to East slope expositions of Páramo de Guaramacal, and upslope the edges of the high Andean dwarf forest association of Libanothamnetum griffinii (around 2800-3000 m) (Cuello & Cleef 2009a, Chapter 2), the ecotonic shrub páramo of Ruilopezio Neurolepidetum association is generally present on either convex or concave slopes with relatively deep soils of predominantly loamy textures. Next, the grass páramo of Puyo aristeguietae - Ruilopezietum lopez-palacii is found anywhere from c. 2800 m to ~3040 m, alternating with the shrub páramo of the Cortaderio hapalotrichae - Hypericetum juniperinum. Probably it belongs to the upper subpáramo, but by burning incidences the original woody component has decreased. The open grass páramo of Rhynchosporo gollmerii - Ruilopezietum jabonensis follows in altitude to that of Puyo aristeguietae - Ruilopezietum lopezpalazii. The lower grass páramo association is present predominantly on concave areas with coarse sandy soils close to the upper sections of slopes. Finally, the vegetation of Cortaderio hapalotrichae - Hypericetum juniperinum is present at the top of the slope. The effect of past disturbance, such as fires and the disruption of vegetation cover during or after the trail construction and installation of the telecomunication antennas, may explain the current distribution patterns of páramo vegetation in the Antenas sector. There is a fragmentation of the high Andean dwarf forests (SARF), evidenced by the current presence of some remnant islands surrounded by shrub páramo and open páramo vegetation. The grass páramo of Puyo aristeguietae Ruilopezietum lopez-palacii seems to be a derived vegetation type from a past burning of the apparently original and extensive Cortaderio hapalotrichae Hypericetum juniperinum shrub páramo, which currently occurs on the borders of little valleys or near the top of slopes. The presence of a continuous cover of the open páramo, with single-stemmed Hypericum juniperinum shrub (in fact a dwarf tree) of the Cortaderio hapalotrichae - Hypericetum juniperinum, towards the apparently pristine areas of Páramo El Pumar, at the West of the summit of Ramal de Guaramacal, is indicative of a possible formerly more extensive presence in the Las Antenas area. Both the Cortaderio hapalotrichae - Hypericetum juniperinum and the Puyo aristeguietae - Ruilopezietum lopez-palacii associations share similar species composition; the Cortaderio - Hypericetum being typically more speciose. In Las Antenas area the vegetation of the Cortaderio - Hypericetum shows lower species richness than in El Pumar area, and the páramo of the Puyo Ruilopezietum shows an absence, or very low presence of individuals of Hypericum juniperinum shrubs. On steeper South and Southwest slopes away from Las Antenas and along the mountain ridge towards the West, the altitudinal sequence of vegetation types that is contiguous upslope of the Libanothamnus griffinii dwarf forest, or that of Gaultheria anastomosans - Hesperomeles obtusifolia (see Cuello & Cleef 2009a, Chapter 2), is an alternation of shrub páramos of the Disterigmo - Arcytophylletum association on concave or protected slopes, followed upwards by the shrub páramo of the arcytophylletosum nitidum subassociation of the Cortaderio hapalotrichae Hypericetum juniperinum characteristic on steeper and wind exposed expositions. 104 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Figure 3.10. Gradient SARF – Zonal páramo, 3000-3050 m, North of „Las Antenas‟, Ramal de Guaramacal, Andes, Venezuela 1. Ruilopezio paltonioides - Neurolepidetum glomeratae (var.1.1 Disterigma alaternoides); A. Libano-thamnetum griffinii; 3. Cortaderio hapalotrichae - Hypericetum juniperinum; 4. Puyo aristeguietae - Ruilopezietum lopez-palacii; 5. Rhynchosporo gollmeri Ruilopezietum jabonensis. In Páramo El Pumar, at c. 2.5 km West from Las Antenas, the open shrub páramo of Cortaderio - Hypericetum abounds all over the altitudinal range from ~2880 to 3000 m. The continuity of the Cortaderio - Hypericetum dominated landscape of Páramo El Pumar is interrupted with the presence of some (azonal) bogs around glacial lakes (Cuello & Cleef, 2009c, Chapter 4). Shrub páramo of the Disterigmo acuminatum - Arcytophylletum nitidum association is further present on concave, or protected slopes, as well as high Andean forest patches of the Geissantho andini - Miconietum jahnii on sites with apparent local variation in topography and soils (Cuello & Cleef 2009a, Chapter 2). Open páramo of Rhynchosporo gollmerii Ruilopezietum jabonensis also occurs in small patches in depressions at borders or near the top of slopes over 2900 m, but is always surrounded by the shrub páramo of Cortaderio hapalotrichae - Hypericetum juniperinum. Glacial morphology and páramo vegetation Evidence of the last glaciation is apparent nearly everywhere on the around the 3000 m ridge of Ramal de Guaramacal. The summit zone is generally narrow but slightly wider and highest near Las Antenas. The ridge in the area of Pumar is widest with a few small glacial lake basins and terminal moraines. Here a large glacier has been descending along the Llanos slope. Remnants of ground moraines and periglacial sediments are found outside the area of inclinated bedrock which is the most salient feature of the landscape. Roche moutonnée has also been locally observed. During the Last Glacial Maximum (LGM), the páramo zone probably extended to around 2000 m when interpolated from Laguna Pedro Palo from the Andes near Bogotá (Hooghiemstra & Van der Hammen 1993). The snow and glaciers would possibly have been restricted mainly to the ridge area; the 105 Flora, vegetation and ecology in the Venezuelan Andes Guaramacal páramo zone of the present. Slopes were too steep for the support of snow and ice, which probably collected at the base of these steep slopes; covered mainly today by upper montane and the subalpine dwarfed rain forests. Looking at the páramo landscape of the Guaramacal ridge, we can observe that the zonal vegetation of Cortaderio hapalotrichae - Hypericetum juniperinum is most important in terms of the cover of the Guaramacal páramo (Photo 3.2). This open shrubby vegetation also covers most of the rocky surfaces of Páramo de Guaramacal with, in general, limited soil thickness ranging from between 5-10 to 115 cm. The vegetation of both associations of the alliance Hyperico paramitanum - Hesperomeletion obtusifoliae are contiguous to the upper forest line, the humid shrub páramo of Ruilopezio paltonioides - Neurolepidetum glomeratae association is based on deeper soils (up to ca. 105 cm) and is closer to the UFL and the shrub páramo of the association Disterigmo acuminatum - Arcytophylletum nitidum is contiguous to that of the latter. The nature of the large surface of exposed bedrock, and the climatic characteristics of the top effect, mean this area cannot support subalpine forest or upper montane rain forest, not even under a warming climate. Comparison with other páramos As detailed in the introduction, Chusquea bamboo páramos have not yet been studied in Venezuela. They are distributed along the humid UFL on the Llanos slope of the Venezuelan Andes. Páramo de Guaramacal is also part of this unit. It is unknown if Chusquea bamboo páramos also occur along the UFL on the Maracaibo slope of the Cordillera de Mérida. Although Chusquea angustifolia has also been reported also from páramo areas in Zulia (Briceño & Morillo 2006) and specimens collected from Perijá are listed in MBG W3Tropicos database. On Avila and Naiguatá, Vareschi (1953, 1955) and Aristeguieta & Ramia (1951) described Chusquea spencei bamboos from the Libanothamnus neriifolius community (see also Steyermark & Huber 1978). Chusquea spencei has also been reported in the páramos of Cendé, Jabón and Las Rosas in Trujillo-Lara states border, North to Northeast of the Guaramacal range, as well as in Páramo El Zumbador and Tamá in Táchira, and in Páramo Los Conejos (La Culata) near Mérida (Monasterio 1980b). In humid areas of Páramo de Tamá, Bono (1996) describes the presence of Chusquea formations (a „Chusqueetum‟ community of Chusquea angustifolia and Ch. tessellata) along small streams. It seems that Chusquea spencei prefers a drier páramo habitat (Monasterio 1980b) than Chusquea angustifolia, which determines the aspect of the Páramo de Guaramacal. In the Guaramacal páramo a few patches of Chusquea tessellata have also been documented. Chusquea angustifolia is present close to the UFL along the Llanos side of the Cordillera de Mérida and the Eastern Cordillera of the Andes in Colombia: Páramo de Sumapaz representing thus far its southernmost distribution. Chusquea angustifolia thrives in a clouded wet upper forest line habitat in comparison to its high altitude adapted relative Chusquea tessellata, which is a common species throughout the humid páramos of Colombia and Ecuador extending southwards to Bolivia (Luteyn 1999; Clark 2000). Chusquea angustifolia has smaller leaves but a greater density of leaves per branch than 106 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Chusquea tessellata. However, it is estimated that Chusquea angustifolia has an up to three times greater leaf surface area than Chusquea tessellata. This factor may also explain the dominance of Chusquea angustifolia in the wet Páramo de Guaramacal, which is also at lower altitude than most other zonal bamboo páramos as a function of top effect combined with the presence of bare rocky surfaces of the Guaramacal ridge. The limited knowledge on the presence and composition of Chusquea angustifolia bamboo páramos elsewhere, provides argument to rank the order described here as provisional. Species of Neurolepis bamboos are also highly indicative of wet environmental conditions. Associated with Chusquea angustifolia, Neurolepis glomerata occurs in the dwarf forests of the SARF-UMRF association of Gaultherio anastomosans Hesperomeletum obtusifoliae (Cuello & Cleef 2009) and in the zonal páramo of Ruilopezio paltonioides - Neurolepidetum glomeratae association described here. Neurolepis aristata is a low to tall bamboo occurring in association with Chusquea tessellata in bamboo páramo or as groves in protected sites near the UFL (Cleef 1981; Bussmann 2002). In the Guandera summit area in northern Ecuador an association of Neurolepis aristata bamboo vegetation was developed around 4000 m on the Amazon slope in an Espeletia pycnophylla - Calamagrostis effusa bunchgrass páramo (Moscol & Cleef 2009a). The Podocarpus Park páramo in South Ecuador is probably the world‟s most wet páramo. Bussmann (2002) described a number of páramo communities from its northeastern extremity with Neurolepis being present as the most dominant bamboo species: e.g. Neurolepidetum laegaardii Bussmann 2002. A number of bamboo species of Bussmann‟s Neurolepidion laegaardii alliance include: Chusquea tessellata, Neurolepis weberbaueri, and further Chusquea loxensis, Ch. leonardiorum, Ch. perligulata and Neurolepis nana. An association Neurolepidetum aristatae Bussmann 2002 has also been described from this rain-swept páramo. This is the first time that Chusquea angustifolia has been referred to in a phytosociological context. Aside from the reference made by Bono (1996) in Páramo de Tamá, we are not aware of the bamboo vegetation of this species elsewhere or how this species interacts with the more common bamboo páramo species, Chusquea tessellata. The few clumps of Chusquea tessellata in Páramo de Guaramacal are supposed to be relatively recent arrivals in a setting occupied entirely by Chusquea angustifolia. Looking at the present-day distribution of Chusquea angustifolia, we assume that other unnamed associations in UFL in Páramos of Lara-Trujillo, Mérida, Táchira (Tamá), and Zulia (Perijá) where the species has been reported in Venezuela (Clark 1990; Briceño & Morillo 2006), Arauca slope of Sierra Nevada del Cocuy, Páramo de Pisba, Chingaza and Sumapaz among other localities on the Llanos slope of the Colombian Eastern Cordillera are present. From páramos of Trujillo-Lara states, Páramos Cendé, Jabón and Las Rosas to the north easternmost Venezuelan Andes, Monasterio (1980b) described the shrub páramo with a rosette community of Ruilopezia jabonensis or „Rosetal de Ruilopezia jabonensis’, as the most important Andean páramo vegetation “association” or community found within this area. This community was also referred as the driest páramo area of the country, receiving scarcely 600 mm/year 107 Flora, vegetation and ecology in the Venezuelan Andes rainfall at 3000-3400 m altitude. There, the Ruilopezia jabonensis vegetation community is present over large open areas and is surrounded by woodland communities of Libanothamnus neriifolius, and a shrubby bamboo páramo community dominated by Chusquea spencei and the endemic Pentacalia rigidifolia. According to Monasterio (1980b), the Ruilopezia jabonensis páramos of the Trujillo-Lara state border are composed mainly of a high ground rosette cover (50-60%): with Arcytophyllum caracasanum, Hypericum caracasanum and H. laricifolium shrubs in addition to tussocks of Cortaderia nitida and Orthrosanthus chimboracensis. Niño et al. (1997), in a brief quantitative páramo vegetation survey utilising a 50 m line intersect transect in Páramo Cendé at 3200 m, studied a community dominated by Ruilopezia jabonensis, characterized by a high cover of Chusquea angustifolia bamboo, and a prominent abundance and diversity of bunchgrass species, such as Agrostis meridensis, Aristida sp., Cortaderia nitida, Danthonia secundiflora and an orchid species, Stenorrhynchos vaginatum (Niño et al. 1997). The silvery monocarpic rosettes of Ruilopezia jabonensis appear well adapted to higher elevations and drier conditions than those in Guaramacal. This may explain its limited presence on only small patches of the shrubless páramo of the Rhynchosporo gollmeri - Ruilopezietum jabonensis association, occurring over well-drained coarse sandy soils, and restricted by the lower altitude of Ramal de Guaramacal from 2900 up to 3100 m. None of the bunchgrass companion species of the Ruilopezia jabonensis community of Páramo Cendé reported by Niño et al. (1997) are present in Páramo de Guaramacal. The presence of silvery rosettes is also curiously observed in disturbed páramos, e.g. Espeletia schultzii in Mérida, Venezuela; Espeletia argentea near Bogotá in the Colombian Eastern Cordillera. The humid shrub páramo communities of Guaramacal show some generic compositional and physiognomic affinities with some of the humid páramos areas of Táchira state (Monasterio 1980b; Bono 1996). From the shrub páramos of Táchira state, Monasterio (1980b) refered to a low and diverse páramo community of Ruilopezia jahnii - Puya aristeguietae, as being one of the most important communities occurring in locally wet (boggy like) areas in Páramo El Zumbador at 3200-3400 m. In this community, both Ruilopezia jahnii and Puya aristeguietae are codominant, forming patches surrounded by dense shrub páramo communities dominated by Blechnum aff. schomburgkii stem rosettes (Bono 1996) and shrubs, including: Arcytophyllum caracasanum, Clusia sp. and Hypericum caracasanum (Monasterio 1980b). Puya aristeguietae has been also reported from páramos of Trujillo (Guirigay), Lara, Mérida (El Tambor, Pico Bolívar and La Carbonera) and Zulia (Holst 1994), where we also assume the presence of other unnamed associations containing this species. This big ground rosette has also been documented for the northern páramos of the Colombian Cordillera Oriental (Cleef 1981). In Guaramacal, Puya aristeguietae is associated with the locally endemic Ruilopezia lopez-palacii in the Puyo aristeguietae - Ruilopezietum lopez-palacii, and is also a dominant species in the Cortaderio hapalotrichae - Hypericetum juniperinum. 108 The páramo vegetation of Ramal de Guaramacal: 1. Zonal communities Natural disturbances, land use and conservation The summit of Páramo de Guaramacal has been affected by the construction of the road and the subsequent installation of the telecommunications antennas complex since the 1960‟s. During those years, disturbance of the natural vegetation cover and fires have occurred. Before the construction of the road there was a path crossing the range North-South, located just between the current road (and to the side of it) and the location of the antennas. This track provided a commercial connection between the village of Guaramacal, located on the South slope of Ramal de Guaramacal, and the city of Boconó. It is also known that villagers of the past made extensive use of the páramo adjacent to the path as fields for pasture. Natural fires may also have occurred elsewhere in the summit zone of Ramal de Guaramacal, especially on the driest days of the year of high radiation, as was recently observed in Páramo El Pumar. Since 1988, Ramal de Guaramacal has been, and continues to be, protected as a National Park. Thus far, this has proven effective in, keeping the majority of human activities and their associated impacts outside the park borders. Only the area occupied by the antenna infrastructure, as well as the road and electrical pylons in Páramo de Guaramacal, are currently treated as a special use zone („Zona de Uso Especial‟) where some limited (disturbance) activities are permitted. The more extensive and remote remainder of the Ramal de Guaramacal páramo ecosystem is free from human activities and very well conserved. Conclusions Regardless of some methodological limitations, problems with accessibility and environmental conditions during the study of the páramo vegetation of Ramal de Guaramacal, the results of this study represent the first attempt at syntaxonomical classification and understanding of the floristic composition and patterns of bamboo páramos communities of the humid Llanos slopes of Venezuelan Andes. The mosaic-like distribution of shrub páramo, grass páramo and dwarf forest vegetation communities present on the summits of Ramal de Guaramacal may be the consequence of multiple factors, influenced by the top effect promoting a low UFL, permanently high relative humidity, and past disturbance events and fire dynamics. With the exception of some generic floristic affinities and physiognomic similarities, the páramo vegetation communities described for Ramal de Guaramacal cannot be directly related to any other of the named communities elsewhere in the Andes. 109 Variety of Sphagnum species found in azonal páramo vegetation of Ramal de Guaramacal: (a) Sphagnum recurvum covering the wet shore of Laguna El Pumar; (b, c) S. recurvum (detail); (d) S. recurvum covering the north-west side of Laguna EL Pumar, S. cuspidatum submerged in the water; (e) S. cuspidatum (detail); (f) S. meridense forming the ground cover in shrubparamo ; (g) S. recurvum and S. magellanicum (darker); (h) S. sparsum with Campylopus cuspidatus. Chapter 4 The páramo vegetation of Ramal de Guaramacal, Trujillo State, Venezuela. 2. Azonal vegetation Nidia L. Cuello A. and Antoine M. Cleef PHYTOCOENOLOGIA, 39 (4), 389–409. 2009 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation 4.1 INTRODUCTION The azonal páramo vegetation in Guaramacal was studied between 2870 and 3050 m, mainly in two peat bog areas of the Sector Páramo El Pumar (Laguna El Pumar and Laguna Seca). Azonal patches are also present in the small valleys or depressions where water collects in Páramo de Guaramacal, near the „Las Antenas‟ area. Peat bogs associated with glacial and seasonal lakes or fluvio-glacial valleys are common features in Andean and Costa Rican páramos. A great variety of azonal bog vegetation communities associated with glacial lakes and terrain depressions have been described and named from the Colombian (Cleef 1981, Sánchez & Rangel 1990, Cleef et al. 2005, 2008, Rangel et al. 2006 among others) and Costa Rican páramos (Brak et al. 2005). A low number of diverse aquatic and peat bog vegetation communities have been reported for Venezuelan páramos (Vareschi 1955, 1980; Monasterio 1980a, Bono 1996, Berg 1998, Berg & Suchi 2001) with only a few of them treated in a syntaxonomic context of the upper páramo vegetation of Sierra Nevada de Mérida (Berg, 1998). Vareschi (1955) described an association („Sphagnetum maghellanici‟) from Naiguatá between 2500-2700 m. As mentioned before Sphagnum bogs are present in the equatorial Andes and the Central American Talamancas; up to date, they are not classified at the level of order and class. Other bogs and mires which have been described for the northern Andes concern vascular cushion bogs (Plantagini rigidae-Distichietea muscoides Rivas Martínez & Tovar 1982) and cyperaceous reedswamps (Galio canescentisGratiolion bogotensis Cleef 1981), grass mires (Calamagrostion ligulatae Cleef 1981), both belonging to the order Marchantio plicatae-Epilobietalia denticulatae Cleef 1981. Other azonal aquatic vegetation includes flush communities (Xenophyllion crassae-Wernerion pygmaeae Cleef 1981), the vegetatation of glacial lake bottoms (Ditricho submersi-Isoëtion karstenii Cleef 1981) and ponds (Limoselletea australis Cleef 1981). Sphagnum bogs have not been classified in the absence of comprehensive synthetic presence tables thus far. They are found in valleys in the uppermost forests and the lower páramo, where conditions allow for Sphagnum growth. Eutrophic to mesotrophic conditions allow for mires, which are characterized by active mineroptrophic input from surrounding zonal vegetation on slopes. The highest bogs in páramos are the vascular cushion bogs consisting of Plantago rigida. Distichia muscoides, Oreobolus cleefii and the flat cushions of Xyris subulata var. breviscapa (Bosman et al. 1993, Cleef 1981, Cleef et al. 2005, 2008, Moscol Olivera & Cleef 2009, Ramsay 1992, Coombes & Ramsay 2001, Rangel Ch. & Ariza-N. 2000, Salamanca et al. 2003). In the Colombian Eastern Cordillera páramos vascular cushion bogs replace altitudinally the Sphagnum bogs at 3800-3900 m, as probably also in the Sierra Nevada de Mérida. For Chusquea-Sphagnum bogs reference can be made to Cleef (1981), Sánchez & Rangel Ch. (1990), Rangel Ch. & Franco (1985) and Cleef et al. (2006). They also have been observed in the páramos of Costa Rica (Chaverri & Cleef 1992, Brak et al. 2005). The main goal of the present study is to identify, define and characterize the azonal vegetation of two páramo areas of Ramal de Guaramacal (Páramo de Guaramacal and Páramo El Pumar) aiming at the establishment of a syntaxonomic scheme 113 Flora, vegetation and ecology in the Venezuelan Andes based on the analysis of the physiognomy, floristic composition and ecological relations of the different vegetation communities. This work was carried out within the framework of a larger project aimed at the study of the diversity of the flora and vegetation of the Guaramacal Nacional Park (Cuello, 1999; 2000, 2002; 2004). The classification of the vegetation of forests and zonal páramo of Guaramacal range are described separately (Cuello & Cleef, 2009a; b; Chapters 2 and 3). 4.2 STUDY AREA The azonal páramo communities have been studied in two páramo areas at the top of Ramal de Guaramacal, between ca. 2900 and 3100 m in the area surrounding the „Las Antenas‟ site in the Páramo de Guaramacal, and along the road crossing the Ramal and the „Lagunas del Pumar‟ zone in Páramo El Pumar at 2.5 km to the Southwest from „Las Antenas‟ (Fig 4.1). Figure 4.1. Geographic location of Páramo de Guaramacal in the Venezuelan Andes. The area studied in Páramo de Guaramacal concerns a small pond located at 9 o 14‟ 1.02” N; 70o 11‟ 6.47” W with surrounding bamboo páramo vegetation present at the bottom of a small valley where water collects at ~3080-3100 m (Photo 4.1). This pond seems to be a remnant of small lake that existed in the past, according to observations of 1960‟s aerial photographs from Páramo de Guaramacal. 114 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation Photo 4.1. Azonal vegetation associated to a pond at 3080 m in Páramo de Guaramacal (9o 14‟ 1.02” N; 70o 11‟ 6.47” W), Andes, Venezuela. In the Páramo El Pumar, the associated vegetation of two contiguous glacial lakes was studied. The Laguna El Pumar, ~2880 m located at 9 o 12‟ 52.36” N; 70o 12‟ 8.04” W, which is covered mostly by water and bordered by Sphagnum bogs (Photo 4.2). The second lake at around 2890 m is located 110 m to the South of Laguna El Pumar. This is an evaporated lake called „Laguna Seca‟ at 9 o 12‟ 47.7” N; 70o 12‟ 7.27” W, which is totally covered by Sphagnum bog and surrounded by bamboo vegetation or „chuscales‟. Ramal de Guaramacal is an outlier of the Venezuelan Andes, located South of the town of Boconó in Trujillo state, about 120 km Northeast of the city of Mérida in the centre of the Sierra Nevada de Mérida. For a more complete description of the study area the reader is referred to Cuello (1999) and Chapter 2. 4.3 METHODS Field Sampling Azonal vegetation was studied by means of observations, plant collections and surveys of small plots of between 0.25 to 6 m2 according to minimum area and the extent of the homogenous and representative patches under consideration (Westhoff & Van der Maarel 1973, Cleef 1981). In each plot, and per vegetation layer, the percentage of periphery cover for each plant species was estimated. A total of 71 relevés (approx. 100 m2) were surveyed. Eight line intercept transects of 5 m in length (as used in Cuello & Cleef, 2009b, Chapter 3) were surveyed in bamboo páramo vegetation and included in the vegetation analysis. Azonal vegetation associated with slopes trail borders and areas of disturbance were not 115 Flora, vegetation and ecology in the Venezuelan Andes included in the phytosociological analysis which was based solely on observations and collections of species composition. Field surveys were carried out only during the dry season. In the „Las Antenas‟ area of Páramo de Guaramacal, sampling was conducted by both authors in February 15, 2006, whilst in the remote area of Páramo El Pumar sampling was completed by the first author and coworkers during two different visits: one on March 1 st 2006, the other on February 18-19, 2007. Botanical vouchers of all recorded species were collected. Photographs were taken where possible. The collected botanical material was processed, identified and deposited at Herbario Universitario PORT of the Universidad Nacional Experimental de los Llanos “Ezequiel Zamora” (UNELLEZ) in Guanare, Venezuela. For vascular plants the nomenclature follows Dorr et al. (2000), complemented by Luteyn (1999) for other plant groups. Drs J. Hickey (Isoëtes karstenii), G. Davidse (MO) and S. Laegaard (AAU) were helpful with the identification of some selected grasses. Duplicates of vascular plants are deposited in MER, VEN and US. Duplicates of the bryophytes were sent to Dr. D. Griffin III (FLAS) with lichens sent to Dr. H.J.M. Sipman (B) for identification. Additional duplicates of bryophytes and lichens were also deposited in L and MERC. The record of bryophyte and lichen species has not been completed by the first author. Only the most prominent and conspicuous species were collected. Processing and data analysis The data from each survey were stored and processed in Microsoft Excel. For each species at each plot of azonal vegetation we used the percentage of cover estimated in the field. The data matrix of percentage cover for 53 species and 79 surveys of azonal vegetation was processed with TWINSPAN (Hill 1979) using the PC-Ord 4 program (McCune & Mefford 1999). Data were then interpreted in terms of community delimitation, the syntaxonomical vegetation classification based on cover and floristic affinities following the Zürich-Montpellier approach (BraunBlanquet 1979). The names of the syntaxa are according to the International Code of Phytosociological Nomenclature (Weber et al. 2000). The original cover values of the relevés taken in percentages are available from the first author by request. The diverse subunits, recognized in a progressive way by the TWINSPAN procedure, were hierarchized in associations and higher (alliances, order) and lower (subassociations) syntaxa and variants. The associations represent the basic unit of description of the vegetation and are defined on the basis of floristic composition (diagnostic, character species), particular appearance (growth form) and habitat conditions. Two or more associations that share diagnostic species are combined into an alliance. Two or more alliances combine to form an order. Associations with some marked differences, or only variations in their floristic composition, are subdivided into subassociations and eventually variants, respectively. In order to elucidate floristic relationship with Sphagnum dominated páramo communities elsewhere in Colombia and Venezuela a Bray-Curtis similarity cluster analysis (Bray & Curtis 1957) has been used. The „Spagnetum 116 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation maghellanici‟ Vareschi 1955 has been left out; only one species, Sphagnum magellanicum, in common with Guaramacal bogs (Table 4.1). Photo 2. Laguna El Pumar, 2880 m, Ramal de Guaramacal, Andes, Venezuela. 4.4 RESULTS Flora diversity A total of 53 morphospecies, belonging to 30 species of vascular plants, 20 species of cryptogams and 3 undetermined species of algae have been recorded from a total of 79 plots of the azonal vegetation in Páramo de Guaramacal and Páramo El Pumar, Ramal de Guaramacal, Venezuela. The vascular plants include: 13 species, belonging to 11 genera and 8 families of dicots; 15 species, 12 genera and 5 families of monocots and 2 species, 2 genera and 2 families of ferns. The identified cryptogams include 14 species, 5 genera and 5 families of mosses, 2 species, 2 genera and 2 families of liverworts and 4 species, 3 genera and 3 familes of lichens. Azonal páramo plant communities The interpretation of the TWINSPAN table, based on floristic composition, affinities and species cover, allowed the recognition of six vegetation communities at association level grouped into two alliances and one order (Table 4.1 and 4.2). The azonal vegetation communities recognized in Ramal de Guaramacal are summarized as follows: 117 118 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 2.25 2.25 . H3 Calamagrostis bogotensis . . . . . NP1 Hesperomeles obtusifolia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . Campylopus cuspidatus CH3 Hypericum juniperinum x cardonae CH3 Hypericum cardonae NP1 Hypericum juniperinum Sphagnum sp.(orange) . . . CH3 Pernettya prostrata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 4 3 . . . DS 3. Sphagno sparsi - Caricetum bonplandii . . . . . . 2 . 1 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . 5 5 1 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 5 4 4 1 . 3 5 5 5 . . . . 1 . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . 1 2 1 . . . . . . . . . . . . 2 5 3 . . 4 1 . 2 1 2 4 5 . . . . 1 . . . . 1 1 . 3 1 1 2 2 1 . . . . . . . . . 4 . . 4 3 2 . . . 5 1 3 5 5 5 5 5 5 5 4 5 5 1 . . . . . . . 1 1 4 . . . 4 . . . . . . . . 3 . . . . 1 . 1 . 5 . 3 3 2 . 4 5 5 . . . . . . . 4 3 . . . . . . . 2 . 5 . . 4 4 4 5 . . . . 3 . . . . 4 4 4 . DS 3.2.Pernettya prostrata 25 26 27 28 29 4 4 1 30 31 32 33 34 35 36 - 37 38 39 40 41 42 0 4 0.6 0.35 . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . 4 . . . 4 5 5 5 1 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . 3 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 1 5 . . . . . . . . . . 5 5 . . . . 2. Sphagno recurvi-Caricetum bonplandii . 5 . . . 1 CARICETALIA BONPLANDII 1 0.8 0.5 0.3 0.3 SPHAGNO RECURVI - PAEPALANTHION PILOSI GERANIO STOLONIFERUM . 1 2 2 1 3 . 3 1 5 5 5 . 1 5 4 3 5 5 2 1 . . 1.2. typicum 1 1 1 1 1 3 1 2 . 1 2 5 5 3 2 1 5 5 4 5 4 1 1 2 2 4 1 1 Campylopus albidovirens CH2 Arenaria venezuelana CH2 Lachemila verticillata Breutelia rhythidoides DS 1.1. ortachnetosum erectifoliae H3 Ortachne erectifolia Breutelia squarrosa Polytrichum commune Cladonia dydima Cladonia andesita H2 Rhynchospora gollmeri Cladia aggregata DS 1.2. typicum Polytrichum juniperinum H3 Sisyrhinchium sp. 1.1. ortachnetosum erectifoliae 1.Paepalantho pilosi - Agrostietum basalis 1 H2 Agrostis basalis Sphagnum sparsum Sphagnum magellanicum NP1 Diplostephium obtusum H3 Agrostis sp. B 24 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . 1 0.8 4 4 1 0.3 . . . . . . . . . 5 4 . . . . . . . . . . . . . . . . . . . . . . . 5 4 5 . . . . . . . . . . . . . . . . . . . . . . . 4 4 5 . . . . . . . . . . . . . . . . . . . . . . . 5 3 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 . . . . . . . . . . . . . 1 . . . 2 2 . . 5 4 5 4 5 5 5 . . . . . . . . . . . . . . . . . . 4 . 4 4 . . 2 5 . . . . . . . . . . . . . . . 3.2. Pernettya prostrata 4 5 4 4 5 3 3.1.Diplostephium obtusum . . . 5 . 4 3 . . . 5 . . . . . . . . . . . . . . . 1 . 1 . . 4 5 . . . 5 . . . . . . . . . . . . . . . . . . . 5 3 4 . . . 5 . . . . . . . . . . . . . . . . 5 . . 5 3 5 . . 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . 1 5 4 . . . . . 1 . . . . . . . . . . . . . . . 4. Carici - Chusqueetum CARICI - CHUSQUEION 4 0.35 0.5 0.6 0.5 0.35 6 3. Sphagno sparsi - Caricetum bonplandii 1 0.3 2.3 0.8 0.6 . 2 1 . . . . . . . . . . . . . . . . . . . . . . . . . . LS L L SF S L LS L L L L L L L L L L L L L L LS LS SF8 SF8 PL S L L PF PF PF PF S SL LP LP7 L LS L L LS LS L PF SF8 SF SF SF SF P PL PL PF PL LP1 LP2 LP LP LP5 G L2 L2 L2 L2 L3 L3 L3 L3 S1 18 S2 S2 29 4 S5 43 5* 88 91 92 94 L 7 8 42 2 * 7 1 L6 S3 S3 36 40 44 45 F9 9* 6 11 S1 S1 96 L1 S7 10 S S8 S9 S S S S S2 S2 S S S S6 S1 19 3 6 3 4 C 6b 6a 7a 7b 6a 6b 3a 3b 3 1 7 0 0 1 12 15 25 22 3 4 26 27 28 1 0 * 3 4 C * 6* 3 DS 1.Paepalantho pilosi - Agrostietum basalis Variant Subassociation Association Alliance Area (m2) Order Releve number Releve (field number) Flora, vegetation and ecology in the Venezuelan Andes 1 2 3 4 5 Sphagnum recurvum 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 0.5 1 1 1 1 1 1 1 1 1 1 22 23 1 1.2. typicum 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 25 26 27 28 29 1 1 2.25 2.25 . . 30 31 32 33 34 35 36 4 1 5 . 4 . . . . . . . . . 5 3 1 . 1 . . . 1 1 1 4 1 2 4 4 3 4 . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 37 38 39 40 41 42 0 4 0.6 0.35 . 5 . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 5 5 5 . . . . . . . . . . . . . . . . . . . . . 5 5 5 5 43 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 . . . . 5 1 5 5 . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . 5 . 4 . . . . . . . . . . . . . . . . . . 5 45 1 1 1 1 46 47 48 49 50 51 52 53 54 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . 3 . . 5 5 . . 5 . . . . . . . . . . . . . . . . . . 5 5 5 3 . . . . . . . . . . . . . . . . . 3 H4 H3 H2 CH3 CH2 5 5 . . . . . . . . . . . . . . . . . . 5 4 1 0.3 56 57 58 59 60 61 62 63 64 65 66 67 68 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . 5 . . . 1 . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 5 . . . . . . . . . . . . . . . . . 1 5 3 5 . . . . . . . . . . . . . . . . . 2 5 5 . . . . . . . . . 1 . . . . . . . . 4 . 5 . . . . . . . . . . . . . . . . . . 5 Hemicryptophyte / caespitose ( > 30 cm) " " (10 - 30 cm) " (3 - 10 cm) Chamephyte / frutescent (10 - 30/50 cm) " (3 - 10 cm) 5 5 . . 5 4 1 5 5 5 5 5 . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . 1 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . 1 1 . . . . . . . . . . . . . 1 . . 1 . . 1 . . . . 1 . 1 . . . . . . . . 1 4 . . . 5 4 . . 1 . . . . 1 . . . 5 5 5 1 5 4 4 5 5 . . . . . . . . 1 . . . . . . . 1 . 1 1 . . 1 . . . . . 1 2 4 . . . 1 1 4 5 4 . 5 5 5 1 5 4 4 . . 4 5 5 4 5 5 5 5 1 . 1 . . . 4. Carici - Chusqueetum CARICI - CHUSQUEION 4 0.35 0.5 0.6 0.5 0.35 6 3.2. Pernettya prostrata 5 5 . 5 4 4 3.1.Diplostephium obtusum 5 5 5 1 5 5 5 5 . . . . . . . . . . . . . . . . . . 1 0.8 4 3. Sphagno sparsi - Caricetum bonplandii 1 0.3 2.3 0.8 0.6 5 5 5 5 5 5 5 5 1 NP1 Nanophanerophyte (30/50 - 100 cm) PLG Phanerophytic lignified grass (30 - 100 cm) RP1 Rosullate phanerophyte (10 - 30 cm) RP2 " " (> 30 cm) . . . . . . . . . . . . . . . . . . . . 5 5 5 5 5 2. Sphagno recurvi-Caricetum bonplandii . 1 . . . 1 CARICETALIA BONPLANDII 1 0.8 0.5 0.3 0.3 SPHAGNO RECURVI - PAEPALANTHION PILOSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LP, PL, PF Laguna El Pumar, 2880 m. Páramo El Pumar LS, SL, SF, L36 Laguna Seca, 2890 m. Páramo El Pumar GCC, L26, L27, L33 Páramo de Guaramacal, 3030 m. * Representative relevé DS Diagnostic Species 4 GERANIO STOLONIFERUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rhacocarpus purpurascens . . . . . . . . . . . . . . . . . . H3 Agrostis perennans DS GERANIO STOLONIFERUM - CARICETALIA BONPLANDII H3 Carex bonplandii . 1 . . . . 1 1 . 4 5 5 5 4 5 . . . CH2 Geranium stoloniferum . . . 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 2 5 2 4 5 1 1 . 4 . 4 3 1 . 1 1 2 1 2 . . . . . 2 5 5 5 5 5 1.1. ortachnetosum erectifoliae 1.Paepalantho pilosi - Agrostietum basalis 1 H3 Calamagrostis sp. A . . . . DS 4. Carici bonplandii - Chusqueetum angustifoliae PLG Chusquea angustifolia . . . . Sphagnum sancto-josephense . . . . . . . . H3 Xyris subulata Campylopus richardii . . . . RP1 Ruilopezia jabonensis . . . . H4 Cortaderia hapalotricha . . . . . . . . H3 Gentianella nevadensis Peltigera neopolydactyla . . . . H2 Oreobolus venezuelensis . . . . . . . . H3 Hieracium avilae Jamesoniella rubricaulis . . . . . . . . CH2 Nertera granadensis H2 Ophioglossum crotalophorioides . . . . Plagiochila sp. . . . . CH2 Paepalanthus pilosus 6 LS L L SF S L LS L L L L L L L L L L L L L L LS LS SF8 SF8 PL S L L PF PF PF PF S SL LP LP7 L LS L L LS LS L PF SF8 SF SF SF SF P PL PL PF PL LP1 LP2 LP LP LP5 G L2 L2 L2 L2 L3 L3 L3 L3 S1 18 S2 S2 29 4 S5 43 5* 88 91 92 94 L 7 8 42 2 * 7 1 L6 S3 S3 36 40 44 45 F9 9* 6 11 S1 S1 96 L1 S7 10 S S8 S9 S S S S S2 S2 S S S S6 S1 19 3 6 3 4 C 6b 6a 7a 7b 6a 6b 3a 3b 3 1 7 0 0 1 12 15 25 22 3 4 26 27 28 1 0 * 3 4 C * 6* 3 DS SPHAGNO RECURVI - PAEPALANTHION PILOSI Variant Subassociation Association Alliance Area (m2) Order Releve number Releve (field number) The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation 119 ______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes GERANIO STOLONIFERUM – CARICETALIA BONPLANDII Cuello & Cleef 2009 I. Sphagno recurvi – Paepalanthion pilosi Cuello & Cleef 2009 1. Paepalantho pilosi – Agrostietum basalis Cuello & Cleef 2009 1.1 subassociatio ortachnetosum erectifoliae Cuello & Cleef 2009 1.2. subassociation typicum Cuello & Cleef 2009 2. Sphagno recurvi – Caricetum bonplandii Cuello & Cleef 2009 3. Sphagno sparsi – Caricetum bonplandii Cuello & Cleef 2009 3.1. Variant with Diplostephium obtusum 3.2. Variant with Pernettya prostrata II. CARICI BONPLANDII – CHUSQUEION ANGUSTIFOLIA Cuello & Cleef 2009 4. Carici bonplandii – Chusqueetum angustifoliae Cuello & Cleef 2009 III. DISTRICHO SUBMERSI – ISOETION Cleef 1981 5. Community of Sphagnum cuspidatum 6. Isoëtetum karstenii Cleef 1981 GERANIO STOLONIFERUM – CARICETALIA BONPLANDII Cuello & Cleef 2009 Representative alliance: Sphagno recurvi–Paepalanthion pilosi Azonal páramo vegetation of the Geranium stoloniferum - Carex bonplandii order / Vegetación de páramo azonal del orden de Geranium stoloniferum y Carex bonplandii Physiognomy: The order Geranio stoloniferum - Caricetalia bonplandii concerns the azonal páramo peat bog vegetation along the shore of lakes, and is represented by Sphagnum peat bogs predominantly covered by Carex bonplandii together with open bunchgrass patches dominated by Agrostis basalis and Ortachne erectifolia. The order also includes the bamboo páramo „chuscales‟ of Sphagnum-Chusquea angustifolia growing close to the lake shores or at the bottom of small valleys. Composition and syntaxonomy: The order is defined on the basis of 69 relevés with 28 vascular species and 19 cryptogams. The most species diverse vascular families are Poaceae, Cyperaceae, Asteraceae and Clusiaceae. Sphagnaceae is the most speciose and dominant bryophyte family in the ground layer. This order is composed of two alliances: Sphagno recurvi - Paepalanthion pilosi and Carici bonplandii - Chusqueion angustifoliae. Diagnostic species are Carex bonplandii and Geranium stoloniferum. Sphagnum recurvum is another important species and is present in both alliances. 120 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation ______________________________________________________ Ecology and distribution: Azonal páramo vegetation of the Geranium stoloniferum - Carex bonplandii order is found in Páramo El Pumar (2870-2990 m) along and close to the shores of both lakes Laguna El Pumar and Laguna Seca as well as in a small wet valley South of „Las Antenas‟ in Páramo de Guaramacal. SPHAGNO RECURVI – PAEPALANTHION PILOSI Cuello & Cleef 2009 Typus: Paepalantho pilosi – Agrostietum basalis Azonal páramo vegetation of the Agrostis basalis - Paepalanthus pilosus alliance / Vegetación de páramo azonal de la alianza de Agrostis basalis y Paepalanthus pilosus Physiognomy and composition: Sphagnum bogs characterized by a ground layer formed by dense cushions of Sphagnum spp. and Paepalanthus pilosus with the occasional presence of a layer of variable cover of small tussock grasses, 10-25 cm tall, which may be composed by Agrostis basalis, Carex bonplandii, Rhynchospora golmerii, Xyris subulata var. acutifolia, and a layer of grasses 30-50 cm tall, formed of Agrostis perennans, Calamagrostis bogotensis, Cortaderia hapalotricha, Ortachne erectifolia, and a species of Sisyrhinchium. A layer of little shrubs may also be present, composed of: Diplostephium obtusum, Hesperomeles obtusifolia, Hypericum cardonae, H. juniperinum, H. juniperinum x cardonae and Pernettya prostrata. Syntaxonomy: Sixty relevés are recognized as belonging to this alliance, comprising a total of 21 vascular species and 13 species of cryptogams accounting for the total species richness. Diagnostic of the alliance are: Agrostis basalis, Sphagnum recurvum and Paepalanthus pilosus. This alliance contains three associations: Paepalantho pilosi–Agrostietum basalis, Sphagno recurvi–Caricetum bonplandii and Sphagno sparsi–Caricetum bonplandii. Ecology and distribution: Vegetation belonging to this alliance may be found all over the evaporated lake “Laguna Seca” and on the humid shore of Laguna El Pumar in Páramo El Pumar (~2870-2890 m), as well as in wet areas around a pond to the South of „Las Antenas‟ in Páramo de Guaramacal at ~3080 m. 1. Paepalantho pilosi – Agrostietum basalis Cuello & Cleef 2009 Typus: Rel. No. 17 (Cuello LS26). Table 4.1, Fig. 4.2. Photo 4.3 (center to right) Peat bog with cushions of Paepalanthus pilosus and Agrostis basalis groundrosette bunchgrass vegetation / Vegetación de turbera con cojines de Paepalanthus pilosus y pajonal de Agrostis basalis Physiognomy and composition: The association is made up of small patches of bunchgrass vegetation on top of a former peat bog. There is a ground layer formed by dense cushions of Paepalanthus pilosus, Arenaria venezuelana and Lachemilla verticillata. Over and among the cushions of Paepalanthus pilosus there is a diversity of bryophytes (and lichens), with the moss Campylopus albidovirens forming a dense and cespitose mat that, together with the other ground layer species constitutes a substrate for the establishment of the bunchgrasses Agrostis 121 ______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes basalis and Ortachne erectifolia. In the ground layer, the most common cryptogamic species are: Breutelia rhythidoides, B. squarrosa, Polytrichum commune, P. juniperinum, Sphagnum magellanicum, S. recurvum and the lichens Cladonia andesita, C. dydima and Cladia aggregata. Syntaxonomy: The association is defined on the basis of 22 relevés with 10 vascular species and 11 species of cryptogams. The diagnostic species are: Agrostis basalis, Arenaria venezuelana, Lachemilla verticillata, Paepalanthus pilosus and the mosses Campylopus albidovirens, Breutelia squarrosa, B. rhythidoides and Polytrichum commune. A subassociation ortachnetosum erectifoliae and a subassociation typicum have been recognized for this association. Ecology and distribution: The vegetation of the association Paepalantho pilosiAgrostietum basalis has to date been found established solely to the North and the South side of an area of central drainage (small channel with water) to the western border of the peat bog (dry lake) of the Páramo El Pumar ~2870 m. This area seems to be a site where wild fauna (probably the „Puma‟ Puma concolor and other mammals), that go to the site for water, are concentrated. The frequent animal footsteps seem to have caused a fragmentation and decomposition of the Sphagnum layer, thereby favoring the establishment of other plant species. 1. Paepalantho pilosi – Agrostietum basalis 1.1 subassociation ortachnetosum erectifoliae Cuello & Cleef 2009 Typus: Rel. No. 8 (Cuello LS16). Table 4.1, Fig. 4.2, Photo 4.3 Peat bog with cushions and Ortachne erectifolia bunchgrass vegetation / Turbera con vegetación de cojines con pajonal de Ortachne erectifolia Physiognomy and composition: The vegetation is made up of a grass layer dominated by tussocks of Ortachne erectifolia (height 30-45 cm and 30-70% cover), small tussocks of Agrostis basalis [height 15-25 cm and 20-30% of cover] and other herbs (1-5% cover) such as Carex bonplandii and Rhynchospora gollmeri. The ground layer is composed of dense cushions of Paepalanthus pilosus (10-80% cover) and Lachemilla verticillata (3-30% cover) with a mat of Campylopus albidovirens (2-20 (40) % cover) growing in between. Other species with variable densities and cover are Arenaria venezuelana and Geranium stoloniferum, the bryophytes Breutelia rhythidoides, B. squarrosa, Campylopus cuspidatus var. dicnemioides, Polytrichum commune, P. juniperinum, Sphagnum magellanicum and S. recurvum as well as the lichens Cladonia andesita and C. dydima. Syntaxonomy: This subassociation is represented by 13 relevés, with 8 vascular and 11 species of cryptogams. Paepalanthus pilosus (only by maximum cover), Ortachne erectifolia, Breutelia squarrosa and Polytrichum commune are diagnostic; as is the lichen Cladonia dydima. 122 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation ______________________________________________________ Ecology and distribution: The vegetation of the subassociation ortachnetosum erectifoliae covers a small area (approx 30-50 m2) to the northwestern edge of the Laguna Seca in Páramo El Pumar at ~2870 m. This patch is surrounded by peat of the association Sphagno recurvi-Caricetum bonplandii. Figure 4.2. Physiognomy of the vegetation of the association of Paepalantho pilosiAgrostietum basalis. Páramo El Pumar, 2870 m. Lev. LS16. Ab: Agrostis basalis; Br: Breutelia rythidioides; Bs: Breutelia squarrosa; Ca: Campylo-pus albidovirens; Cd: Cladonia dydima; Cla: Cladonia andesita; Oe: Ortachne erectifolia; Pc: Polytrichum commune; Pp: Paepalanthus pilosus; Sm: Sphagnum magellanicum. 1. Paepalantho pilosi – Agrostietum basalis 1.2. subassociation typicum Cuello & Cleef 2009 Typus: Rel. No. 17 (Cuello LS26). Table 4.1 Open and low Agrostis basalis bunchgrass vegetation on peat bog with dominance of Polytrichum juniperinum / Pajonal ralo y bajo de Agrostis basalis sobre turbera con dominancia de Polytrichum juniperinum Physiognomy and composition: Open and low vegetation with an herbaceous layer (15-25 cm height) dominated by small tussocks of Agrostis basalis (1-20% cover) and discrete individuals of Carex bonplandii (1-10% cover). The ground layer is dominated by cushions of Arenaria venezuelana (12-40% cover), Lachemilla verticillata (35-85% cover) and Polytrichum juniperinum (15-60% cover). Sphagnum magellanicum and S. recurvum are also present in the ground layer. 123 ______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Syntaxonomy: The subassociation typicum of the Paepalantho pilosi–Agrostietum basalis is represented by 9 relevés, with 9 vascular species and 7 species of cryptogams. Polytrichum juniperinum is diagnostic. This subassociation typicum is separated from the previous subassociation by the absence of Ortachne erectifolia, a very low presence of Breutelia squarrosa and Polytrichum commune, and by a greater density and cover of Polytrichum juniperinum. Ecology and distribution: The vegetation of the subassociation typicum covers a patch at the southwestern end of the dry lake peat bog of Páramo El Pumar at ~2870 m. This side of the dry lake is lower and more humid than the northern side. Near the higher and drier southern border of the dry lake, the vegetation of this association is in contact with that of the Sphagno recurvi–Caricetum bonplandii association. Photo 4.3. Vegetation association on the northwestern edge of the Laguna Seca in Páramo El Pumar at ~2870 m. Center-right: Paepalantho pilosi - Agrostietum basalis subassociation ortachnetosum erectifoliae. Left: Sphagno recurvi - Caricetum bonplandii. 2. Sphagno recurvi – Caricetum bonplandii Cuello & Cleef 2009 Typus: Rel. No. 35 (Cuello LS9). Table 4.1, Fig. 4.3 Sphagnum recurvum - Carex bonplandii peat bog / Turbera de Sphagnum recurvum y Carex bonplandii Physiognomy: Peat bog dominated by a dense green carpet of Sphagnum recurvum with 100% cover. 124 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation ______________________________________________________ Composition and syntaxonomy: This association is represented by 24 relevés, with 13 vascular species and 8 species of bryophyte. The diagnostic species are Sphagnum recurvum and Carex bonplandii. Two provisional variants of this association are distinguished. The vegetation of variant typicum has an open aspect. This common peat bog variant is represented by 15 relevés and accounts for a total of 12 vascular species with very low cover. Carex bonplandii (height 15-25 cm, cover 35-70%), growing on a green carpet of Sphagnum recurvum (60-100% cover) is especially prominent. The other vascular species present (in the association but) with very low cover include: Agrostis sp. B, Arenaria venezuelana, Calamagrostis sp. Diplostephium obtusum, Gentianella nevadensis, Hypericum cardonae, Lachemilla verticillata, Nertera granadensis, Paepalanthus pilosus, Sisyrinchium sp., Xyris subulata var. acutifolia. The variant typicum lacks proper diagnostic species. The variant of Diplostephium obtusum includes only 7 vascular species. The vegetation of this variant occurs near the eastern dry edges of the evaporated lake, Laguna Seca. The presence of Diplostephium obtusum is diagnostic (5-40% cover) with variable densities of Carex bonplandii [10-50% (90%)], as is the presence of Agrostis sp. B. Ecology and distribution: In its typical form, the vegetation of this association is found on the humid shore of Laguna El Pumar, as well as in the central humid or semi-humid areas of the West shore of Laguna Seca in Páramo El Pumar (~28702890 m), and in wet areas around a pond of water in a little valley South of „Las Antenas‟ in Páramo de Guaramacal at ~3080 m. 3. Sphagno sparsi – Caricetum bonplandii Cuello & Cleef 2009 Typus: Rel. No. 56 (Cuello LP1). Table 4.1, Fig. 4.3, 4.4, Photo 4.3 (left to bottom) Sphagnum sparsum – Carex bonplandii peat bog / Turbera de Sphagnum sparsum y Carex bonplandii Physiognomy and composition: Peat bog that consists of an herb layer (15-25 cm in height), covering between 10-80%, and dominated by Carex bonplandii. A ground layer with 100% cover, formed by a continuous carpet of several Sphagnum species, among which, S. sparsum dominates, followed by S. recurvum and S. magellanicum. Also common are compact cushions of Paepalanthus pilosus, and a variable cover of Campylopus cuspidatum. In this association, a shrub layer made up of Diplostephium obtusum may be present, or a layer of very low shrubs of Hypericum juniperinum, H. cardonae, H. juniperinum x cardonae, and Pernettya prostrata. Syntaxonomy: The association of Sphagno sparsi-Caricetum bonplandii is represented by 16 relevés with 13 vascular species and 5 species of moss. The high presence and cover of Sphagnum sparsum and S. magellanicum is diagnostic. 125 ______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Two variants are distinguished: one with Diplostephium obtusum, the other with Pernettya prostrata. Ecology and distribution: The peat bog of this association is located at the dry northeastern shore at 1-6 m from the edge of Laguna Seca, and also on hummocks and the non-flooded edges of Laguna El Pumar in Páramo El Pumar at 2880-2890 m. Figure 4.3. Physiognomy of the vegetation of a hummock-hollow páramo peat bog of the association of (1) Sphagno sparsi-Caricetum bonplandii var. Pernettya prostrata and (2) Sphagno recurvi-Caricetum bonplandii at Laguna El Pumar, Páramo El Pumar, 2880 m. Cb: Carex bonplandii; Gm: Geranium stoloniferum; Hc: Hypericum cardonae; Hjxc: Hypericum juniperinum x cardonae; Pp: Paepalanthus pilosus; Ppr: Pernettya prostrata; Sm: Sphagnum magellanicum; Sr: Sphagnum recurvum. Ss: Sphagnum sparsum. 3.1. Variant with Diplostephium obtusum Representative rel.: No. 46 (Cuello LSF85). Table 4.1, Fig. 4.4 Variante con Diplostephium obtusum Physiognomy and composition: Peat bog of Sphagnum magellanicum and Carex bonplandii with a shrub layer of Diplostephium obtusum (height 30-120 cm, cover 15-45%). Syntaxonomy: The variant is represented by 9 relevés with a total of 7 vascular species. The diagnostic species is Diplostephium obtusum, together with an absence of Pernettya prostrata and associated species. Ecology and distribution: The vegetation of this variant is present on the higher and drier edges of the NE-SE part of the peat bog of Laguna Seca in Páramo El 126 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation ______________________________________________________ Pumar. This community can also be found in small peaty valleys with drainage embedded in azonal bamboo páramo of the association Carici bonplandii– Chusqueetum angustifoliae. Figure 4.4. Physiognomy of the bog of the association Sphagno sparsi-Caricetum bonplandii var. Diplostephium obtusum. Páramo El Pumar. Laguna Seca. 2890 m. Lev. SF85. Do: Diplostephium obtusum; Cb: Carex bonplandii; Gm: Geranium stoloniferum Pp: Paepalanthus pilosus; Sm: Sphagnum magellanicum; Sr: Sphagnum recurvum Ss: Sphagnum sparsum. 3.2. Variant with Pernettya prostrata Representative rel. Cuello LP1. Table 4.1, Fig. 4.3 Variante con Pernettya prostrata Physiognomy and composition: Vegetation on hummocks near the edges of peat bog dominated by a layer of Carex bonplandii (height 15-25 cm, cover 30-80%) with a layer of a few low shrubs (height 5-40 cm, cover 1-40%) consisting of Pernettya prostrata, Hypericum cardonae and H. juniperinum x cardonae. Scarse young individuals of Hypericum juniperinum and Hesperomeles obtusifolia may also be present among the shrubs. A bryophytic ground layer is dominated by Sphagnum sparsum (30-100% cover), S. recurvum (10-40% cover) and Campylopus cuspidatum. Syntaxonomy: The variant is represented by 7 relevés with 9 vascular species and 5 moss species. Diagnostic species are: Pernettya prostrata, Hypericum cardonae and Campylopus cuspidatum. Sphagnum magellanicum has a low presence and cover when contrasted with the variant with Diplostephium obtusum. Ecology and distribution: Vegetation on hummocks in the non-flooded areas around of Laguna El Pumar at 2880 m, Páramo El Pumar. 127 ______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes CARICI BONPLANDII – CHUSQUEION ANGUSTIFOLIAE Cuello & Cleef 2009 Typus: Carici bonplandii – Chusqueetum angustifoliae Azonal Carex bonplandii - Chusquea angustifolia bunchgrass-bamboo páramo alliance / Páramo azonal de pajonal-bambusal (chuscales) de la alianza de Carex bonplandii y Chusquea angustifolia Physiognomy and composition: This alliance groups azonal bamboo páramo („chuscales‟) growing in humid level areas of low inclination dominated by Chusquea angustifolia. Syntaxonomy: This alliance is defined on the basis of 9 relevés with 14 vascular species and 5 moss species. Carex bonplandii, Chusquea angustifolia, Sphagnum sancto-josephense and Xyris subulata are the diagnostic species. The alliance contains one association so far, Carici bonplandii–Chusqueetum angustifoliae. Ecology and distribution: The vegetation of the alliance Carici bonplandii– Chusqueion angustifoliae is found growing close to lakes shores in Páramo El Pumar (2870-2890 m) and on small wet valleys in both Páramo El Pumar and Páramo de Guaramacal (~2900-3100 m). 4. Carici bonplandii – Chusqueetum angustifoliae Cuello & Cleef 2009 Typus: Rel. No. 64 (Cuello L27a). Table 4.1, Fig. 4.5, Photo 4.3 (top) Carex bonplandii - Chusquea angustifolia bunchgrass-bamboo páramo / Páramo de pajonal-bambusal de Chusquea angustifolia con Carex bonplandii Physiognomy: Dense bamboo páramo, or “chuscal”, with a bamboo layer of Chusquea angustifolia (height 1-1.5 m, cover 30-70%), a herbaceous layer, 20-30 cm in height dominated by Carex bonplandii, and a ground layer dominated by cushions of Sphagnum sancto-josephense and S. sparsum together with other bryophytes and some lichens. Composition and syntaxonomy: The association of Carici bonplandii - Chusqueetum angustifoliae is represented by 9 relevés with 14 vascular species and 9 bryophytes. Chusquea angustifolia (dominant), Carex bonplandii and Sphagnum sanctojosephense are diagnostic of the assemblage. Agrostis perennans, Daucus montanus and Xyris subulata var. acutifolia are present in the herb layer. Paepalanthus pilosus, Arenaria venezuelana, the bryophytes Breutelia squarrosa, Campylopus subjugorum, C. pilifer, C. nivalis, Sphagnum sancto-josephense, S. sparsum, the liverworts Jamesoniella rubricaulis, Lepidozia cf. macrocolea (3034), and Plagiochila sp., and the lichens Cladia aggregata and Peltigera neopolydactyla have also been observed in the ground layer. On the canes of Chusquea angustifolia the epiphytic moss Campylopus trichophorus can be found. In this association a provisional subassociation of Xyris subulata is distinguished by the presence of Xyris subulata var. acutifolia (rel.nr. 61-65) together with a few other common species of the zonal páramo association of Rhynchospora gollmeri - Ruilopezia jabonensis 128 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation ______________________________________________________ which is in contact in some locations. More relevés are needed for the formal description of this Xyris subulata subassociation. Ecology and distribution: The bamboo vegetation of the association of Carici bonplandii - Chusqueetum angustifoliae is found in level or concave areas of low slope (1 to 8 degrees) with a southwestern-west exposure at altitudes between ~2880 - 3100 m. They are positioned adjacent to lake margins or covering small wet valleys. This bamboo vegetation grows on relatively deep soils (50-120 cm), with gray colors (dry) and very dark (humid), sandy-loamy to loamy textures. The pH of the upper layer ranges from 3.6 to 4.2. Figure 4.5. Physiognomy of the association of Carici bonplandii-Chusqueetum angustifoliae (L27, 3030 m). Cb: Carex bonplandii; Ch: Cortaderia hapalotricha; Cha: Chusquea angustifolia; Rg: Rhynchospora gollmeri; Rj: Ruilopezia jabonensis; Ss: Sphagnum sparsum; Ssj: Sphagnum sancto-josephense; Xs: Xyris subulata var. acutifolia. DISTRICHO SUBMERSI – ISOETION Cleef 1981 Table 4.2 rel. nrs 1-10 Alliance of submerged bryophytic-isoetid communities in páramo lakes described from the Cordillera Oriental of Colombia (Cleef 1981). 5. Community of Sphagnum cuspidatum Representative rel.: No. 4 (Cuello PL4). Table 4.2, rel. 1-5, Photo 4.4 Submerged aquatic community with Sphagnum cuspidatum present at great density close the peaty shores of Laguna El Pumar. Water depth ranges between 30 and 120 cm. The community is also found in a small peaty depression with flushes of water in bamboo páramo near the „Las Antenas‟. 6. Isoëtetum karstenii Cleef 1981 Table 4.2, rel. 6-8 129 ______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Submerged aquatic community of Isoëtes karstenii, associated with Eleocharis acicularis (sterile) and filamentous algae thriving at a depth of between 0.6-1 m in Laguna El Pumar (2890 m). In deeper areas of the lake (1-1.5 m) black filamentous algae (cf. Microspora sp.) are also present within this community. More relevés are needed in order to more clearly define a possible further subdivision of the Isoëtetum karstenii. Table 4.2. Phytosociological table of aquatic communities of Ramal de Guaramacal, Andes, Venezuela. Rel. Num. Releves (Field Number) HD HD HD HD HD HD 1 2 3 4 5 6 7 8 9 10 GCC2 PL5 LS20 PL4* LP12 LP13 LP8 LP9 LP10 LP11 6. Isoëtetum Community/Association 5. Sphagnum cuspidatm karstenii 5. Community of Sphagnum cuspidatum Sphagnum cuspidatum 5 5 5 5 5 1 . . . . Eleocharis acicularis . . . 5 3 5 5 4 5 . black filamentous Algae . . . . 5 . . . 4 5 purple filamentous Algae 1 . . . . . . . . . 6. Isoëtetum karstenii gelatinous Algae . . . . . 5 5 5 5 . Isoëtes karstenii . . . . . 4 3 5 . . LP, PL Laguna El Pumar, 2880 m. Páramo El Pumar LS Laguna Seca, 2890 m. Páramo El Pumar GCC Páramo de Guaramacal, 3030 m. HD Hydrophyte * Type relevé Photo 4.4. Submerged aquatic community of Sphagnum cuspidatum in Laguna El Pumar. 130 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation ______________________________________________________ 4.5 DISCUSSION Phytosociological classification and methodological limitations The classification of azonal páramo vegetation of Guaramacal resulted in one new order, two new alliances, one earlier described alliance and six associations. Four of them are described as new syntaxa, one as a provisional community whilst one association (Isoëtetum karstenii Cleef 1981) was previously known from Colombia. A summary (presence) table of azonal páramo vegetation communities of Ramal de Guaramacal is shown in Table 4.3. The vegetation has been described on the basis of a relatively limited number of relevés from only two peat bogs and a small pond from two main páramo areas of Ramal de Guaramacal (Páramo de Guaramacal and Páramo El Pumar). Other azonal vegetation communities may be present in the páramos of Ramal de Guaramacal as other peat bogs are known to exist in the area but have not yet been reached and remain as yet unexplored. The limited accessibility of the area throughout most of the year, together with high precipitation levels and the frequency of mist, made the exploration of peat bogs areas of Ramal de Guaramacal extremely difficult, hence limiting the study of the vegetation to only the drier climatic conditions at only the most accessible sites. During these drier spells, some annual species were found in a senescent condition making taxonomic identification difficult. Some plants could even be ignored in the survey as they could already only persist as seeds in the seed bank. However, the low floristic diversity observed in azonal communities of Ramal de Guaramacal can be mainly attributed to the stress caused by extreme humidity with a subsequent dominancy of only a few well-adapted species. Also the relative isolation from the main system of the Cordillera de Mérida is probably a factor. In the Laguna Seca the substrate of the lake bottom remains humid, even in the dry season, sometimes with a small pond. An important issue is the (almost) absence of proper diagnostic species in the Sphagno recurvi-Caricetum bonplandii of the Agrostio-Paepalanthion. This phenomenon corresponds to the „central syntaxon concept‟ of Dierschke (1981, 1994). The almost absence of diagnostic species is differential against both other associations. Azonal bunchgrass patches Azonal bunchgrass páramo is represented by two small patches of vegetation belonging to associations of the new alliance Paepalantho pilosi - Sphagnion recurvi; both of which grow on top of a former peat bog. These bunchgrass communities are very restricted in both surface area covered and spatial location in Guaramacal, thus comparison (in ecology and floristic composition) with other communities elsewhere is limited. As far as we are aware, no similar communities have been reported from páramos. The presence of these communities, just on the border of the evaporated lake in Páramo El Pumar and on both sides of a remnant pond, suggests a relationship with wildlife in the origin of these communities. Páramo El Pumar got its name by the apparent abundance of the „Puma‟ Puma concolor, as indicated by the observed large quantities of vestiges, such as paw prints and the remains of digested prey. The evaporated lake „Laguna Seca‟ is 131 ______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes surrounded by patches of dwarf high Andean forest which offer shelter to these animals which appear to walk across the peat bog to drink or to hunt prey. The bunchgrass Ortachne erectifolia was previously described by the second author in 1981 as a being a species with a wide ecological range occurring between about 3500 and 4300 m. A bunchgrass community of Ortachne erectifolia (Lorenzochloetum erectifoliae Cleef 1981) is known from the dry zonal bunchgrass páramos at 3550-3650 m in the Colombian Cordillera Oriental (CLEEF 1981). That community, however, differs greatly in both ecology and floristic composition and limits comparisons with the subassociation ortachnetosum erectifoliae of the azonal Paepalantho pilosi–Agrostietum basalis from Guaramacal. The bunchgrass Ortachne erectifolia is also a common species in the zonal widespread grass páramo community of Espeletia schultzii–Aciachne acicularis in the Sierra Nevada de Mérida (Fariñas 1980, Berg 1998, Berg & Suchi, 2001). This characteristic, medium-sized bunchgrass species with stiff blades is also present in páramos of Costa Rica, Ecuador and Peru (Luteyn 1999, Briceño & Morillo 2006). The original Ortachnetum erectifolii is considered secondary vegetation having developed after severe disturbance, probably by fire (Cleef 1981). The other lax and low bunchgrass vegetation growing on former peat bog, characterized by the presence of Agrostis basalis and Polytrichum juniperinum, the subassociation typicum, is known only from this site to date. Agrostis basalis is an endemic species described from the Sierra Nevada de Mérida páramos (Laguna Negra) (Luces 1953) and has also been reported from Distrito Federal, Mérida, Miranda and Táchira states, where it is found growing between 2100 and 4150 m (Briceño & Morillo 2006; Hokche et al. 2008). Sphagnum bogs A regional study on the Sphagnum bogs of the northern Andes is still lacking as most studies report only on local peat bog types. Some of the azonal vegetation communities reported for the páramos of the Colombian Cordillera Oriental (Cleef 1981; Franco et al. 1986; Sanchez & Rangel 1990; Rangel 2000a) are also found in the lowermost superpáramos of Sierra Nevada de Mérida, such as: the Aciachnetum pulvinatae, the Wernerion community (Wernerietalia), communities with Carex bonplandii and communities with Gentiana sedifolia (Berg 1998; Berg & Suchi 2001). However, Sphagnum bog communities have not yet been formally reported despite being present in the páramos of the Sierra Nevada de Mérida. With regards to the Chusquea angustifolia páramos of Ramal de Guaramacal, affinities to other páramo communities and comparisons are limited. There are few species common to some of the vegetation types described for the Colombian Cordilleras (e.g. Cleef 1981; Cleef et al. 2005; 2008; Restrepo & Duque 1992, Franco et al. 1986; Sánchez & Rangel 1990). Curiously, Gentiana sedifolia, present in páramo and puna bogs in the tropical Andes, is lacking in Guaramacal páramo bogs. Isolation, low altitude and a deficit of phytosociological studies account for the presence of the assemblage of species observed in Ramal de Guaramacal which remain undescribed for other páramo areas to date. 132 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation _______________________________________________________ Table 4.3. Presence table of azonal páramo vegetation communities of Ramal de Guaramacal, Andes, Venezuela. Associations: 1. Paepalantho pilosi Agrostietum basalis; 2. Sphagno recurvi - Caricetum bonplandii; 3. Sphagno sparsi - Caricetum bonplandii; 4. Carici bonplandii - Chusqueetum angustifoliae; 5. Community of Sphagnum cuspidatum; 6. Isoetetum karstenii. Presence classes: I (0–20%), II (21–40%), III (41–60%), IV (61–80%) and V (81–100%). Number of relevés 22 22 16 9 5 3 Number of relevés 22 22 16 9 5 3 Association 1 2 3 4 5 6 Association 1 2 3 4 5 6 Agrostis basalis V I . . . . Calamagrostis sp. A . . . I . . Campylopus albidovirens IV . . . . . . . . V . . Arenaria venezuelana III I . I . . Lachemila verticillata Chusquea angustifolia Sphagnum sanctojosephense . . . IV . . III . . . . . Breutelia rhythidoides Xyris subulata . . I III . . I . . . . . Ortachne erectifolia Campylopus richardii . . . II . . IV . . . . . Breutelia squarrosa Polytrichum commune Ruilopezia jabonensis . . . II . . III . . II . . III I . . . . Cortaderia hapalotricha . . I II . . Cladonia dydima II . . . . . Gentianella nevadensis . . I II . . Cladonia andesita I . . . . . Peltigera neopolydactyla . . . II . . Rhynchospora gollmeri I . . II . . Oreobolus venezuelensis . . . I . . Cladia aggregata I . . . . . Hieracium avilae . . . I . . III II . . . . Jamesoniella rubricaulis . . . I . . Sisyrinchium sp. I I . . . . . . . I . . Calamagrostis bogotensis I . . . . . Nertera granadensis Ophioglossum crotalophorioides . . . I . . . . . I . . Polytrichum juniperinum Sphagnum sparsum . I V II . . Plagiochila sp. Sphagnum magellanicum II I IV . . . Rhacocarpus purpurascens . . . I . . . Agrostis perennans . . I . . . III V V V . . . Diplostephium obtusum . II II . . Agrostis sp. B . I . . . . Carex bonplandii Pernettya prostrata . . III . . . Geranium stoloniferum III I III II . Sphagnum cuspidatum . . . . V 1 Eleocharis acicularis . . . . II 5 black filamentous Algae . . . . I . purple filamentous Algae . . . . I . gelatinous Algae . . . . . 5 Isoëtes karstenii . . . . . 5 Campylopus cuspidatus Hypericum juniperinum x cardonae I . II . . . . . I . . . Hypericum cardonae . I I . . . Hypericum juniperinum . . I . . . Sphagnum sp.(orange) . . I . . . Hesperomeles obtusifolia . . I . . . Sphagnum recurvum III V V Paepalanthus pilosus V II II I I . . 133 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Sphagnum bogs in the páramos of Ramal de Guaramacal are represented by two new associations belonging to the new alliance of Carici bonplandii - Sphagnion recurvi. Sphagnum revurvum, S. sparsum, S. magellanicum, and S. sanctojosephense are the most characteristic species of the Sphagnum bogs of Guaramacal. Sphagnum cuspidatum is also common mostly in submerged conditions, whilst S. meridense is present with large cover in humid shrub páramo and adjacent dwarf forest edges. Sphagnum recurvum is the most dominant species in the peat bogs of Guaramacal. The moss cover of both associations of Sphagno recurvi - Caricetum bonplandii and Sphagno sparsi - Caricetum bonplandii grow together in the same peat bogs of Páramo El Pumar. The variants of each association correspond to different succesional stages related decreasing humidity (see below). A Bray-Curtis cluster similarity analysis comparing species composition of azonal Guaramacal Carex bonplandii associations with those of the Carex bonplandii communities described from Colombian cordilleras and the Sierra Nevada de Mérida, Venezuela, is shown in Fig. 4.8. The presence of Carex bonplandii and Sphagnum spp. has been reported in peat bog vegetation in Tatamá Park in the Colombian Western Cordillera (Cleef et al. 2005). An association of Caricetum bonplandii has been described from Laguna Chingaza (Franco et al. 1986, Rangel 2000c) and a Sphagnum sancto-josephense - Carex bonplandii community from Páramo de Monserrate (Vargas & Zuluaga 1985), both sites being near Bogotá in the Colombian Oriental Cordillera. Despite the common presence of Carex bonplandii, Sphagnum magellanicum and S. sancto-josephense in Sphagnum peatbog communities in Colombia, there are no other common species which allow establishment of relationships to the Sphagnum bog communities of Guaramacal. It is evident that the Guaramacal Sphagnum recurvum communities are most related to each other (Fig. 4.8). Similarities to other Sphagnum communities collected hap-hazardly in literature deal with different habitats (with different ecology): Sphagnum bog in morrainic valleys, more minerotrophic conditions with Sphagnum cover, Sphagnum fringes along glacial lake shores, and Sphagnum cover on different geological substrates. A coherent and representative body of relevés is lacking for a safe approach to classify the Sphagnum bogs of the northern Andes, as outlined above. The second author has some 60 unpublished relevés of Sphagnum bogs, mainly of the páramos of the Eastern Cordillera of Colombia (Cleef 1981). However, it was not the aim of the present study to develop a rather complete syntaxonomic scheme of páramo Sphagnum bogs. This is a task for the future. This is also the reason that we did not like to produce presence tables in our study, because the material published so far is too scanty, making the effort not meaningful. Aquatic communities Two submerged aquatic communities were recognized in páramos of Ramal de Guaramacal: (1) the association Isoëtetum karstenii and (2) the community of Sphagnum cuspidatum (Table 4.2). The The presence of Isoëtes karstenii of Laguna El Pumar shows a relationship of this low altitude páramo vegetation with other proper upper páramo aquatic communities observed in páramo lakes of the 134 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation _______________________________________________________ Sierra Nevada de Mérida and described from such lakes in the Colombian Cordillera Oriental. The aquatic association Isoëtetum karstenii was documented from cold lakes, mostly with mineral bottoms, in the grassparamo (3500-3700 m) up to the superpáramo at 4425 m of the Sierra Nevada del Cocuy, and up to 4100 m in the Sumapaz páramo of the Colombian Cordillera Oriental (Cleef 1981). The association has also been found at 4300 m on the volcano S. Isabel in the Colombian Cordillera Central (Salamanca et al. 2003) and further south to Nariño, southern Colombia. The association Isoëtetum karstenii belongs to the alliance of Ditricho submersi-Isoëtion (Cleef 1981). In the Sierra Nevada de Mérida in Venezuela, Isoëtes karstenii has been collected between 3430 and 4250 m (Cleef 1981, unpubl.; Small & Hickey 2001). One relevé (Cleef 552A) of Isoëtetum karstenii typicum has been made by the second author at 4250 m in the lower superpáramo of La Culata (see Table 4.4). Isoëtes karstenii grows submerged in permanent lakes and ponds (occasionally streams) between ca. 3300-4600 m. The occurance of Isoëtes karstenii in Guaramacal is the lowest recorded and could be a relict from Glacial times. Its habitat generally corresponds to the upper páramo proper and the superpáramo. During Glacial times, it is most likely that these lakes on the top of the Ramal de Guaramacal range were part of the superpáramo. Shifts upslope under Holocene conditions was impossible because the present lake is on top of the ridge of Guaramacal. With increasing temperature and humidity (now a bamboo páramo in nature) the Isoëtes karstenii plants survived, growing on an organic lake bottom, and became associated with other plant species of peaty lake bottoms, such as: Eleocharis acicularis, Sphagnum cuspidatum and diverse algae. Table 4.4. Table of presence of Isoetetum karstenii in páramo areas of Colombia and Venezuela. Presence classes: I (0–20%), II (21–40%), III (41–60%), IV (61– 80%) and V (81–100%). *cover values in percentage. Sites: (1). Páramos Cocuy, Sumapaz, Colombian Cordillera Oriental (Cleef 1981); (2). Lev. A.M. Cleef & S. Salamanca # 622A and #584. Laguna de Silencio, Base de S. Isabel. Alt. 4170-4315 m. (Parque Los Nevados), Colombian Cordillera Central (Salamanca et al. 2003); (3). Lev. Cleef 552A (with A. Chaverri & O. Rangel). Venezuela, Páramo La Culata, superpáramo bajo. Lagunita glaciar a 4.250 m.; (4). Laguna El Pumar, 2880 m. Ramal de Guaramacal, Andes, Venezuela. Isoëtetum karstenii Number of releves Altitude (m) Site number Isoëtes karstenii Blindia magellanica Ditrichum submersum Eleocharis acicularis Isotachis serrulata s.l. Sphagnum cuspidatum Algae Cord. Oriental Colombia Cord. Central Colombia 8 3500-3700 1 V I II . II . V 2 4170-4350 2 5 . 3 . . . . Páramo La Culata, Mérida, Venezuela 1 4250 3* (80) . . . . . (1) Guaramacal Venezuela (this study) 3 2880 4 5 . . 5 . 1 5 135 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Under these conditions we expected the presence of Isoëtes palmeri, known from lower páramo lakes with gyttja bottom in the Sierra Nevada de Mérida and the Eastern Cordillera of Colombia (Cleef 1981; Small & Hickey 2001). It would appear that, to date, the latter mentioned species has not yet arrived in Guaramacal. Table 4.5. Table of presence of the Sphagnum cuspidatum community from Guaramacal combined to those S. cuspidatum communities from páramo areas near Bogota, Colombia. Presence classes: I (0–20%), II (21–40%), III (41–60%), IV (61– 80%) and V (81–100%).* cover values in percentage. (1 & 2) Cordillera Oriental (Cleef 1981); (3) Norte de Pantano Largo, Flanco Noroeste en el Páramo de Guargua. Colombia (Sánchez & Rangel 1990); (4) Lev. Cleef 54. Páramo de Palacio, Laguna Buitrago, 3.620 m. Cundinamarca. Colombia; (5) Laguna El Pumar, 2880 m. Ramal de Guaramacal, Andes, Venezuela (this study). Num. relevés Alt. (m) Site Sphagnum cuspidatum Eleocharis acicularis Eleocharis stenocarpa ‘black/purple filamentous Algae’ ‘gelatinous Algae’ Bartsia sp. Carex bonplandii Carex aff.pygmaea Carex pichinchensis Juncus stipulatus Juncus breviculmis Lysipomia sphagnophila ssp. minor Nertera granadensis Gentianella corymbosa Halenia gentianoides Lepidozia macrocolea Riccardia smaragdina Breutelia chrysea Riccardia hansmeyeri Sphagnum magellanicum Campylopus cuspidatus var. dicnemoides Pleurozium schreberi Chisaca Neusa Guargua Palacio 1 3625 1 3 5 . 5 5 . . . . . . . . . . . . . . . . 1 3690 2 2 30 . 1 1 . . . . . . . . . . . . . . . . 5 3480-3730 3 V 1 3620 4* 95 III . . . II . IV . I . III . . . . . . . II . . . <1 <1 10 <1 . <1 <1 30 5 2 1 1 <1 Guaramaca l 5 2890 5 V II . I I . . . . . . . . . . . . . . . . . . . <1 . <1 Also only in site 3: Campylopus pittieri (III), Peltigera sp. (III), Agrostis sp. (II), Blechnum loxense (II), Calamagrostis effusa (II), Hydrocotyle bonplandii (II), Hypericum myricariifolium (II), Lachemilla fulvescens (II), Paspalum bonplandianum (II), Pernettya prostrata (II), Plagiocheilus solivaeformis (II), Riccardia sp. (II), Rubus acanthophyllos (II), Valeriana longifolia (II), Agrostis tolucensis (I), Brachythecium sp. (I), Callitriche nubigena (I), Cortaderia bifida (I), Festuca sp. (I), Grammitis moniliformis (I), Hieracium avilae (I), Hypotrachyna sp. (I), Laestadia muscicola (I), Niphogeton ternata (I), Pentacalia abietina (I), Pentacalia nitida (I), Puya santosii (I), Rhynchospora macrochaeta (I). 136 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation _______________________________________________________ Sphagnum cuspidatum aquatic communities of Laguna El Pumar show some relationships to other communities with S. cuspidatum described by Cleef (1981) from páramo areas near Bogotá in the Colombian Cordillera Oriental due to the common presence of Sphagnum cuspidatum, Eleocharis acicularis and undetermined filamentose algae. Another vegetation community with Sphagnum cuspidatum was also previously described near Bogotá by Sánchez & Rangel (1990), such as the Carici-Sphagnetum cuspidati (Sánchez & Rangel l.c.). However, this is a peat bog vegetation community with only Sphagnum cuspidatum in common with the aquatic community from Guaramacal. One relevé (Cleef 54) has apparently been taken under very similar ecological conditions as in Guaramacal; however, no other species besides S. cuspidatum are common to it (see Table 4.5). In Sphagnum peat bog zones of Europe, the association Sphagnetum cuspidatoobesi Tüxen & von Hübschmann 1958 em. Schaminée et al. has been recognized. The stages of succession are as those contained in the association Sphagno cuspidate - Rhynchosporetum albae Osvald 1923 with subassociations marking hydroseral succession: sphagnetosum cuspidati and sphagnetosum recurvi. The peat of Caricetum limosae Osvald 1923 em. Dierssen 1982 is slightly richer in nutrients; Carex bonplandii could be a vicariant sedge species. All these European Sphagnum peatbog communities belong to the class of Scheuchzerietea Den Held, Barkman & Westhoff 1969. Some prominent bryophyte species are common to the Sphagnum cuspidatum community from the Venezuelan Andes. The Guaramacal relevés from the Eleocharis acicularis community compare easily to the community of the same species from the Colombian Eastern Cordillera páramos at between 3550-3850 m (Cleef 1981, Table 4.9). In the Holarctic zone of the northern hemisphere, these communities have been described under the class Littorelletea Br.-Blanquet & Tüxen. The temperate association Littorrello uniflorae - Eleocharitetum acicularis Malcuit 1929 and the alliance Eleocharition acicularis Pietsch 1966 em. Dierssen 1975 are distributed from Iceland to NW Europe. Diagnostic species for the association and alliance are: Eleocharis acicularis, Elatine hexandra and Echinodorus repens. Dierssen (1975) ranks E. acicularis as a species with a wide ecology, mostly forming monospecific communities with regional companions (‘races’). This habit is apparently also shared by the neotropical plants of E. acicularis. Aquatic/bog vegetation, dominated by Eleocharis acicularis and Sphagnum recurvum, has been documented for the peat bog area of Laguna La Chonta at 2310 m in the Costa Rican Cordillera de Talamanca (Brak et al. 2005). Ruthsatz (1977) also refers to Eleocharis acicularis growth in shallow puna lakes in northern Argentina (3500-3800 m). Deil (2005) reviewed the worldwide ephemeral vegetation inclusive of the amphibic communities described thus far. With relevance to our case Sphagnum cuspidatum and Eleocharis acicularis communities have been discussed, as has the Ditricho-Isoëtion karstenii Cleef 1981 alliance which also includes the Guaramacal Eleocharis acicularis - Isoëtes karstenii lake bottom vegetation. 137 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Spatial distribution and succession of vegetation communities A detailed map of spatial distribution of vegetation types associated with the lakes of Páramo El Pumar are shown in Figure 4.6. A schematic showing the hydroseral sequence of vegetation communities from open water in the central part of the Laguna El Pumar towards the shore is presented in Fig. 4.7. Figure 4.6. Vegetation map of Laguna Seca, Páramo El Pumar, 2890 m. Ramal de Guaramacal, Andes. Venezuela. The submerged community of Isoëtetum karstenii is followed or surrounded by Eleocharis acicularis. Next, there are dense masses of submerged Sphagnum cuspidatum with E. acicularis. Towards the marshy shore there is the typicum variant of the Sphagno recurvi - Caricetum association. The Sphagno recurvi – 138 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation _______________________________________________________ Caricetum bonplandii is associated with the more humid areas of the peat bog, representing an earlier succesional stage, which is fully dominated by Sphagnum recurvum in the wet shallow areas and on hummocks with the shores being first colonized by Carex bonplandii. The Sphagno sparsii - Caricetum bonplandii corresponds to a later succesional stage and is present on drier areas as shown also in Figure 4.3. The drier hummocks with the association of Sphagno sparsi Caricetum bonplandii near the shores are further colonized by small prostrate dwarfshrub species which form the variant of Pernettya prostrata. Figure 4.7. Physiognomy and hydroseral sequence of the vegetation associations of Laguna El Pumar: (1) Association of Sphagno recurvi - Caricetum bonplandii. (2). Community of Sphagnum cuspidatum. (3) Isoetetum karstenii. Cb: Carex bonplandii; Ea: Eleocharis acicularis; Ip: Isoëtes karstenii; Sc: Sphagnum cuspidatum; Sr: Sphagnum recurvum. Ss: Sphagnum sparsum. Bamboo páramo As discussed in Cuello & Cleef (2009b, Chapter 3), Chusquea angustifolia bamboo páramos had not previously been studied in Venezuela. Bamboo páramo communities of Chusquea angustifolia or Chusquea spencei have been reported for the wet páramos of Táchira state (Bono, 1996). Several azonal bamboo páramo communities (‘chuscales’), dominated by the bamboo species Chusquea tessellata growing in wet páramo areas, have been widely documented from Andean páramos along the Colombian cordilleras (e.g., Cleef 1981, Rangel 2000, Rangel et al. 2006, Cleef et al. 2006, 2008) 139 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Figure 4.8. Cluster analysis comparing species presence values of azonal Guaramacal Carex bonplandi páramo associations with those azonal Carex bonplandii páramo communities of the Colombian Cordilleras and Sierra Nevada de Mérida, Venezuela. Sites: (1) Caricetum bonplandii, Laguna de Chingaza, Cordillera Oriental, Colombia (Franco et al. 1986); (2) Caricetum bonplandii, Tatamá massif, Cordillera Occidental, Colombia (Cleef et al. 2005); (3) Junco effuse - Caricetum bonplandii, Páramo Frontino, Cordillera Occidental, Colombia (Rangel et al. 2005); (4) Swamp with Carex, Llano de Paletara, Cordillera Central, Colombia (Restrepo & Duque, 1992); (5) Peat bog S of Bogota, Chisacá, Cordillera Oriental, Colombia (Sánchez & Rangel, 1990); (6) Sphagno-Caricetum bonplandii, Páramo de Monserrate, Colombia (Vargas & Zuluoaga, 1985); (7) Comunity of Carex bonplandii-Lachemilla sprucei, Sierra Nevada de Mérida, Andes, Venezuela (Berg, 1998); (8) Sphagno sparsiCaricetum bonplandii, Guaramacal, Andes, Venezuela (this study); (9) Sphagno recurvi-Caricetum bonplandii, Guaramacal, Andes, Venezuela (this study); (10) Carici bonplandii - Chusqueetum angustifoliae, Guaramacal, Andes, Venezuela (this study). 140 Chapter 5 Phytogeography of the vascular páramo flora of Ramal de Guaramacal (Andes, Venezuela) and its ties to other páramo floras Nidia L. Cuello A., Antoine M. Cleef and Gerardo A. Aymard C. The text of Chapter 5 has been submitted to FLORA (general part; to be accepted after review) and to ANALES DEL JARDÍN BOTÁNICO DE MADRID (Venezuelan part, under review) Phytogeography of the vascular páramo flora of Ramal de Guaramacal _______________________________________________________ 5.1 INTRODUCTION Páramo is the open equatorial alpine vegetation located above the upper forest line (UFL) and below the permanent snow line from the northern Andes to Panamá and Costa Rica. Páramo flora is considered the high-mountain flora most rich in species of the world (Smith & Cleef 1988). Phytogeographical studies at the generic level have shown that páramo flora has evolved mainly by immigration of cool-adapted plants from temperate regions (temperate elements) and, in relatively lower proportion, by adaptation of lower-elevation plants (tropical elements) to high-altitude environments and by speciation through repeated isolation in situ (Van der Hammen & Cleef 1986, Smith & Cleef 1988; Cleef & Chaverri 1992; Ramsay 1992; Ricardi et al. 1997; Sklenář & Balslev 2007). Páramo areas in Venezuela exhibit great environmental variability in climate at regional and local scales. Through the about 400 km southwest to northeast extension of the main Venezuelan Andean mountain chain, the Cordillera de Mérida, there is a wide range of páramo hydrological conditions, from dry páramos with 650 mm/year in a single rainy season, to permanently humid páramos with over 3000 mm distributed throughout the year (Monasterio & Reyes 1980). The latter conditions characterize the páramo areas of Ramal de Guaramacal, an outlier and comparatively low elevation (3130 m) range located at the northeastern end of the Venezuelan Andes (Fig. 5.1). North Andean páramo vegetation has been divided into several altitudinal zones (for a complete review we refer to Luteyn 1999). The Cuatrecasas (1934, 1958) altitudinal classification of superpáramo, páramo and subpáramo has since been widely adopted (Cleef 1981; Acosta-Solís 1984; Ramsay 1992; Jørgensen & Ulloa 1994; Luteyn 1999; Hooghiemstra et al. 2006; Rangel-Ch. 2000a). For Venezuelan páramos, Monasterio (1980a) recognises two altitudinal zones called ‘pisos altitudinales’: a High Andean zone or ‘Piso Altiandino’ (4000-4800 m) and the Upper Andean zone or ‘Piso Andino Superior’ (2800-4000 m). Studies of phytogeography of the Venezuelan páramo flora started with a first approach of the worldwide distribution of Venezuelan páramo flora presented by Faría (1978) after the publication of the 'Flora de los Páramos de Venezuela' by Vareschi (1970). This very first flora of the páramos was not complete, but anyway representative. Local floristic listings and phytogeographical analyses that include páramo areas such as those from Táchira and Trujillo states have appeared (Bono 1996; Ortega et al. 1985; Rivero & Ortega 1989; Dorr et al. 2000; Aymard 1999). Bono (1996) also included a phytogeographical breakdown into geographic flora elements of the páramo flora of Táchira State, Venezuela. More recent phytogeographical analyses of the Venezuelan páramo flora have been published by Ricardi et al. (1997, 2000). The first study deals with the phytogeography of the Mérida superpáramo; the second study highlights the Sierra Nevada de Mérida as a new phytogeographical subprovince of the northern Andes. Briceño & Morillo (2002, 2006) recently published a list of the flowering species 143 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes of the Venezuelan Andean páramos, first the dicots, later followed by the monocots. The aim of this study is to analyse the phytogeographical affinities of the low altitude and wet páramo of Ramal de Guaramacal in order to contribute to a better understanding of the distribution, origin, and diversity of its flora. Particular emphasis is given to the analysis of the floristic connections of the Guaramacal páramo flora with the neighboring dry páramos of the Sierra Nevada de Mérida and other páramo floras of the northern Andes and Central America. One of our main objectives was to determine whether the phytogeographical analysis and patterns of the páramo flora of Ramal de Guaramacal are determined by temperature (a function of altitude) as has been established in previous studies (e.g. Cleef 1979; Mérida Andes, Ricardi et al. 1997, 2000) or more by the overall humidity, which characterizes the Guaramacal bamboo páramo. We have some indications that ambient humidity may play a role, e.g. in the case of the bamboo páramo of Tatamá (Cleef 2005), the páramos of Podocarpus National Park (PNP) in southern Ecuador (Lozano et al., 2009) and also in the Talamancas of Costa Rica (Cleef & Chaverri 1992). 5.2 STUDY AREA Ramal de Guaramacal is located south of the town of Boconó, Trujillo state, approximately 120 km Northeast of Mérida, in the centre of the Sierra Nevada de Mérida (Fig. 5.1). Páramo areas of the summit of Ramal de Guaramacal are found between 2800-3100 m, in the surroundings and between of 'Las Antenas' area (9 o 14’ 1.02” N; 70o 11’ 6.47” W) and Páramo El Pumar (9o 12’ 45.6” N; 70o 12’ 5.55” W), 2.5 km Southwest of 'Las Antenas'. The climate is very humid. According the first climatic records of the Davis Pro 2 climate station installed near the summit of Guaramacal (3100 m) by the first author beginning in December 2006, there are over 290 days/year of rain. Maximum precipitation occurs during April - July. Yearly precipitation is high, reaching over 3200 mm/year and relative humidity attains 100% most of the year. Temperatures remain low throughout the year with a diurnal temperature variation from 4-6 oC to 14-16 oC; mean minimum temperature of 5.3 oC and mean maximum of 12.3o C; the lowest temperatures recorded being between -0.1-1.3 oC in the month of January; the highest between 17.8-18.3 oC in the month of March, with mean yearly temperature of 8.1-8.6 oC for the period from December 2006 - July 2009. Dominant wind directions are of ESE, SE and WNW, with a registered average speed of 3.9-5.8 km/h. Maximum wind speed registered has been of 77.2 km/h, SE in the month of July 2008. The vegetation of the Páramo of Guaramacal characterized by a mosaic of subpáramo formations (shrub páramo, bunchgrass páramo, most common bamboo páramo), intermingled with patches of dwarf forests (Subalpine Rain Forest or SARF sensu Grubb 1977), distributed between 2800 and 3130 m (Cuello & Cleef 144 Phytogeography of the vascular páramo flora of Ramal de Guaramacal _______________________________________________________ 2009a, b). For detailed information on forest and páramo vegetation of Guaramacal we refer to Chapters 2-4 and Cuello and Cleef (2009a, b, c) The study and full inventory of the flora of the whole Ramal de Guaramacal range is still ongoing. Preliminary accounts of the vascular flora were first presented by Ortega et al. (1988) and later by Dorr et al. (2000). After that, several new records for the flora as well as new species to science have been documented for Guaramacal (Taylor 2002; Stergios & Dorr 2003; Stančík 2004; Niño et al. 2005; Cuello & Aymard 2008). A species inventory from páramo areas, including, páramo and subpáramo-connected dwarf forest vegetation islands is presented in this study (Appendix 5). Figure 5.1. The location of Guaramacal páramo study site (G) and the other páramo areas in northern South America and Central America which floristic comparison are made: Sierra Nevada de Mérida (SNM) in Venezuela, Talamancas páramos (PT) in Costa Rica – Panamá; Sierra Nevada del Cocuy (SNC), Serranía de Perijá (P), Tatamá massif (T) and Sumapáz páramo (S) in Colombia; and Podocarpus National Park (PNP) in southern Ecuador. 145 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes 5.3 METHODS Páramo data were collected from phytosociological studies (Cuello & Cleef 2009b, c) and 585 numbers of general plant collections made by the first author from páramo areas of Ramal de Guaramacal. Additional information was obtained from herbarium collections and database of Herbario Universitario PORT, UNELLEZ in Guanare. The data set includes a total of 251 vascular plant taxa belonging to 153 genera and 69 families that are listed in Appendix 5. For each vascular genus listed the present geographical distribution has been determined on basis of Mabberley (2008); occasionally also recent phylogenetic studies (e.g. Chacón et al. 2006: Oreobolus; von Hagen & Kadereit 2003: Halenia; Meudt & Simpson 2007: Ourisia, etc). Species distribution was also determined by literature and by the W3Tropicos database. Plant genera have been grouped into different phytogeographical elements belonging to three mayor components according to Cleef (1979, 1981, and 2005) and Cleef & Chaverri (1992). 1) THE TROPICAL COMPONENT is made up of four flora elements: (a) Wide tropical (WTR) taxa; (b) Andean alpine (NT-AA) taxa; (c) Páramo endemics (P); (d) Neotropical montane elements (NT-M ) Thus, the former ‘Other Neotropical elements’ (Cleef 1979), viz. ‘Neotropicalmontane element’ (Cleef & Chaverri 1992) is subdivided into the Andean alpine element (NT-AA) and Neotropical montane element (NT-M) following Simpson & Todzia (1990) and Sklenář & Balslev (2007). 2) TEMPERATE COMPONENT contains three flora elements: (a) Widely distributed temperate (WTE) taxa; (b) Holarctic (HO) groups; (c) Austral-Antarctic (AA) taxa. 3) COSMOPOLITAN COMPONENT consists of only the Cosmopolitan taxa (CO). For a biogeographical analysis into species level, overall species distribution was grouped into ten different geographic elements, adapting from previous phytogeographical studies in the Andean region such as those used by Kelly et al. (1994) and Schneider (2001). From the total 251 taxa recorded for the Guaramacal summit area, for the specific biogeographical analysis we used only 224 species with a defined distribution (those which were determined to species and/or 146 Phytogeography of the vascular páramo flora of Ramal de Guaramacal _______________________________________________________ infraespecific level), including all open páramo and dwarf forest islands (of Subalpine Rain Forest or SARF sensu Grubb 1977) vegetation species. Floristic relationships of Guaramacal páramo generic flora to other páramo floras of the northern Andes and Central America were assessed using ordination (Detrended Correspondance Analysis – DCA, Principal Component Analysis PCA) and classification (Cluster analysis) methods for seven additional available different páramo flora datasets. Floristic lists from each páramo site were obtained from literature or unpublished data from authors (see Table 5.1). The accounts on the different páramo floras were carefully screened by the authors for taxonomic update and true forest taxa were deleted. Two dataset were considered for these analyses, A) one which included the Guaramacal list of total genera of 150 from páramo & SARF combined, and B) the other that includes Guaramacal list of 108 genera from open páramo only. For these analyses, both data matrices A (404 genera x 8 sites) and B (347 genera x 8 sites) of presence/absence of genera in the eight páramo floras were analyzed using program PC-Ord 4 (McCune & Mefford 1999). Cluster analyses of shared genera used Sørensen (Bray-Curtis) as distance measure method and Group Average as group linkage method. Table 5.1. Reference information for the eight páramo flora dataset used for comparative multivariate analysis. PARAMO Max. Aprox. Area Number of Source of floristic Elev. Prec. (ha) genera data (m) (mm/year) considered Sierra Nevada del 5330 1300 112,418 213 Cleef, unpubl. data Cocuy, Colombia ca.3000 Sierra Nevada de 4980 813 69100 149 Ricardi et al. 1997, Mérida, 1811 Berg & Suchi, 2001 Venezuela Sumapaz, 4250 ~1200102,945 211 Cleef 1979, Franco Cordillera 3000 & Betancur 1999, Oriental, Pedraza-Peñaloza et Colombia al. 2004, RangelCh. 2000c Tatamá massif, 4100 >3000 5,000 114 Cleef et al. 2005, Cordillera Cleef 2005 Occidental, Colombia Serranía de 4100 ~2000 4,560 137 Rivera-Díaz 2007 Perijá, Colombia Talamancas, 3850 200015,205 177 Barrington 2005, Costa 4000 Vargas & Sánchez Rica/Panamá 2005 South Ecuador: 3695 ~5000 14,169 201 Lozano et al. 2009, Podocarpus mm Bussmann 2002, National Park Keating 1999 (PNP) Guaramacal, 3130 >3200 ~400 150/108 This study Venezuela mm 147 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes 5.4 RESULTS Flora characteristics To date, the vascular flora of summit areas of Ramal de Guaramacal is composed of a total of 251 taxa; 17 families, 28 genera, and 65 species of ferns, and 52 families, 124 genera and 186 species of angiosperms. In general, the most species rich families are Asteraceae, Poaceae, Ericaceae and Orchidaceae, followed by the ferns families Grammitidaceae and Lycopodiacae. The most diverse genera are the ferns Elaphoglossum, Huperzia and Hymenophyllum. Of the total 251 taxa, only 169 species belonging to 108 genera have been registered for proper subpáramo-páramo vegetation, excluding the SARF vegetation (Table 5.2). Geographical composition of genera The composition of genera of phytogeographic elements in páramo areas of Ramal de Guaramacal is presented in Table 5.3. A total of 150 genera is contained in Table 5.3, including 41 genera of woody, herbaceous and epiphytic plant species found inside the forest islands (of SARF vegetation) surrounded by páramo vegetation, and 27 genera present in azonal páramo vegetation. Exotic weedy genera such as Polypogon, Rumex and Sonchus among others, present in disturbed areas, are excluded. Proportions of phytogeographic elements and components of the studied data set are shown in Figure 5.2 as well as in Table 5.5. Table 5.2. Most diverse families and genera from the vascular flora of summit areas (including SARF) of Ramal de Guaramacal, Andes, Venezuela. For only proper páramo flora numbers of taxa are indicated in parenthesis. Num Num Num FAMILIA Gen spp. Genus spp. ASTERACEAE 14(10) 24 (17) Elaphoglossum 10 (5) POACEAE 10 21(20) Huperzia 8 (6) ERICACEAE 10(8) 15(13) Hymenophyllum 7 (2) ORCHIDACEAE 9(4) 14(7) Chusquea 7 (6) GRAMMITIDACEAE 6(3) 13(6) Rhynchospora 6 LYCOPODIACEAE 3 12(10) Gaultheria 5 CYPERACEAE 4 10 Hypericum 4 DRYOPTERIDACEAE 2(1) 11(5) Blechnum 4 (2) RUBIACEAE 6(5) 7(6) Melpomene 4 HYMENOPHYLLACEAE 1 7(2) Miconia 4 (1) MELASTOMATACEAE 3 6(3) Pentacalia 4 (2) BROMELIACEAE 4 5 Ruilopezia 4 MYRSINACEAE 3(2) 5(3) Weinmannia 4 (0) CLUSIACEAE 1 4 ROSACEAE 3 4 BLECHNACEAE 1 4(2) CUNONIACEAE 1(0) 4(0) Totals 69 (53) families 148 150 (108) genera 251 (169) species Phytogeography of the vascular páramo flora of Ramal de Guaramacal _______________________________________________________ Table 5.3. Composition of genera of phytogeographic elements in páramo areas of Ramal de Guaramacal in the Venezuelan Andes. Asterisk* represents genera recorded from SARF vegetation. Element Tropical (TRO) Páramo endemics (P) Andean alpine (NT-AA) Neotropical montane (NT-M) Wide tropical (WTR) Genus Libanothamnus Ernst, Paragynoxys* (Cuatrec.) Cuatrec., Ruilopezia Cuatrec. Lachemilla (Focke) Rydb. Ageratina Spach, Arcytophyllum Willd. ex Schult. & Schult. f., Aulonemia Goudot, Baccharis* (Less.) DC., Bejaria Mutis ex L., Bomarea Mirb., Brachionidium* Lindl., Campyloneurum C. Presl., Cavendishia Lindl., Centropogon C. Presl., Ceradenia L. E. Bishop, Cestrum* L., Chusquea Kunth, Cochlidium* Kaulf., Corynaea* Hook. f., Cranichis* Sw., Cybianthus Mart., Dendrophtora Eichler, Deprea Raf., Diplostephium Kunth, Disterigma Sleumer, Elleanthus C. Presl., Epidendrum L., Eriosorus* Fée, Excremis Willd., Freziera* Willd., Gaiadendron* G. Don, Gamochaeta Wedd., Geissanthus* Hook. f., Glossoloma* Hanst., Gomphichis* Lindl., Greigia Regel, Guzmania Ruíz & Pavón, Hesperomeles Lindl., Huperzia Bernh., Isidrogalvia Ruíz & Pavón, Jamesonia Hook. & Grev., Lellingeria* A.R. Sm. & R.C. Moran, Macrocarpea* (Griseb.) Gilg, Manettia Mutis ex L., Miconia Ruíz & Pavón, Monnina Ruíz & Pavón, Monochaetum (DC.) Naud., Munnozia Ruíz & Pavón, Myrcianthes* O. Berg, Odontoglossum Kunth, Oreopanax* Decne. & Planch., Pachyphyllum* Kunth, Paepalanthus Kunth, Palicourea Aubl., Pentacalia Cass., Phoradendron* Nutt., Pleurothallis* R. Br., Psammisia* Klotzsch, Pterichis Lindl., Puya Molina, Siphocampylus Pohl, Sphyrospermum Poepp. & Endl., Terpsichore* A.R. Sm., Themistoclesia Klotzsch, Thibaudia* Ruíz & Pavón, Tillandsia L., Tropaeolum L., Ugni Turcz. Achyrocline (Less.) DC., Begonia* L., Chaetolepis (DC.) Miq., Clethra* L., Culcita* C. Presl., Cyathea* Sm., Elaphoglossum Schott ex J. Sm., Grammitis Sw., Hedyosmum* Sw., Histiopteris (J. Agardh) J. Sm., Hymenophyllum Sm., Ilex L., Melpomene A.R. Sm. & R.C. Moran, Mikania* Willd., Myrsine L., Paesia J. St.-Hil., Peperomia* Ruíz & Pavón, Phytolacca L., Pilea* Lindl., Plagiogyria* (Kunze) Mett., Psychotria* L., Sticherus C. Presl., Symplocos* Jacq., Xyris L., Temperate Austral-Antarctic (AA) Calceolaria L., Cortaderia Stapf., Cotula L., Drimys* J.R. Forst. & G. Forst., Fuchsia* L., Gaultheria L., Hypoxis L., Muehlenbeckia Meisn., Nertera Banks ex Gaertn., Oreobolus R. Br., Ortachne Nees ex Steud, Orthrosanthus Sweet, Pernettya Gaudich., Sisyrhynchium L., Weinmannia* L. Holarctic (HO) Castilleja Mutis ex L. f., Diplazium* Sw., Gentianella Moench, Halenia Borkh, Sibthorpia* L., Vaccinium L. Wide temperate Agrostis L., Arenaria L., Calamagrostis Adans., Carex L., Danthonia DC., Daucus L., Epilobium L., Festuca L., Galium L., Geranium L., Hieracium L., Hypericum L., Isoëtes L., Juncus L., Luzula DC., Plantago L., Poa L., Polypogon Desf., Stellaria* L., Valeriana L., Viola L. (WTE) Cosmopolitan (CO) Asplenium* L., Blechnum L., Cynoglossum L., Eleocharis R. Br., Equisetum L., Gnaphalium L., Hydrocotyle L., Lycopodiella Holub., Lycopodium L., Ophioglossum L., Oxalis L., Polypodium L., Rhynchospora Vahl, Rubus L., Solanum L., Thelypteris Schmidel, Utricularia L. 149 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes 1. Tropical component On the basis of 150 vascular plant genera more than half 61.3% (92 genera) are tropical. Neotropical montane element genera are those that range from montane forest into the supraforest zone. This element is represented by 64 genera (42.7%). Twenty one of them (including 10 herbaceous genera) correspond to SARF vegetation (Table 5.3). When considering only the genera recorded from páramo vegetation, the Neotropical montane element is represented by forty two genera (38.9%), four of them are found in azonal páramo (Fig. 5.2). Wide tropical element genera are widely distributed in the tropics, including those exclusively African-American and Asian-American. This element is represented by 24 genera (16%). Ten of them (including five herbaceous genera) were found in SARF islands (Table 5.3). When considering only páramo vegetation genera, the wide tropical element accounts for twelve genera (11.1%) and only one of them (Xyris) is found in azonal páramo. Páramo endemic element genera are those confined to páramo (and sometimes also in the downslope Andean forests) and represented in the study area by 3 genera (2%), two of them small trees: Libanothamnus at the UFL and Paragynoxys, a species from SARF. Most spectacular are the 4 species of Ruilopezia (Espeletiinae), endemic for Venezuela. Only one Páramo endemic genus (Ruilopezia) is found in azonal páramo. The Andean alpine element is represented by only one herbaceous genus (0.7%): Lachemilla, which is found mainly in azonal páramo. 2. Temperate component Forty two genera are of temperate distribution (28%), including six genera from SARF. When considering only páramo vegetation genera, the temperate component is represented by 36 genera or 33.3%. These include 31 herbaceous genera, 16 of them counted from azonal páramo. Widespread temperate element genera are distributed in temperate and cool regions from both hemispheres. This element is represented in the study area by twenty one genera (14%). The genus Stellaria was recorded from borders of SARF vegetation. When excluding this genus, the wide temperate element is represented by 18.5% for twenty páramo genera, eight of them counted from azonal páramo. Austral-Antarctic element genera have southern temperate distribution. This element is represented by fifteen genera (10%). Among them, three genera were registered from SARF (Table 5.3). Twelve Austral-Antarctic element genera (including 8 herbaceous) of only páramo vegetation account for 11.1%. Eight genera are counted from azonal páramo. Holarctic element genera have northern temperate including Mediterranean climate distribution. Only six genera with Holarctic distribution (4%) were found in the study area. The genus Sibthorpia, which corresponds to a small herb species and the fern Diplazium have been found in borders of SARF vegetation or in the upper forest line. Excluding the SARF genera, the Holarctic element is represented by 150 Phytogeography of the vascular páramo flora of Ramal de Guaramacal _______________________________________________________ four genera (three of them herbaceous) or 3.7%. Gentianella was the only Holarctic genus counted from azonal páramo. (a) 100 100 Phytogeographic elements Páramo & SARF % % 10.7 28.0 42.7 50 50 16.0 2.0 0.7 P NT-AA 10.0 14.0 4.0 10.7 61.3 CO TEMP TROP 0 NT-M WTR AA HO WTE CO 0 N=150 (b) Phytogeographic components 100 100 % Phytogeographic elements Páramo (zonal & azonal) % 50 33.3 50 38.9 1.9 0.9 P NT-AA 13.9 11.1 11.1 WTR AA 18.5 13.9 52.8 3.7 CO TEMP TROP 0 NT-M HO WTE CO 0 N=108 (c) Phytogeographic components 100 100 % Phytogeographic elements Azonal páramo % 50 50 29.6 3.7 P NT - AA NT - M CO TEMP TROP 14.8 3.7 3.7 25.9 0 N=27 59.3 25.9 14.8 3.7 14.8 WTR AA HO WTE CO 0 Phytogeographic components Figure 5.2. Proportions (%) of phytogeographic components and elements of (a) genera of páramo and SARF, (b) of all páramo genera, and (c) the genera from azonal communities from Ramal de Guaramacal, Andes, Venezuela. 151 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes 3. Cosmopolitan component Cosmopolitan element genera are those with worldwide, or nearly so, distribution. The Cosmopolitan element is represented in the study area by sixteen genera (10.7%). The fern genus Asplenium, represented by the species A. serra, is found in the understory of SARF vegetation. The Cosmopolitan component for only fifteen páramo genera (13 of them herbaceous) is represented by 13.9%. In the azonal páramo the Cosmopolitan component is represented by four genera. Table 5.4. Analysis of the geographic range of the páramo flora based on 224 taxa with a defined geographical range in Appendix 5. F: Ferns and fern allies, A: Angiosperms; %: percentage of total vascular species. Numbers in parentheses are percentages of total Venezuelan endemics. Number of páramo species Group Description 1 2 3 4 Number of páramo & SARF species combined F A Total % F A Total % Widespread in the Neotropics and also occurring elsewhere Widespread in the Neotropics 3 9 12 7.8 4 9 13 5.8 4 10 14 9.2 9 13 22 9.8 Widespread in Tropical South America Widespread in Central America, northern (western) South America and the West Indies 0 3 3 2.0 0 3 3 1.3 11 3 14 9.2 12 4 16 7.1 5 Central America, northern and western South America, including the Guyana highlands 2 3 5 3.3 3 5 8 3.6 6 Widespread from Costa Rica to Bolivia Widespread in the Andes from Col to Bolivia Confined to Venezuela, Colombia and Ecuador Confined to Venezuela and Colombia 4 24 28 18.3 14 31 45 20.1 5 16 21 13.7 12 25 37 16.5 1 9 10 6.5 1 12 13 5.8 3 13 16 10.5 3 17 22 9.8 0 2 2 0 4 4 1 2 3 3 2 0 15 15 0 24 0 10 10 0 12 Total Venezuelan endemics 1 29 30 3 32 Species Totals 34 119 153 1.3 (6.7) 2.0 (10) 9.8 (50) 6.5 (33.3) 19.6 (100) 100 61 163 7 8 9 10. Endemic to Venezuela: 10.1 Andean region and Coastal cordillera 10.2 Andean region and Venezuelan Guayana (highlands) 10.3 Endemic to Andean region of Venezuela 10.4 Endemic to Guaramacal 152 1.8 (8.9) 5 2.2 (11.1) 24 10.7 (53.3) 12 5.4 (26.7) 45 20.1 (100) 224 100.0 Phytogeography of the vascular páramo flora of Ramal de Guaramacal _______________________________________________________ Species geographical range The geographical range of the vascular species present in páramo areas of Ramal de Guaramacal, grouped in ten major groups (or distribution types), is shown in Table 5.4. Neotropical widespread distributed species all over in the whole Neotropics or in a wide range from Central America to Bolivia are broken down into five (1-5) groups. Andean distributed species are split into groups 6 to 9. Venezuelan endemic species (group 10) is divided into four subgroups. The number of vascular species, by taxonomic groups (ferns and Angiosperms) and percentages of the total are presented for each distribution category. From the total 224 taxa determined to species, only 153 species belong to proper páramo/subpáramo vegetation. Páramo flora relationship Figure 5.3 shows the dendrograms of generic similarity among páramo sites resulting from the cluster analyses. In both graphs, over fifty percent of similarity, four main groups can be recognized. The closest relationships (about 90%) among páramos is observed between the generic páramo floras of the Colombian Cordillera Oriental of each Sumapaz and Sierra Nevada del Cocuy, which are both closely related to Sierra Nevada de Mérida in Venezuela. The generic páramo flora of Ramal de Guaramacal shows the closest relationship to southern Ecuador páramo flora of Podocarpus National Park, with more than 50% similarity, when considering Guaramacal generic flora from páramo and SARF combined (Fig. 5.3a), however no relationship of Guaramacal to any other páramo flora is observed when taking into account only the open generic páramo flora of Guaramacal. Figure 5.4 shows the resulting DCA (a, c) and PCA (b, d) ordination diagrams for both A (a, b) and B (c, d) datasets of presence/absence of genera and 8 páramo floras analyzed. An altitudinal gradient may be represented on first axis of DCA (a) and second axis of PCA (d), while a humidity gradient is mainly captured by second axis of PCA (b). The results of ordination also show that for dataset A (that includes the páramo and SARF genera from Guaramacal) páramos with greatest values of humidity and rainfall according to Table 5.1 are grouped in line to the lower right corner on both DCA(a) and PCA(b) diagrams (e.g. Tatamá massif, 4100 m, ~2000-3000 mm/year (Cleef et al. 2005); South Ecuador, PBR, 3695 m, ~5000 mm/year (Lozano et al. 2009); and Guaramacal, 3100 m, > 3200 mm/year and relative humidity of 100% during most part of the year), while drier and higher elevation páramos are grouped to the lower left corner of DCA(a) and upper left corner of PCA(b). However, that humidity relationship is not obvious for dataset B (that with Guaramacal only open páramo genera), where páramo sites seem to be arranged mainly in relation to an altitudinal gradient in axis 2 of PCA(d). Compared to other generic páramo floras (Table 5.5), Guaramacal shows the greatest proportion of Neotropical montane element genera and the lowest proportion of Andean-Alpine element genera. The proportion of the Holarctic 153 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes element is the lowest of all páramo floras compared, but the Cosmopolitan element is the highest. a) b) Figure 5.3. Sørensen (Bray-Curtis) cluster analysis dendrogram of floristic similarity among 8 páramo sites based on (a) the presence/absence of 404 genera (including páramo & SARF genera from Guaramacal), (b) the presence/absence of only 347 genera (including only proper páramo genera from Guaramacal). Table 5.5. Proportions (%) of phytogeographic elements of páramo genera for seven additional páramo floras compared to Guaramacal. (a) SARF and páramo genera combined, (b) páramo genera only. Phytogeographic element P NT-AA NT-M WTR AA HO WTE CO Total % Total genera 154 Guaramacal South Ecuador Perijá S. N. Cocuy S. N. Mérida Sumapaz Tatamá Costa Rica (a) 2.0 0.7 42.7 16 10 4.0 14.0 10.7 100 (b) 2.8 0.9 37.6 11.0 12.8 3.7 20.2 11.0 100 4 5.5 32.5 12 13 10.5 13.5 9 100 5.8 3.6 27.0 12.4 10.2 13.9 20.4 6.6 100 6.5 8.4 27.6 7.9 10.7 12.1 18.2 8.4 100 5.4 8.1 22.3 8.1 10.8 14.2 23.0 8.1 100 4.8 7.1 25.7 8.6 12.4 11.9 18.6 11.0 100 1.8 8.0 25.7 9.7 14.2 8.8 22.1 9.7 100 1.7 3.4 27.7 8.5 12.4 16.4 19.2 10.7 100 150 108 200 137 214 148 210 113 177 Phytogeography of the vascular páramo flora of Ramal de Guaramacal _______________________________________________________ Páramos of Colombian Cordillera Oriental (S.N. Cocuy and Sumapáz) and Sierra Nevada de Mérida show the most similar proportions of phytogeographic elements among them. Páramos of Costa Rica/Panama and Tatamá show the lowest proportion of Páramo endemic genera. Páramos of South Ecuador and Guaramacal show both more similar (the highest) proportions of Neotropical genera and also the lowest proportions of Holarctic genera. a) b) c) d) Figure 5.4. DCA (a, c) and PCA (b,d) Ordination diagrams of 404 (a, b: including páramo & SARF genera from Guaramacal) and 347 (c, d: including only proper páramo genera from Guaramacal) genera for 8 páramo floras datasets. a) DCA Axis 1 Eig=0.422; Axis 2 Eig=0.321; (b) PCA Axis 1 Eig=473.827; Axis 2 Eig=121.424; (c) DCA Axis 1 Eig=0.223; Axis 2 Eig=0.189; (d) PCA Axis 1 Eig=803.377; Axis 2 Eig= 87.539. 155 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes 5.5 DISCUSSION Floristic features As in almost all páramo and other alpine floras (Rangel-Ch. 2000c; Vargas & Sánchez 2005; Rivera-Diaz 2007; Rangel-Ch. et al. 2008; Briceño & Morillo 2002, 2006; Lozano et al. 2009), Asteraceae and Poaceae rank as most dominant in terms of genera and species (Table 5.2). Remarkable for the páramo of the study area is the third position of Ericaceae with 10 (8) genera and 15 (13) species. Orchids and Grammitidaceae take the 4th and 5th position respectively in the general flora list, but for proper páramo flora only, Lycopodiaceae is more diverse. The relative importance of Pteridophytes under wet climate is also supported by Dryopteridaceae with Elaphoglossum displaying 10 (5) species and Hymenophyllaceae with Hymenophyllum containing 7 (2) species. In terms of number of species (Table 5.2) Elaphoglossum, Huperzia and Hymenophyllum and Chusquea take the first four positions in the general flora list. For páramo flora only, Chusquea, Huperzia and Rhynchospora with six species are the most diverse genera. The high diversity of Rhynchospora is remarkable. Rhynchospora sect. Paniculatae is supposed to be derived from lowland savanna stock (Wayt Thomas, pers. comm.). Earlier it was supposed that the ascent to the Andean páramos from savanna flora was most likely from the lower ranges of the eastern extreme/end of the Andes of Venezuela (Cleef et al. 1993). Rhynchospora oreoboloidea Gómez-Laur. of the Holarctic sect. Oreoboloides, a common species of the lower páramos in the northern Andes and in the Talamancas, is absent in the Guaramacal páramo. In Colombian páramos hardly there are found 6 different species of Rhynchospora in one study site. Chusquea is considered here including three species formerly belonged to Neurolepis (Fisher et al. 2009). One páramo species, Chusquea steyermarkii, has vicariant bamboo communities on the tepuies. In conclusion, the taxa listed in Table 5.2 are almost all indicative of wet páramo climate. Hypericum and Pentacalia contain species thriving both under wet and drier páramo climate. Phytogeographical composition at genus level Based on the studies of the Tatamá páramo flora (Cleef 2005) or that of the Talamancas in Costa Rica (Cleef & Chaverri 1992) we expected that humidity would play a role in determining the floristic composition of the Guaramacal range. In fact values for the Neotropical montane element (38.9%) are high in the Guaramacal páramo, as well as for the Austral-Antarctic element (11.1%). Increased values for the Austral-Antarctic element also have been observed in the Podocarpus National Park, Tatamá and Talamanca páramos. However the substantial proportion of the Neotropical montane element may also be related to the low altitude of the Guaramacal range, 3000 m more or less, and one summit at 3130 m. Páramo endemic genera rank low (2%), probably also because of the general low altitude and one predominant humid climate type. There are also fewer 156 Phytogeography of the vascular páramo flora of Ramal de Guaramacal _______________________________________________________ distinct habitats in the Guaramacal páramo, as caused by the limited altitudinal amplitude of maximally about 200 m, but most of the range even less. It is striking that the Andean-alpine element is represented only by one genus (Lachemilla) and that the Holarctic element only accounts for 3.6%. Genera belonging to both these elements are mostly herbaceous and favoured by higher altitude. Further they are well adapted to periodical stress by dryness (Gutte 1992). We suppose that bamboo páramo has been present in the summit area of Ramal de Guaramacal since Holocene times and that the prevailing wet climate served as a kind of filter preventing the arrival or survival of dry páramo species from the Mérida páramos. Another interesting feature is the relative isolation of the Guaramacal páramo from the main cordillera of the Sierra Nevada de Mérida. A small connection is found on the northern side at about 2200 m. During glacial times the summit areas of Guaramacal range were glaciated; remnants of former glacial lakes with terminal moraines are still present at different sites in the páramo belt as well as at lower altitude of about 2000 m near the Park headquarters. Páramo vegetation actually occurred during glacial times at lower altitude along the very steep slopes. In the uppermost part of Guaramacal range with a type of superpáramo, which is completely absent today. Isoëtes karstenii, a submerged species found from grass páramo up to the highest lakes in the superpáramo in Colombia (Cleef 1981, Salamanca et al. 2003) and Venezuela (Fuchs-Eckert 1982; Small & Hickey 2001) has been found in a small lake in the Guaramacal páramo. Its presence in a glacial lake in the modern páramo of Ramal de Guaramacal can probably be considered as a ‘glacial relict’. The Temperate component is best represented in azonal páramo vegetation (Sphagnum bogs) on top of Ramal de Guaramacal (Fig. 5.2c). When the genera of the SARF vegetation in the Guaramacal bamboo páramo are taken into account the overall proportion of the Tropical component rises from 53.6% to 61.6% , mainly because of more Neotropical montane and Wide tropical genera. For comparison with other páramo floras (Table 5.5), the taxa from SARF vegetation (column a) have not to be considered, though, sometimes this is difficult to do as well. Looking at the case of the extremely humid páramos of Podocarpus National Park in southern Ecuador (Lozano et al. 2009), with a gradual transition of SARF into shrub páramo, it is noticeable that even the trees adapt to the general structure of shrub páramo vegetation (Bussmann 2002; Richter & Moreira-Muñoz 2005; Peters 2009, Lozano et al. 2009; Cleef pers. obs.). Species geographic range The tropical American part of the vascular flora of Páramo de Guaramacal is largely composed of (1) Neotropical widespread distributed species all over the Neotropics or in a wide range from Central America to Bolivia, (2) a group of Andean distributed species, part of them confined to the northern Andes and part widespread in the Andes from Colombia to Bolivia, and (3) a group of Venezuelan endemics (Table 5.4). There is quite a difference between the 153 species with defined geographical distribution range reported for the Guaramacal páramo and the 224 species for the páramo including the SARF islands of Guaramacal. However, the phytogeo157 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes graphical proportions change slightly between both data bases: they maintain rather the same percentages. Looking more closely at the three main distribution types of the Guaramacal páramo flora (sensu strictu, without the SARF islands) we can state that there are 48 species, i.e. ca. 31%, for the groups or distribution types 1-5 (Table 5.4), these species displaying a more wide Neotropical distribution. The second and largest species group includes the distribution types 6-9 and is basically tropical Andean in distribution and accounts for seventy five species or about 49%. Group 10 contains with thirty species (almost 20%) endemic to Venezuela. Ten species (6.5%) are narrow endemics of the Guaramacal páramo. They include 3 species of Espeletiinae stem rosettes: two species of Ruilopezia, and one species of Libanothamnus. Also, two species of Miconia, one species each of Bomarea, Epidendrum, Festuca, Ilex and Rhynchospora. About 69 species or about 30% of the Guaramacal páramo species are shared with Central America – surprising given the distance and remoteness of Ramal de Guaramacal, although 29 of them correspond to ferns (Table 5.4). In contrast, only 3 species (2%) are shared with the Guayana Highlands which are at much closer distance indicating lack of exchange between these two areas. Most remarkable is the northernmost extension of the bamboo species Chusquea steyermarkii. Páramo flora relations We found a strong floristic similarity and similar phytogeographical composition among the páramo floras of Sierra Nevada del Cocuy, Sumapáz and Mérida páramos (Fig. 5.3, 5.4, Table 5.5). These mountain chains are contiguous in geographical position and display similar climatic characteristics with regard to the exposition of the ascending trade winds loaded with atmospheric water and the drier wind shadow areas. The Central American páramos of Panamá and Costa Rica, which are more humid, present about 75% similarity of páramo flora with those of the Mérida and Colombian Eastern Cordillera páramos (Fig. 5.3a). The Colombian Perijá páramo (drier side) ranks with about 40% similarity versus the wet páramo cluster of Guaramacal and PNP in S. Ecuador. Both remote páramo floras are similar at about a 60% value, which is most remarkable, because of the large distance between both areas. The similarity between the páramo floras of Guaramacal and PNP of South Ecuador is observed only when considered the páramo and SARF genera of Guaramacal (Fig.5.3a). When considered only open páramo genera of Guaramacal (Fig 5.3b), the páramo flora of Guaramacal is not related to any other of the paramo floras analyzed, and in this case PNP (South Ecuador) flora appears to be rather related with the group formed by the páramo of Perijá and the group of drier and higher paramos of S. Cocuy, Sumapáz and S.N. Mérida, conversely, in this case, the páramo flora of Costa Rica/Panama has little relationship with this group. On the other hand, in the DCA and PCA ordinations, when SARF genera of Guaramacal are not included (Fig 4c, d), the relationship to a humidity gradient is not so obvious, and an altitudinal gradient seem to prevail in PCA (Fig. 5.4d), while in the DCA (Fig. 5.4c) the relationship to those environmental variables is not so clear, and instead of them a latitudinal gradient may be detected. 158 Phytogeography of the vascular páramo flora of Ramal de Guaramacal _______________________________________________________ Judging from the results it is most clear that the wet páramos floras are more similar to each other than to seasonally dry páramos (containing both dry bunchgrass páramo and bamboo páramo). In the case of the exclusively wet páramos it appears that humidity is more important than a temperature gradient. In fact the Ecuadorian Podocarpus National Park and Guaramacal páramos are similar in that both are relatively low in altitude with a maximum of about 200 m altitudinal amplitude in Guaramacal and about 400-500 m in the Podocarpus National Park although the highest core area of the latter reaches ~3700 m in elevation. That the ambient humidity gradient apparently overrules that of temperature (viz. altitude), seems also confirmed by the DCA en PCA ordination diagrams of Fig. 5.4(a,b), which are based on a comparison of eight páramo floras. 159 Venezuela endemic species of the Espeletiinae, found in Páramo de Guaramacal: (a-c) Ruilopezia jabonensis; (d, e) Ruilopezia lopez-palacii; (f-h) Ruilopezia paltonioides; (i-l) Ruilopezia viridis. Chapter 6 Functional diversity of Andean forests in Venezuela changes with altitude Joost F. Duivenvoorden and Nidia L. Cuello A. submitted to GLOBAL ECOLOGY AND BIOGEOGRAPHY Functional diversity of Andean forests in Venezuela changes with altitude _______________________________________________________ 6.1 INTRODUCTION Tropical Andean forests are one of the world's biodiversity hot-spots (Myers et al. 2000). These forests have a rich biodiversity (Gentry 1995) and are highly threatened because of increasing deforestation (Etter & Wijngaarden 2000; Armenteras et al. 2003). The rising temperature in the past decades and associated upslope shifts in species distribution may impose extra threats to Andean forests (Colwell et al. 2008; Svenning & Condit 2008). Potential threats due to losses in forest cover and biotic attrition might be exacerbated by degradation in functional diversity, i.e. the variety of life-history traits presented by an assemblage of organisms (Mayfield et al. 2005; Girao et al. 2007). Decreasing functional diversity is generally seen as indication of degradation and a hazard for ecosystem resilience (Tilman et al. 1997). For example, the lower diversity in reproductive traits in forest fragments in lowland Amazonia of Brazil may have detrimental consequences for the population size of pollinators and the trophic structure (Girao et al. 2007). The principal aim of our study is to examine if functional diversity changes with altitude in undisturbed Andean forests, to contribute as reference information for studies of degraded Andean systems. Along mountain slopes temperature change strongly defines the rate of photosynthesis (Rada et al. 1992; Cabrera et al. 1998), physiological and metabolic processes (Lambers et al. 2008), growth (Grubb 1977; Medina & Klinge 1983; Ashton 2003; Leuschner & Moser 2008), nutrient uptake (Bruijnzeel 1991; Gerold 2008; Leuschner & Moser 2008) and decomposition (Illig et al. 2008), and is therefore the principal driver of ecosystem functioning (Chapin & Körner 1998; Colwell et al. 2008; Svenning & Condit 2008). In general nutrient availability and decomposition rates decrease at higher elevations in tropical wet montane forests (Cavelier 1996). Above 1500 m, chances on occasional frost increase at higher elevations. Yet, because of the strong insolation, the maximum daily temperature remains quite similar to lowland values, resulting in a larger diurnal temperature range upslope (Hansen et al. 2002). In upper montane and subalpine rain forest (SARF), canopy trees receive a large proportion of ultraviolet light, which potentially affects growth (Flenley 1992). Lastly, terrain conditions (more summits) and the proximity of the upper forest line dictate that less space becomes available for continuous forests at higher elevations, which makes fragmentation by natural causes, in principal, more frequent. Most of these factors contribute to stronger upslope levels of ecological filtering (Keddy 1992; Weiher & Keddy 1995; Ackerly 2003) acting upon montane forest plants, reducing the number of traits relative to species (underdispersion). Alternatively, increased competition for more limiting resources at higher altitudes (for example due to the lower decomposition rates) might invoke ecological differentiation leading to higher trait diversity relative to species diversity (overdispersion) (Weiher & Keddy 1995; Mayfield et al. 2005). Temperature-constrained processes likely become manifest in plants through variation in response traits (Gitay & Noble 1997; Naeem & Wright 2003; Violle et al. 2007) related to the energy balance (growth form, leaf shape and leaf size) (Cornelissen et al. 2003). Fragmentation hampers dispersal and cross-pollination, affecting the distribution of regenerative response traits like dispersal mode and 163 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes pollination mode, fruit type, and flower and seed size (Cornelissen et al. 2003; Girao et al. 2007). We studied the vascular plant composition of 44 small plots located between 1330 m and 3060 m altitude in a well-protected forest reserve in the Andes of Venezuela (Cuello & Cleef 2009a). We linked each species to the above-mentioned functional traits by means of literature and herbarium studies. Randomizing the species assemblages in our relevés (Legendre et al. 1997; Dray & Legendre 2008) we tested if the composition and diversity of energy balance related traits and fragmentation related traits changed with elevation. 6.2 METHODS Study area Ramal de Guaramacal is an outlier of the Venezuelan Andes, which lies to the southeast of Boconó, Trujillo State, approximately 120 km northeast of Mérida, in the centre of the Sierra Nevada de Mérida (9° 05–21' N and 70° 00–20' W). This mountain range reaches up to about 3100 m, and most pertains to a National Park, which includes an approximate surface area of 21,466 ha. The average yearly rainfall measured over 2002-2008 at a climate station in the study area (Laguna de los Cedros at 1980 m; 9° 15' 55'' N; 70° 13' 13'' S) was 2106 mm, and showed a unimodal pattern with February as driest month and June as wettest. Temperature average around 18 to 20° C between 1000 and 1500 m, and 9 to 12° C above 2500 m (Cuello & Barbera 1999). Above 2500 m seasonal frost may occur (Urriola 1999). The high precipitation in the area favors intense lixiviation and acidification, and acid soils predominate (Marvez & Schargel 1999). The vegetation of Guaramacal Park area is predominantly represented by montane rain forests with height and density decreasing with altitude. These forests have been described (Cuello & Cleef 2009a) into discrete zones corresponding to lower montane, upper montane, and SARF, following Grubb (1977). The montane forests can be found from 1350 m to about 2800 m. Between 2800 m and 3130 m SARF is found intermingled in a mosaic with subpáramo formations (Cuello & Cleef 2009b). Ramal de Guaramacal has received the status of National Park since 1988, keeping most human activities and impacts outside the park borders. Fires have occurred in the past, especially in páramo areas. Some selective timber extraction is known to occur at low intensity and generally takes place in close proximity to the park limits. In the surroundings of Ramal de Guaramacal there has been a long history of agricultural activity mainly for coffee plantation, slash and burn cultivation and extensive cattle ranging, among other land uses (Barbera 1999). However, the high ridges and steep slopes of Guaramacal have kept most of the montane forest areas with minimum disturbance. Field methods The fieldwork was carried out in 1995, 1996, 1999, 2003, 2005 and 2006. Montane forests were studied along the altitudinal gradient on both sides of the range with 164 Functional diversity of Andean forests in Venezuela changes with altitude _______________________________________________________ different slope expositions (Cuello & Cleef 2009a, b). Thirty five 0.1 ha (20 x 50 m) plots were surveyed, positioned a distances of 30 to 150 m between 1350 m and 2890 m altitude, and nine plots of variable size (50 m2 to 400 m2) were surveyed in SARF between 2800-3050 m. Within each plot, all rooted individuals – trees, shrubs, lianas, tall and thick-stem or climbing terrestrial herbs and hemi-epiphytes ≥ 2.5 cm DBH (diameter at breast height, taken at 1.3 m from the base of the trunk, or lower for shrubs and thick-stemmed herbs) were recorded, labeled with numbered aluminum tags and their DBH and height recorded. A total of 2082 numbers botanical specimens of vascular plants were collected. Botanical material was processed and identified at Herbario Universitario PORT of UNELLEZ. Other herbaria, such as MO and US, were also consulted. Some specimens were sent to specialists at other institutions to confirm identification. All specimens collected have been deposited at PORT, some duplicates have been sent to VEN, MER, MERF, MO and US. From a total of 388 morphospecies recorded from all surveys, 357 were identified to species or genus level. These we used to compiled trait state data on energy balance and fragmentation related traits, on the basis of literature, floras and botanical monographs, web searches, and herbarium voucher information (Table 6.1). Table 6.1 Plant response traits and their respective categories or trait states considered in this study. Trait Energy balance related traits Growth form Leaf type Leaf size Fragmentation related traits Dispersal Pollination Sexual system Fruit type Fruit size Flower size Trait states or categories bamboo (39), climbing herb (41), erect herb (45), hemiepiphytic tree (46), liana (47), palm (48), stem rosette (49), tree (52), tree fern (53), upright shrub (55) simple (56), dissected (57), compound (58) leptophyll (<0.25 cm2)(59), nanophyll (0.25-2.25 cm2)(60), microphyll (2.25-20.25 cm2)(61), notophyll (20.25-45 cm2)(62), mesophyll (45-182.25 cm2)(63), macrophyll (182-1640.25 cm2)(64), megaphyll (>1640.25 cm2)(65) autochory (1), anemochory (2), hydrochory (3), zoochory (4) insect (5), bat (6), bird (7), self (8), water (9), wind (10), none (11) dichogamy (12), dioecious (13), monoecious (14), polygamous (15), hermaphrodite (16), none (17) achene (18), berry (19), capsule (20), drupe (21), fleshy capsule/pome (22), follicle (23), legume (24), naked seed (25), syncarp (26), none (27) tiny (<2 mm2) (28), small (2–5 mm2)(29), medium (6–15 mm2 long)(30), large (16–25 mm long)(31), ex-large (36–100 mm long)(32), huge (>100 mm long)(33) Inconspicuous (<4 mm)(34), small (4-10 mm)(35), medium (1020 mm)(36), large (20-30 mm)(37), very large (>30 mm)(38) 165 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Data analysis Detrended correspondence analysis (DCA) was done on the basis of the species-torelevee matrix, in which the species abundances were log-transformed, and on the basis of the species-to-trait state matrix, in which all trait states were entered as dummy variables. Variance partitioning was done using Canonical Correspondence Analysis (CCA; scaling focus of inter-species-distances and biplot scaling type) after Borcard et al. (1992). In this, the environmental information was represented by the elevation of the relevés in m above sea level. The spatial variables were selected by means of a forward selection procedure (using a probability level of 0.05) in CCA of the log species abundances against all terms of the third-degree polynomial of the centered UTM X and Y coordinates (Legendre & Legendre, 1998). The pure effects of the explanatory variables on the species patterns were tested by means of Monte-Carlo permutation tests under reduced model, applying 499 permutations. All DCA and CCA analyses were done in CANOCO for Windows 4.5. The relevé scores to visually show the variation in trait composition against elevation were calculated as the weighted average of the species scores of the DCA of the species-to-trait state matrix, with for each relevee the number of plants per species as weight. Fourth-corner analysis was done applying 999 permutations under models 1 and 3 (Legendre et al. 1997; Dray & Legendre 2008) with the fourthcorner function implemented by S. Dray in the ade4 package (Dray & Dufour 2007) in r 2.10. Trait state diversity was quantified by the Shannon and the Simpson (1-D) indices. Because of few aberrant relevee sizes, also Fisher's alpha was used to reduce possible effects of variable sampling sizes. All indices were calculated (applying Vegan 1.17-2 in r 2.10) on the basis of the number of species or the number of individuals per trait state. Thus, in analogy to the calculations of species diversity, trait states were used as equivalent of species and the numbers of species or the numbers of individuals per trait state were used as equivalent of the number of individuals (Girao et al. 2007). The Pearson coefficient of the correlation of the diversity indices with elevation was tested by means of 999 permutations of the species-to-relevee matrix according to the same permutation models and the same number of permutations applied in the fourthcorner tests, after adding the reference value (Pearson correlation coefficient from the unpermuted matrix) to the distribution of the null model (Legendre et al. 1997). 6.3 RESULTS Trait composition against elevation In the 44 relevés a total of 357 species were recorded (see Appendix 6). Most species (85%) were fully identified. The relevee scores of the first DCA axis of the species-to-relevee matrix were highly correlated with altitude (Fig. 6.1A). The gradient length of this axis was 9.1, indicating a substantial degree of species turnover between the relevés (Hill & Gauch 1980). In space, the relevés were clustered in about five groups, the largest of which consisted of the relevés made 166 Functional diversity of Andean forests in Venezuela changes with altitude _______________________________________________________ most upslope (Fig. 6.1B). The forward selection procedure of the CCA of the logtransformed species information against the nine spatial variables produced five significant terms (X, Y, X2, Y2, and X*Y). Of these X*Y was skipped from the final analysis because of its high correlation with both X2 and Y2 terms (the variable inflation factors of this final CCA were below 5). In the variance partitioning, the pure elevation effect explained 6.2% of the species variation, and the pure spatial effect 12.9%. Both these pure effects were significant (MonteCarlo permutation tests p=0.002). Elevation and space combined explained 2.8% and the fraction of unexplained variation was 78%. Figure 6.1 (left). Sources of variation in vascular plant species composition in the forests of Ramal de Guaramacal in the Venezuelan Andes. A: Altitude: the association between the first DCA axis of the species-to-relevé matrix and the altitude of the relevés. B: Space: the spatial configuration of the relevés. Wider circles were made at higher elevations. Figure 6.2 (right). The principal variation in energy balance related traits (A) and fragmentation related traits (B) extracted by means of the DCA of the speciesto-trait state matrix. Most trait states are simply abbreviated; leaf1-7, fr1-6, and fl1-5 means leaf size, fruit size, and flower size in increasing order (compare Table 6.1). 167 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes In the DCA analysis of the species-to trait state matrix, the main variation (13.7%) in energy balance related traits (Table 6.1) was clearly related to leaf size (Fig. 6.2A). Species with large leaves scored low scores along the first DCA axis and fine-leaved species high scores. The variation between palms and tree ferns (showing compound leaves), and herbs (either climbing or erect with dissected leaves) mainly determined the variation along the second DCA axis. The ordination of the fragmentation related traits was mainly driven by fruit and flower size (associated with fleshy fruits, legumes, bat pollinated flowers, autochorous dispersal and self-pollinated) with highest scores along DCA axes 1 and 2, whereas small sized flowers and fruits (associated with dispersal and pollination by wind, achenous fruits and fern reproduction) were situated towards the lower left side of the ordination diagram (Fig. 6.2B). Table 6.2 Association between elevation and the DCA axes of energy balance related traits and fragmentation related traits, as given by squared Pearson correlation coefficients (r) and their probabilities (p) obtained by means of the fourth-corner analysis applying two permutation models. DCA axis 1 model 1 model 3 Energy balance related traits Fragmentation related traits r 0.35 p 0.001 p 0.001 r -0.11 -0.16 0.001 0.007 -0.25 DCA axis 2 model model 3 1 P p 0.064 0.028 0.001 0.001 Table 6.3. Association between elevation and three diversity indices of energy balance related traits and fragmentation related traits, as given by Pearson correlation coefficients (r) and their probabilities (p) obtained by applying two permutation models. Shannon Simpson (1-D) Fisher's alpha model 1 mode l3 model 1 model 3 r p p r p p 0.001 0.41 0.001 0.001 0.74 0.001 0.001 0.001 0.022 -0.10 >0.2 >0.2 0.31 0.016 >0.2 -0.24 0.044 >0.2 -0.34 0.008 >0.2 0.34 0.012 0.001 -0.66 0.001 0.002 -0.62 0.001 0.003 -0.56 0.001 >0.2 r Species-based trait diversity 0.52 Energy balance related traits -0.58 Fragmentation related traits model 1 model 3 p p 0.001 Individual-based trait diversity Energy balance related traits Fragmentation related traits 168 Functional diversity of Andean forests in Venezuela changes with altitude _______________________________________________________ Visually, elevation correlated well to the first DCA axis of energy balance related traits (Fig. 6.3A) but less convincingly so to the second DCA axis. Both first and second DCA axes of the fragmentation related traits seemed associated to elevation (Fig. 6.3B). Fourth-corner analysis allows the selection of the most appropriate null model to test for association between functional trait composition of species in relevés and environmental properties of these relevés (Legendre et al., 1997). Because of the significant effect of altitude on the species composition in the relevés and the continuous species turnover along with altitude (Fig. 6.1A), it seemed likely the individual ecological and physiological species responses to elevation ruled the co-occurrences of species in the relevés. For this reason we selected permutation model 1 (for each species separately the abundance values are randomly distributed over the relevés; Legendre et al. 1997). However, the variance partitioning showed that the spatial effect on species composition was about twice the altitudinal effect. Spatial distance potentially hinders dispersal and limits recruitment, both important in situations when regeneration through colonization drives species composition. Because regeneration and colonization after disturbances potentially depends on largely unpredictable processes related to mass movements and tree mortality the lottery model of species assembly (Sale 1978; van der Maarel & Sykes 1993) seemed appropriate as well. Therefore, we also applied a model 3 randomization (for each relevee separately the abundance values are randomly distributed over the species; Legendre et al., 1997). The fourthcorner results (Table 6.2) were in line with our visual interpretations of the scatter plots (Fig. 6.3AB), evidencing that the distribution of energy balance and fragmentation related traits was significantly correlated with altitude. Functional diversity against elevation All three species-based diversity indices in energy balance related traits showed a convincing positive correlation with elevation (Fig.6.4A, Table 6.3). The altitudinal association of the individual-based diversity of these traits was weaker and less consistent (Fig. 6.4B, Table 6.3). The Shannon and Simpson indices seemed negatively correlated but these patterns depended strongly on three SARF relevés and lacked significance when tested with the lottery model of permutation. The individual-based Fisher's alpha index of energy balance related traits was positively related to elevation. Regarding the diversity in fragmentation related traits, the overall tendency was that of a negative association with elevation (Fig. 6.4A and B; Table 6.3). However, compared to the energy balance related traits, the altitudinal correlations were weaker and more strongly influenced by outlying diversities of SARF plots. Positive SARF outliers (going against the trend of neutral or negative trends of diversity with elevation) were clearly visible in the scatters of species-based Simpson and Fisher's alpha indices (Fig.6.4A). For that reason the positive altitudinal correlation of the species-based Fisher's alpha was not convincing, even though it was significant in both permutation models. Negative outliers of SARF against elevation appeared in the scatters of the individual-based Shannon and Simpson against elevation (Fig. 6.4B). 169 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Figure 6.3. The association between elevation and the principal variation in trait composition of the vascular plant species in the forests of Ramal de Guaramacal in the Venezuelan Andes. Relevés scores for the trait composition were the weighted average of the species scores of the DCA axes derived from the species-to-trait state matrix, with for each relevé the number of individuals as weight. A: energy balance related traits. B: fragmentation related traits. Symbols of SARF relevés have been filled 6.4 DISCUSSION Energy balance related traits The forests in the Ramal de Guaramacal area varied altitudinally in the selected energy balance related traits. Also they became more diverse in these traits at higher elevations, pointing at more prominent levels of overdispersion higher up the slopes. Community assemblage rule theory (Weiher & Keddy 1995; Díaz et al. 1998) predicts that increasing levels of overdispersion might occur when better adapted species outcompete functionally related species from the local community. Leaf size contributed substantially to the altitudinal variation in energy balance related traits (Fig. 6.2A). The lower leaf size at higher altitudes in wet tropical forests has been recorded repeatedly (Grubb et al. 1963; Vareschi 1966; Sugden 1985). In the absence of pronounced dryness (as in the situation along the slopes of the Ramal de Guaramacal area) this can be explained by a lower upslope temperature, more limited hydraulic conductance of stems and associated lower mineral supplies, lower nutrient availability, and increased frost frequencies (Cavelier 1996). Overall, at higher altitudes in montane wet forests, nitrogen (Grubb 1977; Cavelier 1996) becomes more limiting. Therefore, our results 170 Functional diversity of Andean forests in Venezuela changes with altitude _______________________________________________________ suggested that competition for resources, mostly related to the capture of radiation (heat) and the uptake of minerals and nutrients, is an important driver of species composition in this part of the Venezuelan Andes. Figure 6.4A. Scatter plots of trait state diversity against elevation, calculated on the basis of traits per species (left), or traits per individuals (right) for energy balance related traits. 171 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Figure 6.4B: Scatter plots of trait state diversity against elevation, calculated on the basis of traits per species (left), or traits per individuals (right) for fragmentation related traits. Symbols of SARF relevés have been filled. The association between functional diversity of energy related traits with elevation further suggested that a temperature rise as a consequence Global Change might affect the forest functionality of Andean forests. Projected higher temperatures in 172 Functional diversity of Andean forests in Venezuela changes with altitude _______________________________________________________ the coming decades (Solomon et al. 2007) might reduce the functional diversity of energy balance related along the slopes of the Andes. This projection has only general implications, however, because the detailed mechanisms, by which species migrate as function of changing temperatures and ecological filtering influences species interactions, are still poorly understood (Svenning & Condit 2008). For example, vascular plants may migrate upslope at different speeds compared to decomposer communities, which largely define the nutrient availability. Moreover, our results suggests that even in undisturbed Andean forests functional diversity varies significantly, which implies that some lower degree of functional diversity at a certain elevation in the nearby future does not necessarily endangers the ecosystem well-being. Fragmentation related traits Just as with the energy balance related traits, the forest species varied in our selection of fragmentation related traits as function of altitude. The negative altitudinal association of the main variation in fragmentation trait state composition was mostly due to wind-dispersed and wind pollinated species from SARF forests (e.g. species from Alsophila, Cyathea, Dicksonia, Diplazium, Baccharis, Diplostephium, Pentacalia, Mikania). Because of the low human influence in the Guaramacal area, the transition between SARF forests and páramo vegetation is not sharp (for example compared to forest-páramo boundaries caused by burning; Moscol & Cleef 2009). Instead, SARF and páramo vegetation occur in a spatially well-mixed mosaic (Cuello & Cleef 2009a, b). Therefore, the predominance of the trait states related to wind transportation in our highest samples could be explained by the flow of plant propagules along forest-páramo edges (Ries et al. 2004). The comparison of second-best variation in fragmentation state composition with altitude (Fig. 6.3B) was due to the tendency that species with larger fruits and flowers occurred at relatively low elevations (e.g. Symbolanthus vasculosus (Griseb.) Gilg., Zygia bisingula L. Rico, Drymonia crassa C.V. Morton, Tabebuia guayacan (Seem.) Hemsl., Macrocarpaea bracteata Ewan, Inga edulis Mart.). We speculate that this pattern is related to a more important role of birds in pollination and seed dispersal at elevations above 2100 m, versus a more pronounced role of mammals (including large bats) at lower elevations. Several SARF plots showed an outlying functional diversity compared to the altitudinal trends in the lower forest relevés. This suggests that, in contrast to the lower lying forests, the plants in the SARF relevés contained markedly more trait states relative to the number of species, and/or more plant individuals relative to the variety in trait states. Both phenomena may be caused by the increased wind flow in SARF forests enhancing the number of plants with traits related to wind transport. Setting aside the outlying SARF patterns, and in contrast to the energy balance related traits, the diversity of fragmentation related traits tended towards a negative association with elevation, visible in both species-based and individual-based indices of the montane forests. Hence, our results indicate that along a natural altitudinal gradient in Andean rain forests, undisturbed by human influence, 173 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes ecological differentiation regarding disturbance gets lower in upslope direction. Possibly, the increased level of upslope underdispersion is due to a higher fragmentation of the forest matrix because of stronger terrain dissections. In comparison, Girao et al. (2007) reported that lowland forest fragments in Brazil showed a lower functional diversity in reproductive traits compared to control forests. Their findings pointed towards higher frequencies of self-incompatible systems due to habitat loss. Altitudinal information on forest dynamics and forest disturbance related to mass movements and slope instabilities in the Guaramacal area is needed to further develop hypotheses about causal mechanisms explaining the upward decrease in functional diversity of disturbance related traits. Conclusions According to our expectations, we found that functional diversity of undisturbed Andean forests in the Guaramacal area changed with altitude. This implies that temperature rise due to Global Change might affect the forest functionality of Andean forests in the near future, but not necessarily in a harmful way. Functional diversity related to energy balance traits increased in upslope direction, pointing at increased levels of ecological differentiation. We explained this by assuming more upslope competition in the Andean forests regarding capture of radiation and the uptake of minerals and nutrients. Diversity in fragmentation related traits showed an opposite pattern (more underdispersion upslope), which might relate to discontinuities in the forest matrix due to the geomorphology of mountains. SARF forests diverged from the altitudinal trends in fragmentation related traits, probably as a consequence of edge effects in the SARF-páramo mosaic, created by wind. 174 Chapter 7 Synthesis Nidia L. Cuello A. Synthesis _______________________________________________________ 7.1 AIMS The study of flora and vegetation of Ramal de Guaramacal, located in the Andes of Venezuela, was conducted with the general aim to study montane rain forest and páramo by exploring their structure, botanical composition and diversity and relating these vegetation types to main environmental factors changing along gradients. A specific goal was to examine the patterns of forest diversity along altitudinal gradients with regard to plant functional traits. To elucidate the phytogeographical patterns of the wet páramo flora, these vegetation types were compared to other páramo areas in Ecuador, Colombia and the Talamancas of Central America. This study contains basic knowledge for the conservation and biodiversity management in the region. This thesis provides information about forest and páramo vegetation along altitudinal gradients using a floristic and phytosociological approach (chapters 2, 3 and 4); information about the analysis of the phytogeography of the Guaramacal páramo flora, and relationships to floras of other páramos (chapter 5), and finally information on montane forest diversity along an altitudinal gradient by means of a plant functional approach (chapter 6). The results of the different chapters are synthesized below. 7.2 ALTITUDINAL ZONATION The TWINSPAN analysis of forest vegetation along an elevational gradient in Ramal de Guaramacal showed an altitudinal zonation of forest types. Forest types are grouped into discrete zones corresponding to the lower montane rain forest (LMRF), upper montane rain forest (UMRF), and subalpine rain forests (SARF) classes of Grubb (1977). Alternatively there is a correspondence to the subandean forest, Andean forest, and high Andean forest, respectively, following Cuatrecasas (1934, 1958). However, forest zonation was found variable between the northern and southern slopes of Guaramacal. LMRF of Ramal de Guaramacal can be found from 1350 m on the southern slope and from 1650 m on the northern slope, to about 2300 m. However, in downslope direction LMRF is limited to 1800 m, determined by the Park boundaries, in most areas on the northern slope. Below 1800 m, disturbed areas occupy the potential LMRF zone. UMRF is present from 2300 to ~2800 m on the northern slope of Guaramacal. However, on southern or northwestern slopes near the tops of small ranges, UMRF occurs as low as 2100 m. In Ramal de Guaramacal SARF is present at the same altitudes as páramo vegetation, viz. from 2800 to 3050 m. In this altitudinal range a zone with subpáramo vegetation, according to Cuatrecasas (1934, 1958), is recognized. Subpáramo vegetation is classified into a lower subpáramo or shrub páramo, and an upper subpáramo or dwarfshrub bunchgrass páramo, following Cleef (1980, 1981). On the windward southern slopes, forest zones of UMRF tend to reach lower elevations than on the opposite and drier northern slopes and there the sequence of forest zones is shortest in distance. Higher temperatures, almost permanent humidity, and frequent landslides on the steeper and wetter southern slopes at mid-elevation may play a role. 177 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes The surveys along the forest-páramo border in Ramal de Guaramacal detected an upper forest line (UFL) position around 2950 m. This is remarkably low in comparison with UFL positions elsewhere in the equatorial Andes and the Costa Rican Talamancas. The low UFL is apparently caused by the “top effect” (Grubb 1971) with UMRF (including SARF) found at lower altitudes (Grubb 1977). A top effect may also cause a compression of the montane forest zones. The history of the low UFL in Guaramacal range may be explained by paleoecological studies of lake sediments, e.g. the promising peat land at c. 2000 m near the Park Rangers house of the Guaramacal National Park. Also an analysis of climatic data from the Davis weather station near Antenas (data available from December 2006 onwards), and analysis of soil surface temperatures on the top of Páramo de Guaramacal may be helpful to explain the UFL position. Additional comparative analysis of the vegetation ecology at the UFL would also provide more clues for understanding the low altitude of the UFL on Ramal de Guaramacal. 7.3 FLORISTIC COMPOSITION AND DIVERSITY Montane forests of Ramal de Guaramacal show different patterns of species diversity, family composition and vegetation structure along altitudinal gradients on the drier as well as on the wetter slopes. In LMRF the Rubiaceae, Lauraceae and Melastomataceae are the most species rich families of woody plants, which is the same trend as observed in other Andean forests (Gentry 1992, 1995, RangelCh. 1991). In UMRF the Lauraceae family is the most diverse in species, which is exceptional, followed by the Melastomataceae and Myrtaceae. In SARF Asteraceae and Ericaceae are the most species rich families. In páramo vegetation Asteraceae and Poaceae rank as most species rich. This is the case in almost all páramo vegetation and in the flora‟s of other alpine areas (Rangel-Ch. 2000c; Vargas & Sánchez 2005; Rivera-Diaz 2007; Rangel-Ch. et al. 2008; Briceño & Morillo 2002, 2006; Lozano et al. 2009), followed by Ericaceae and Orchidaceae. Pteridophytes are also species diverse, with Grammitidaceae, Lycopodiaceae, and Dryopte-ridaceae as the most species rich families. Species diversity and composition of montane forests of Ramal de Guaramacal varies along the altitudinal gradient with some bias depending slope exposure. Species richness generally decreases with elevation. However, an increase in species richness based on 0.1 ha plots was locally observed between 2300 and 2400 m on the northern slope of Guaramacal. At this elevation is the transitional zone from LMRF to UMRF, and here species richness may be related to the increasing humidity from the dry interandean Boconó Valley to the top of the mountain. This diversity pattern supports a proposed “third pattern” of altitudinal species richness claiming highest biodiversity in the middle of an altitudinal zone (Lomolino 2001). Wolf (2003) already pointed at high richness of epiphytic bryophytes and lichens in the mid-altitudinal range of a zone. With a limited altitudinal span (2820-3130 m) and a small surface area of ca. 10 km2, the Páramo de Guaramacal counts some 200 vascular páramo species (alpha diversity). Compared to the number of 1544 vascular species reported for all Venezuelan páramos [1437 angiosperms species reported by Briceño & Morillo 178 Synthesis _______________________________________________________ (2002, 2006) plus 107 fern species reported by Luteyn (1999)] the low species number of Páramo de Guaramacal seems proportional. At an elevation of about 2200 m there is a small direct connection to the Mérida Andes. Up to date, about 50 endemic vascular species are known from Ramal de Guaramacal which represent ca. 4% from a total of about 1400 vascular species. Repeated isolation in the past probably triggered the development of endemic species. The highest species diversity of Ruilopezia rosettes reported for the Venezuelan Andes to date is in our study area and it may be speculated that during the Pleistocene repeated isolation and merging of populations gave rise to endemics. 7.4 VEGETATION PHYSIOGNOMY The structure of the montane forests of Ramal de Guaramacal is more compressed towards higher elevations, with an increase in stem density and a decrease in stem diameter and canopy height. LMRF is dense and of medium height, with canopies up to 25 m tall, while UMRF canopies reach up to 18 m, and those of SARF to 6-8 (10) m only. Diversity and density of growth forms varies with elevation. More diversity and density of palms, lianas and climbers is clearly observed in LMRF. Although diversity and density of lianas decrease with altitude, still a substantial percentage of the total species richness of SARF is represented by liana species. Tree ferns show highest density in the LMRF, but highest species diversity is observed in UMRF. Zonal páramo vegetation is represented by shrub páramo, bunchgrass páramo and, in our study area most commonly by bamboo páramo. Bamboo páramos are mainly dominated by woody growth forms, particularly upright shrubs with bamboo groves and clumps, which give an overall appearance of a mostly shrub páramo vegetation. Low bunchgrass páramo vegetation, devoid of shrubs and with a high density of small ground rosettes, cushion grasses and few bamboos, is found in limited areas above 2900 m. In the study area the most representative life form, in terms of both number of species and cover, are the phanerophytes, especially those belonging to the microphanerophytic type, followed by hemicryptophytes with a caespitose life form. The dominance of shrubby growth forms in páramo of Ramal de Guaramacal may be partly explained by the high relative humidity, the low altitudinal range, the close proximity of the dwarf forests near the upper forest line, past disturbance events and fire dynamics. Azonal páramo vegetation is represented by patches of azonal bunchgrass, Sphagnum bogs, aquatic communities, and boggy bamboo páramo. 7.5 PHYTOSOCIOLOGICAL CLASSIFICATION The phytosociological classification of the vegetation of Ramal de Guaramacal was based on floristic composition and species abundance or cover. Results 179 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes revealed a total of eight new alliances and eighteen vegetation communities at association level, which are distinguished and described according to the ZürichMontpellier method (Braun-Blanquet 1979; Westhoff & van der Maarel 1973). We recognized and documented three new subandean forest (LMRF) communities, and four new Andean forest (UMRF) and high Andean forest (SARF); three new associations of lower subpáramo or shrubby páramo, and two new associations of upper subpáramo or bunchgrass páramo dominated by rosettes and tussock plants; one new azonal bunchgrass páramo association, two new Sphagnum bog associations, one new bamboo páramo („chuscal‟) association, and two submerged aquatic communities. A synoptic syntaxonomical scheme for classification of the vegetation of Ramal de Guaramacal runs as follows: I. Montane forest group of Meliosma tachirensis – Alchornea grandiflora A. The alliance Geonomo undatae – Posoquerion coriaceae Cuello & Cleef 2009, which contains the following subandean forests associations: 1. Simiro erythroxylonis – Quararibeetum magnificae Cuello & Cleef 2009 2. Conchocarpo larensis – Coussareetum moritzianae Cuello & Cleef 2009 B. The alliance Farameo killipii – Prunion moritzianae Cuello & Cleef 2009. This alliance contains one subandean forest community and one Andean forest community: 3. Croizatio brevipetiolatae – Wettinietum praemorsae Cuello & Cleef 2009 4. Schefflero ferrugineae – Cybianthetum laurifolii Cuello & Cleef 2009 C. The alliance Ruilopezio paltonioides – Cybianthion marginatii Cuello & Cleef 2009. This includes one Andean and two high Andean forest communities: 5. Geissantho andini – Miconietum jahnii Cuello & Cleef 2009 6. Gaultherio anastomosantis – Hesperomeletum obtusifoliae Cuello & Cleef 2009 7. Libanothamnetum griffinii Cuello & Cleef 2009 II. Zonal humid lower páramo of Ruilopezio lopez-palacii – Chusqueetalia angustifoliae Cuello & Cleef 2009 (prov. Ord.) D. The alliance Hyperico paramitanum – Hesperomeletion obtusifoliae Cuello & Cleef 2009, groups the shrubby páramo associations: 8. Ruilopezio paltonioides – Neurolepidetum glomeratae Cuello & Cleef 2009 9. Disterigmo acuminatum – Arcytophylletum nitidum Cuello & Cleef 2009 E. The alliance Hyperico cardonae – Xyridion acutifoliae Cuello & Cleef 2009, groups one shrubby páramo and two open grass páramo associations: 10. Cortaderio hapalotrichae – Hypericetum juniperinum Cuello & Cleef 2009 11. Puyo aristeguietae – Ruilopezietum lopez-palacii Cuello & Cleef 2009 180 Synthesis _______________________________________________________ 12. Rhynchosporo gollmeri – Ruilopezietum jabonensis Cuello & Cleef 2009 III. The order of azonal páramo peat bog vegetation of Geranio stoloniferum – Caricetalia bonplandii Cuello & Cleef 2009 F. The alliance Sphagno recurvi – Paepalanthion pilosi Cuello & Cleef 2009, groups a bunchgrass páramo association and the both new Sphagnum bog associations: 13. Paepalantho pilosi – Agrostietum basalis Cuello & Cleef 2009 14. Sphagno recurvi – Caricetum bonplandii Cuello & Cleef 2009 15. Sphagno sparsi – Caricetum bonplandii. Cuello & Cleef 2009 G. The alliance Carici bonplandii – Chusqueion angustifolia Cuello & Cleef 2009, contains a bamboo páramo („chuscal‟) association: 16. Carici bonplandii – Chusqueetum angustifoliae Cuello & Cleef 2009 H. The alliance Districho submersi – Isoëtion Cleef 1981 is represented by: 17. The submerged aquatic community of Sphagnum cuspidatum 18. Isoëtetum karstenii Cleef 1981 For both montane forest and páramo vegetation classes could not yet be defined on the basis of the present number of relevés and other available information, neither due to the lack of similar data to characterise the region and from montane forests and Chusquea angustifolia bamboo páramos elsewhere in Venezuela and adjacent Colombia. Comparison of zonal páramo communities of Chusquea angustifolia is at present impossible. More relevés, in particular in the zones of LMRF and UMRF may provide helpful information to better classify the alliance Farameo killipii - Prunion moritzianae, which includes forest associations of both LMRF and UMRF. More studies with comparable aims in the surrounding mountains enable a forest classification at order and class level. This study represents the first attempt to classify the vegetation phytosociologically based on a quantitative data set from an entire mountain range in the Venezuelan Andes. Despite of the relatively low number of relevés and methodological constraints, we arrived at a clear forest classification for the montane forests of Ramal de Guaramacal. Zonal páramo vegetation of the Guaramacal range was described on the basis of a relatively low number of relevés from the most accessible páramo areas of Ramal de Guaramacal (sector of Las Antenas of Páramo de Guaramacal) . The most different physiognomic formations are found in sector Las Antenas in relatively close proximity. This sector shows a larger altitudinal range (2820~3130 m). However it has a past history of disturbances and fires, which may have affected the spatial distribution of vegetation communities and consequently the current situation of the upper limit of the forest. The resulting zonal páramo classification 181 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes at association level may be representative of most páramo areas of Ramal de Guaramacal. The azonal páramo vegetation has been described on the basis of a limited number of relevés and from two peat bogs and a small pond only located in two páramo areas of Ramal de Guaramacal. The latter includes the Páramo de Guaramacal and the Páramo El Pumar. The limited accessibility of the study area throughout most of the year, together with high precipitation levels and the frequency of mist, made the exploration of peat bog areas of Guaramacal difficult. As other unexplored peat bogs are known to exist in the area other azonal vegetation communities may be present in the páramos of Ramal de Guaramacal. An integrated study of regional importance of the Sphagnum bogs of the northern Andes is still lacking as most studies report on local peat bog types only. Despite their presence in the páramos of the Sierra Nevada de Mérida Sphagnum bog communities have not yet been formally reported. Sphagnum bogs in the páramos of Ramal de Guaramacal have shown two new associations belonging to the new alliance Sphagno recurvi - Paepalanthion pilosi. Peatbog communities in Colombia share Carex bonplandii, Sphagnum magellanicum and S. sancto-josephense with the Sphagnum bog communities of Guaramacal. We have not found other shared species as a basis to establish relationships. Isolation, low altitude, and an inadequate number of phytosociological studies account for the observed assemblage of species in Ramal de Guaramacal. The phytosociological classification of montane forest and páramo vegetation in the Venezuelan Andes has just started with the present study. For a proper management and conservation this mission needs to be continued in order to develop a strong tool for vegetation mapping. 7.5 PHYTOGEOGRAPHY The phytogeographical composition at genus level of páramo flora of Ramal de Guaramacal shows a relatively high proportion of neotropical-montane elements (ca. 40%) compared to other páramo floras. This characteristic is considered a consequence of the humid climate and the low altitude of the Guaramacal range. The latter could also be the cause of the low proportion of endemic páramo taxa. It is plausible that the wet climatic conditions on the low range of Guaramacal since Holocene time (Van der Hammen 1974; Salgado-Laboriau 1979, 1980) has served as a filter preventing the arrival and survival of dry páramo species originating from the Mérida páramos. The low representation of Andean-alpine (0.9%) and Holarctic (3.7%) genera is in support of this suggestion. The presence of Isoëtes karstenii in a small glacial lake, a submerged species known from grass páramo up to the highest lakes in the superpáramo in Colombia (Cleef 1981; Salamanca et al. 2003) and Venezuela (Fuchs-Eckert 1982; Small & Hickey 2001) suggests that páramo vegetation with some form of superpáramo, nowadays completely absent, could have occurred during glacial times at lower altitudes along the steep slopes of the uppermost parts of Guaramacal range. Roches moutonnées are commonly present along the ridges and are a testimony the past glaciations on the top of Guaramacal ridge. 182 Synthesis _______________________________________________________ The vascular flora of the Páramo de Guaramacal is largely composed of (1) a group of neotropical widespread species (31%), (2) a group of Andean distributed species (49%), a part of this group is confined to the northern Andes and another part is widespread in the Andes from Colombia to Bolivia, and (3) a group of Venezuelan endemics (20%). The vascular páramo flora of Ramal de Guaramacal shows neither close relationship to the flora of the dry páramos of the extended and high elevated central part of the Sierra Nevada de Mérida nor to some other nearby páramos of Colombian Cordillera Oriental. At the genus level some similarities may be found between the páramo flora of the Podocarpus National Park in southern Ecuador and the flora of the páramo/SARF mosaic of Guaramacal. Both locations do have some genera in common and show a high proportion of neotropical-montane elements. Both páramo areas have a permanent high humidity level, are relatively low in altitude, and have a smooth topography. In southern Ecuador also a gradual transition from SARF into shrub páramo has been observed. 7.6 FOREST FUNCTIONAL DIVERSITY AND ALTITUDE Increasing deforestation and global warming are potential threats for Andean forests. Losses in forest cover and biotic attrition might be exacerbated by degradation in functional diversity, i.e. the variety of life-history traits presented by an assemblage of organisms (Mayfield et al. 2005; Girao et al. 2007). Considering the role of temperature changes in ecosystem functioning along mountain slopes (Chapin & Körner 1995; Colwell et al 2008; Svenning & Condit 2008) and the importance of analysing changes of functional traits along altitudinal gradient as of potential value for predicting the effects of environmental changes on ecosystem functioning (Díaz & Cabido 1997; Díaz et al. 1999; Duckworth et al. 2000; Lavorel & Garnier 2002; McGill et al. 2006), functional diversity was studied in relation to altitude in undisturbed Andean forests of Ramal de Guaramacal (Guaramacal National Park). The aim was to contribute with reference information for studies of degraded Andean systems. Information of the vascular plant species composition of forest relevés sampled along the altitudinal gradient (Chapter 2) was linked to different species functional traits related to the energy balance (growth form, leaf shape and leaf size) or fragmentation (dispersal and pollination modes, fruit type, and flower and fruit size). This information was obtained from the literature and herbarium studies. Information of species traits and altitude from plots surveys were summarized by means of ordination analysis to detect the principal variation. Randomizations of the species assemblages in relevés (Legendre et al. 1997; Dray and Legendre 2008) were used to test if the composition and diversity of energy-related traits and fragmentation-related traits changed with elevation. Results show that functional diversity of fragmentation-related traits decrease with elevation (more underdispersion at higher elevations), and the energy-related traits increase (more overdispersion at higher elevations). Overdispersion occurs when better adapted species outcompete functionally to related species from the local community (Weiher & Keddy 1995; Mayfield et al. 2005). Leaf size contributed 183 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes substantially to the altitudinal variation in energy balance related traits. The smaller leaf size at higher altitudes in wet tropical forests has been repeatedly reported (Grubb et al. 1963; Vareschi 1966; Sugden 1985). In the absence of pronounced dryness, as is the case in the situation along the slopes of the Ramal de Guaramacal, smaller leave size can be explained by a lower temperatures upslope, less hydraulic conductance of stems and associated lower mineral supplies, lower nutrient availability, and an increased frost frequency (Cavelier 1996). Overall, nitrogen becomes more limiting at higher altitudes in montane wet forests (Grubb 1977; Cavelier 1996). Therefore, our results suggest that competition for resources, which is mostly related to the capture of radiation (heat) and the uptake of minerals and nutrients, is an important driver of species composition. The association between traits showing a functional diversity of energy balance and traits related to elevation further suggests that a temperature increase due to Global Change will affect forest functionality of Andean forests. Higher temperatures in the coming decades might reduce functional diversity of energy balance along the slopes of the Andes. This projection should be treated with caution, however, because effects of changing temperatures on species migration and the way ecological filtering has impact on species interactions, is unknown. Results also suggests that even in undisturbed Andean forest functional diversity varies significantly, which implies that in the nearby future a lower degree of functional diversity at a certain elevation does not necessarily endangers ecosystem well-being. The negative altitudinal association of the main variation in fragmentation trait state composition is considered mostly due to the presence of wind-dispersed, wind pollinated, and fern species from SARF (e.g. species from Alsophila, Cyathea, Dicksonia, Diplazium, Baccharis, Diplostephium, Pentacalia, Mikania). Since SARF and páramo vegetation occur in the study area in a spatially well mixed mosaic (Chapters 2 and 3), the predominance of the trait states in the samples at highest elevation related to wind dispersal can be explained by the functional role of wind as an edge effect. There is a tendency that species with larger fruits and flowers occurr at relatively low elevations (e.g. Symbolanthus vasculosus, Zygia bisingula, Drymonia crassa, Tabebuia guayacan, Macrocarpaea bracteata, Inga edulis), which may be related to a more pronounced role of mammals (including large bats) at lower elevations versus a more dominant role of birds in pollination and seed dispersal at elevations above 2100 m. Several SARF plots showed an outlying functional diversity compared to the trends in the forest relevés at lower elevations. This suggests that the plants in the SARF relevés contained markedly more trait states relative to the number of species, and/or more plant individuals relative to the variety in trait states as is the case at lower elevations. Both phenomena may be caused by the increased wind vigor in SARF enhancing the number of plants with traits related to pollination and dispersal by wind. The diversity of fragmentation related traits tend towards a negative relationship with elevation, visible in both species-based and individual-based indices of the montane forests. Hence, our results indicate that along an undisturbed altitudinal gradient in Andean rain forest ecological differentiation driven by disturbance is 184 Synthesis _______________________________________________________ decreasing in upslope direction. Possibly, the increased level of underdispersion in upslope direction is due to a higher fragmentation of the forest matrix related to more frequent terrain dissections. More information on forest dynamics and forest disturbance in relation to mass movements and slope instability in the Guaramacal area is needed to better understand mechanisms that explain the upward decrease of functional diversity of disturbance related traits. According to our expectations we concluded that in the Guaramacal area functional diversity of undisturbed Andean forest is changing with altitude. This implies that in the nearby future a temperature rise might affect the functionality of Andean forest, but not necessarily in a harmful way. Functional diversity related to energy balance traits increases in upslope direction, pointing to increased levels of ecological differentiation. We explained this by assuming more upslope competition in the Andean forests regarding capture of radiation and the uptake of minerals and nutrients. Diversity in fragmentation related traits showed an opposite pattern (more underdispersion upslope), which might relate to discontinuities in the forest matrix due to the geomorphology in the study area. SARF diverged from the observed altitudinal trends in fragmentation related traits, probably as a consequence of edge effects created by wind in the SARF-páramo mosaic. 7.7 CONSERVATION IMPLICATIONS Tropical montane forests and páramos are fragile ecosystems and hold a high and exceptional biodiversity. In the Venezuelan Andes there is a net of national parks and reserves that have kept UMRF and páramo ecosystems relatively well protected. However, LMRF is most affected by human intervention and has been largely converted into areas with an agricultural land use (Ataroff 2000). Outside protected areas montane ecosystems have been severely affected and fragmented, leaving natural montane forest as remnants only. Fortunately, Ramal de Guaramacal and its montane ecosystems is among the best conserved national parks in Venezuela. Results of this thesis are important contributions to the knowledge of floristic diversity and botanical composition of our forests and páramos. The information from this mountain range is basic for conservation planning and restoration of these ecosystems. However, more studies on ecosystem dynamics from other mountain systems are needed to develop a proper management planning and conservation on a wider regional scale. 185 REFERENCES References _______________________________________________________ Acosta-Solís, M. (1984): Los páramos andinos del Ecuador. Publicaciones científicas MAS, Quito, Ecuador. Ackerly, D.D. (2003): Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences 164: S165–S184. Armenteras, D., Gast, F. & Villareal, H. (2003): Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation 113: 245–256. Aristeguieta, L. & Ramia, M. (1951): Vegetación del Pico de Naiguatá. Boletín de la Sociedad Venezolana de Ciencias Naturales 14(78): 13–52. Ashton, P.S. (2003): Floristic zonation of tree communities on wet tropical mountains revisited. Perspectives in Plant Ecology Evolution and Systematics 6: 87–104. Ataroff, M. (2001): Venezuela. In: Kappelle, M. & Brown A. (eds.): Los bosques nublados del neotrópico, pp. 397–442. INBio, Costa Rica. Ataroff, M. & Sarmiento, L. (2004): Las unidades ecológicas de los Andes de Venezuela. In: La Marca, E. & Soriano, P. (eds.): Reptiles de Los Andes de Venezuela, pp. 9–26. Fundación Polar, Codepre-ULA, Fundacite-Mérida, Biogeos, Mérida, Venezuela. Axelius, B. & D‘ Arcy, W. (1993): A new species of Deprea (Solanaceae) from Venezuela. Novon 3: 11–13. Aymard, G. (1999): Aspectos sobre la fitogeografía de la flora de las montañas de Guaramacal en los Andes de Venezuela. In: Cuello, N. (ed.). Parque Nacional Guaramacal, pp. 101–106. Unellez- Fundación Polar. Caracas, Venezuela. Aymard, G., Dorr, L. & Cuello, N. (1999): Rudgea tayloriae (Rubiaceae), An unusual new species from the Eastern slopes of the Venezuela Andes. Novon 9: 315–317. Badillo, V. (1994): Fleischmannia guaramacalana Badillo sp. nov. (CompositaeEupatorieae). Ernstia 3 (3-4):139–141. Barbera, O. (1999). El uso de la tierra en los alrededores del Parque Nacional Guaramacal. In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 123–128. Unellez- Fundación Polar, Caracas, Venezuela. Barbour, M., Pitts, W.D. & Burk, J.H. (eds.). (1987): Terrestrial plant ecology. 2nd edition. Benjamin Cummings Publishing Company, Menlo Park, California, USA. 634 pp. Baruch, Z. (1984): Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan páramos. Vegetatio 55: 115–126. Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.) (2008): Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198: 552 p. Springer, Berlin-Heidelberg, Germany. Bendix, J., Homeier, J., Cueva Ortiz, E., Emck, P., Breckle, S.W., Richter, M. & Beck, E. (2006): Seasonality of weather and tree phenology in tropical evergreen mountain rain forest. International Journal of Biometeorology 50 (6): 370–384. Becking, M., Vergara, H. & Cabrera, O. (2004): La diversidad florística y ecosistémica de los páramos del Sur. Primera aproximación a la sintaxonomía de los páramos del sur. In: Becking, M. (ed.): Sistema Microregional de Conservación Podocarpus. Tejiendo (micro) corredores de conservación hacia la cogestión de una Reserva de Biósfera Cóndor-Podocarpus. Pp. 95–122. Programa Podocarpus. Loja, Ecuador. Benítez de Rojas, C. & Sawyer N.W. (1999): A New Species of Cestrum (Solanaceae) from the Cordillera de Mérida, Venezuela. Brittonia 51(2): 163–165. Berg, A. (1998): Pflanzengesellschaften und Lebensformen des Superpáramo des Parque Nacional Sierra Nevada de Mérida in Venezuela. Phytocoenologia 28: 157–203. 189 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Berg, A. & Suchi, S. (2000): Vegetación de los Páramos La Aguada, La Fría y Espejo en los Andes Venezolanos. Plantula 3(1): 47–64. Bono, G. (1996): Flora y vegetación del estado Táchira. Monogr. Reg. di Scien. Nat. 20. Torino, Italia. 951 pp. Borcard, D., Legendre, P. & Drapeau, P. (1992): Partialling out the spatial compo-nent of ecological variation. Ecology 73: 1045–1055. Bosman, A.F., Van der Molen, P.C., Young, R. & Cleef, A.M. (1993): Ecology of a paramo cushion mire. Journal of Vegetation Science 4: 663–640. Brak, B., Vroklage, M., Kappelle, M. & Cleef, A.M. (2005): Comunidades vegetales de la turbera de altura ―La Chonta‖ en Costa Rica. In: Kappelle, M. & Horn, S. P. (eds.): Páramos de Costa Rica. INBio. Pp. 607–630. Santo Domingo de Heredia. Braun-Blanquet, J. (1979): Plant sociology, the study of plant communities. Transl. by G. D. Fueller & Conard, H.S. Mc. Graw-Hill, New York, USA. 438 pp. Bray, J.R. & Curtis, J.T. (1957): An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349. Briceño, B. & Morillo, G. (2002): Catálogo abreviado de las plantas con flores de los páramos de Venezuela. Parte I. Dicotiledóneas (Magnoliopsida). Acta Botánica Venezuelica 25(1): 1–46. Briceño, B. & Morillo, G. (2006): Catálogo de las plantas con flores de los páramos de Venezuela. Parte II. Monocotiledóneas (Liliopsida). Acta Botánica Venezuelica 29(1): 89–134. Bruijnzeel, L.A. (1991): Nutrient input-output budgets of tropical forest ecosys-tems: a review. Journal of Tropical Ecology 7: 1–23. Brun, R. (1979): Methods and results of biomass determination in a cloud forest ecosystem in the Venezuelan Andes. Plant Research and Development 9: 61–70. Bussmann, R.W. (2002): Estudio fitosociológico de la vegetación en la Reserva Biológica San Francisco (ECSF) Zamora-Chinchipe. Departamento de Botánica y Ecología Herbario Loja 8: 1–106. Universidad Nacional de Loja. Loja, Ecuador. Cabrera, H.M., Rada, F. & Cavieres, L. (1998): Effects of temperature on photosynthesis of two morphologically contrasting plant species along an altitudinal gradient in the tropical high Andes. Oecologia 114: 145–152. Canfield, R.H. (1941): Application of the line intercept method in sampling range vegetation. Journal of Forestry 39: 388–394. Carnevali, G. & Ramírez, I. (1998): Notes on the orchid flora of the Cruz Carrillo National Park (Guaramacal), Venezuela. Harvard Papers in Botany 3: 239–252. Cavelier, J. (1996): Environmental factors and ecophysiological processes along altitudinal gradients in wet tropical mountains. In: Mulkey, S.S., Chazdon, R.L. & Smith, A.P. (eds.): Tropical forest plant ecophysiology, pp. 399–439. Chapman & Hall, New York, USA. Cavelier, J. & Goldstein, G. (1989): Mist and fog interception in elfin cloud forests in Colombia and Venezuela. Journal of Tropical Ecology 5: 309–322. Cavelier, J., Solis, D. & Jaramillo, M.A. (1996): Fog interception in montane forests across the central Cordillera of Panama Journal of Tropical Ecology 12: 357–369. Chacón, J., Madriñán, S., Chase, M.W. & Bruhl, J.J. (2006): Molecular phylogenetics of Oreobolus (Cyperaceae) and the origin and diversification of the American species. Taxon 55(2): 359–366. 190 References _______________________________________________________ Chapin, F.S. & Körner, C. (1998): Artic and Alpine biodiversity: its patterns, causes and ecosystem consequences. In: Mooney, H.A., Cushman, J.H., Medina, E., Sala, O.E., Schulze, E.D. (eds). Functional roles of biodiversity: a global perspective, Scope 55. pp. 7–32. Wiley, NY, USA. Churchill, S., Balslev, H. Forero, E. & Luteyn, J. (eds.). (1995): Biodiversity and Conservation of Neotropical Montane Forests. The New York Botanical Garden, New York, USA. Clark, L.G. (1990): Chusquea sect. Longiprophyllae (Poaceae: Bambusoideae): A New Andean Section and New Species. Systematic Botany 15(4): 617–634. Clark, L.G. (2000): Chusquea. In Catalogue of New World Grasses (Poaceae): I. Subfamilies Anomochlooideae, Bambusoideae, Ehrhartoideae, and Pharoi-deae. Contributions from the United States National Herbarium 39: 36–52. Cleef, A.M. (1979): The phytogeographical position of the neotropical vascular páramo flora with special reference to the Colombian Cordillera Oriental. In: Larsen, K., Holm-Nielsen, L.B. (eds.): Tropical Botany, pp. 175–184. Academic Press, London. Cleef, A.M. (1980): Secuencia altitudinal de la vegetación de los páramos de la Cordillera Oriental de Colombia. Revista del Instituto Geográfico ‗A. Codazzi‘ 7(2): 50–67. Cleef, A.M. (1981): The vegetation of the paramos of the Colombian Cordillera Oriental. Dissertationes Botanicae 61: 1–320. J. Cramer, Vaduz, Lichtenstein. Cleef, A.M. (2005): Phytogeography of the generic vascular páramo flora of Tatamá (Western Cordillera), Colombia. In: Van der Hammen, T., Rangel-Ch., J.O. & Cleef, A.M. (eds.). La Cordillera Occidental colombiana. Transecto de Tatamá. Estudios de Ecosistemas Tropandinos 6: 661–668. Cramer (Borntraeger), Berlin-Stuttgart, Germany. Cleef, A.M. & Chaverri, A. (1992): Phytogeography of the páramo flora of Cordillera Talamanca, Costa Rica. In: Balslev, H., Luteyn, J. (eds.): Páramo: an Andean ecosystem under human influence, pp. 45-60. Academic Press, London, UK. Cleef, A.M. & Rangel-Ch., J.O. (1984): La vegetación del páramo noroeste de la Sierra Nevada de Santa Marta. In: Van der Hammen, T. & Ruiz, P.M. (eds.): La Sierra Nevada de Santa Marta (Colombia). Transecto Buritica–La Cumbre. Estudios de Ecosistemas Tropandinos 2: 203–266. J. Cramer, Berlin-Stuttgart, Germany. Cleef, A.M., Rangel Ch., J.O. & Arellano, H. (2008): The paramo vegetation of the Sumapaz massif (Eastern Cordillera, Colombia). In: Van der Hammen, T., RangelCh., J.O. & Cleef, A.M. (eds.): La Cordillera Occidental colombiana. Transecto de Tatamá. Estudios de Ecosistemas Tropandinos 6: 377–468. J. Cramer (Borntraeger), Berlin-Stuttgart, Germany. Cleef, A.M., Rangel-Ch., J.O. & Salamanca, S. (1983): Reconocimiento de la vegetación de la parte alta del transecto Parque Los Nevados. In: Van der Hammen, Perez-P., A. & Pinto, P. (eds.): La Cordillera Central colombiana. Transecto Parque Los Nevados. Estudios de Ecosistemas tropandinos 1: 150–173. J. Cramer, Berlin-Stuttgart, Germany. Cleef, A. M., Rangel-Ch., J.O. & Salamanca, S. (2003): The Andean rain forests of the Parque Los Nevados Transect. In: Van der Hammen, T. & Dos Santos, A.G. (eds.): La Cordillera Central Colombiana. Transecto Parque Los Nevados. Estudios de Ecosistemas Tropandinos 5: 79-143. Cramer, Berlin-Stuttgart, Germany. Cleef, A.M., Rangel-Ch, J. O., Salamanca S., Ariza-N, C. & Van Reenen, G.B.A. (2005): La vegetación del páramo del Macizo de Tatamá, Cordillera Occidental, Colombia. In: Van der Hammen, T., Rangel-Ch., J.O. & Cleef, A.M. (eds.): La Cordillera 191 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Occidental colombiana Transecto de Tatamá. Estudios de Ecosistemas Tropandinos 6: 377–468. Cramer (Borntraeger), Berlin-Stuttgart, Germany. Cleef, A. M., Rangel-Ch., J.O., Van der Hammen, T. y Jaramillo, R. (1984): La vegetación de las selvas del transecto Buritica. In: Van der Hammen, T. & Ruiz, P. M. (eds.): La Sierra Nevada de Santa Marta (Colombia). Transecto Buritica–La Cumbre. Estudios de ecosistemas tropandinos 2: 267–406. J. Cramer, Berlin-Stuttgart, Germany. Cleef, A. M., Van der Hammen, T. & Hooghiemstra, H. (1993): The savanna relationship in the Andean páramo flora. Opera Botanica 121: 285-290. (O. Hedberg Festschrift). Colwell, R. K., Brehm, G. Cardelús, C.L. Gilman A.C., Longino J.T. (2008): Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322: 258–261 Coombes, L. & Ramsay, P.M. (2001): Vegetation of a cushion mire at 3600 m on Volcean Chiles, Ecuador. In: Ramsay, P.M. (ed.): The ecology of Volcán Chiles: high-altitude ecosystems on the Ecuador-Colombia border. Pp. 47–54. Pebble & Shell, Plymouth, UK. Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., Van der Heijden, M.G.A., Pausas, J.G. & Poorter, H. (2003): A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335–380. Cuatrecasas, J. (1934): Observaciones geobotánicas en Colombia. Trab. Mus. Nac. Cienc. Nat. Madrid, Série Botánica 27: 1–144. Madrid. Cuatrecasas, J. (1958): Aspectos de la vegetación natural de Colombia. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales. 10: 221–268. Cuatrecasas, J. (1986): Speciation and radiation of the Espeletiinae in the Andes. In: F. Vuilleumier & M. Monasterio (eds.): High Altitude Tropical Biogeography, pp.267301. Oxford University Press, Oxford, UK. Cuello, N. (1996): Floristic diversity and structure of montane cloud forests of Cruz Carrillo National Park in the Venezuelan Andes. [Master Thesis]. University of Missouri-St. Louis. U.S.A. Cuello, N. (ed.) (1999a): Parque Nacional Guaramacal. Unellez Fundación Polar, Caracas, Venezuela. 245 pp. Cuello, N. (1999b): Observaciones sobre la Vegetación del Parque Nacional Guaramacal. In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 109–128. Unellez- Fundación Polar. Caracas, Venezuela. Cuello, N. (2000): Caracterización de los bosques montanos del Parque Nacional Cruz Carrillo en los Andes de Venezuela. Memorias del IV Congreso Latinoamericano de Ecología: Ecología y Desarrollo Sostenible: Reto de America Latina para el Tercer Milenio. pp.127–130. Arequipa, Perú. Cuello, N. (2002): Altitudinal Changes in Forest Diversity and Composition in the Ramal de Guaramacal in the Venezuelan Andes. Ecotropicos 15(2): 160–176. Cuello, N. (2004): Los bosques del Parque Nacional Guaramacal, estado Trujillo, Venezuela: Testigos del desarrollo sostenible dentro de la región Andina y Llanera. Memorias del IV Simposio Internacional de Desarrollo Sustentable en los Andes. La Estrategia Andina para el Siglo XXI (CD-Rom). Sesión IV. Taller sobre selvas y bosques nublados. AMA-Mérida, Venezuela. Cuello, N. & Aymard, G. (2008): Ilex guaramacalensis, a new species (Aquifoliaceae) from the Ramal de Guaramacal in the Venezuelan Andes. Novon 18(3): 319–324. 192 References _______________________________________________________ Cuello, N. & Barbera, O. (1999): Aspectos climáticos del Parque Nacional Guaramacal. In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 47–49. Unellez- Fundación Polar. Caracas, Venezuela. Cuello, N. & Cleef, A.M. (2009a): The forests of Ramal de Guaramacal in the Venezuelan Andes. Phytocoenologia 39(1): 109–156. Cuello, N. & Cleef, A.M. (2009b): The páramo vegetation of Ramal de Guaramacal, Trujillo State, Venezuela. I. Zonal communities. Phytocoenologia 39(3): 295–329. Cuello, N. & Cleef, A.M. (2009c): The páramo vegetation of Ramal de Guaramacal, Trujillo State, Venezuela. II. Azonal vegetation. Phytocoenologia 39(4): 389–409. Cuello, N., Killeen, T. & Antezana, C. (1991): "Linea de Intercepción" (Line-intercept), una metodología apropiada para el estudio de sabanas tropicales. 15 p. In: Miranda L. C. and E. Castellano (eds.): Memoria del I Curso Internacional sobre vegetación y ecología tropical con énfasis en los métodos de estudio de la vegetación. TCA. Bolivia. Cummings, J. & Smith, D. (2000): The line-intercept method: A tool for introductory plant ecology laboratories. In: Karcher, S. J. (ed.). Tested studies for laboratory teaching, Volume 22. Pp. 234–246. Proceedings of the 22nd Workshop/Conference of the Association for Biology Laboratory Education (ABLE), Clemson. 489 pp. Deil, U. (2005): A review on habitats, plant traits and vegetation of ephemeral wetlands – a global perspective. Phytocoenologia 35(2-3): 533–705. Díaz, S. & Cabido, M. (1997): Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science 8: 463–474. Díaz, S., Cabido, M. & Casanoves, F. (1998): Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science 9: 113–122. Díaz, S., Cabido, M., Zack, M., Martinez C.E. & Aranibar, J. (1999): Plant functional traits, ecosystem structure and land-use history along a climatic gradient in Central-Western Argentina. Journal of Vegetation Science 10: 651–660. Dierschke, H. (1981): Zur syntaxonomischen Bewertung schwach gekennzeichter Pflanzengesellschaften. In: Dierschke, H. (ed.): Syntaxonomie (Rinteln 31.1. – 3.4.1980). Ber. Int. Symp. Int. Ver. Vegetationskd. 24: 109–122. Dierschke, H. (1994): Pflanzensoziologie. Grundlagen und Methoden. Ulmer, Stuttgart, Germany. Dierssen, K. (1975): Zur Littoralvegetation oligotropher und mesotropher Gewässer in Island und Nord-Norwegen, ein Beitrag zur Sociologie und Verbreitung der Littorelletea in Nord-Europa. Beitr. Naturkundl. Forsch. Südwest-Deutschland 34: 57–77. Dierssen, K. (1982): Die wichtigste Pflanzengesellschaften der Moore NW-Europas. Conservatoire et Jardin Botaniques. Geneve. 382 pp. Dinerstein, E., Olson, D.M, Graham, D.J., Webster, A.L., Primm, S.A., Bookbinder, M.P. & Ledec, G. (1995): A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. The World Wildlife Fund and the World Bank, Washington, D.C., USA. Dorr, L. (1999): Exploración Botánica en el Parque Nacional Guaramacal. In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 63–65. Unellez- Fundación Polar. Caracas, Venezuela. Dorr, L., Stergios, B., Smith, A. & Cuello, N. (2000): Catalogue of the Vascular Plants of Guaramacal National Park, Portuguesa and Trujillo States, Venezuela. Contributions from the United States National Herbarium 40: 1–155. 193 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Dray, S. & Dufour, A.B. (2007): The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20. Dray, S. & Legendre, P. (2008): Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400–3412. Duckworth, J. C., Kent, M. & Ramsay, P.M. (2000): Plant functional types: an alternative to taxonomic plant community description. Progress in Physical Geography 24: 515–542 Dunsterville G.C.K. & Garay, L. (1965): Venezuelan Orchids Illustrated. Vol. 3. André Deutsch, Ltd., London, UK. 348 pp. Etter, A. & Wyngaarden, W. van (2000): Patterns of landscape transformation in Colombia, with emphasis in the Andean region. Ambio 29: 432–439. Ewel, J.J., Madriz, A. & Tosi Jr., J.A. (1976): Zonas de vida de Venezuela: Memoria explicativa sobre el Mapa ecológico. FONAIAP. Ministerio de Agricultura y Cría. República de Venezuela. Caracas. 2da. Edición. 270 pp. Faría S., N.B. (1978): Afinidades fitogeográficas de la flora vascular de los páramos venezolanos. Revista de la Facultad de Agronomía de la Universidad del Zulia 4(2): 96–137, Maracaibo, Venezuela. Fariñas, M. & Monasterio, M. (1980): La vegetación del páramo de Mucubají. Análisis de ordenamiento y su interpretación ecológica. In: Monasterio, M. (ed). Estudios ecológicos en los páramos Andinos, pp. 264–307. Editorial de la Universidad de Los Andes, Mérida, Venezuela. Fisher, A.E., Triplett, J.K., Schiller H., Schroder, O., Kelchner, S. & Clark, L.G. (2009): Paraphyly in the bamboo subtribe Chusqueinae (Poaceae: Bambusoideae) and a revised infrageneric classification for Chusquea. Syst. Bot. 34(4): 673–683. Flenley, J.R. (1992): Ultraviolet-B insolation and the altitudinal forest limit. In: Furley, P.A., Proctor, J. & Ratter, J.A. (eds.): Nature and dynamics of forest-savanna boundaries, pp. 273–282. Chapman & Hall, London, UK. Franco, P., Rangel, J.O. & Lozano, G. (1986): Estudios ecológicos en la Cordillera Oriental – II Las comunidades vegetales de los alrededores de la Laguna Chingaza (Cundinamarca). Caldasia 15 (71-75): 219–248. Fuchs-Eckert, H.P. 1982. Zur heutigen Kenntnis von Vorkommen und Verbreitung der südamerikanishcen Isoëtes-Arten. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen C85: 205–260. Gentry, A. (1982): Neotropical floristic diversity; phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann. Missouri. Bot. Gard. 75: 1–34. Gentry, A. (1988): Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Gard. 75(1): 1–34. Gentry, A. (1992): Diversity and floristic composition of Andean forests of Peru and adjacent countries: Implications for their conservation. In: Young, K. & Valencia, N. (eds.): Mem. Mus. Hist. Nat. 21: 11–29. Gentry, A. (1995): Patterns of diversity and floristic composition in Neotropical montane forests. In: Churchill, S., Balslev, H. Forero, E. & Luteyn, J. (eds.): Biodiversity and conservation of Neotropical montane forests, pp. 103–126. The New York Botanical Garden, New York, USA. Gerold, G. (2008): Soil, climate and vegetation in tropical montane forests – a case study from the Yungas, Bolivia. In: Gradstein, S. R., Homeier, J. & Gansert, D. (eds.): The tropical mountain forest. Patterns and processes in a bio-diversity Hotspot, pp. 137– 162. Universitätsverlag Göttingen, Göttingen, Germany. 194 References _______________________________________________________ Girao, L.C., Lopez, A.V., Tabarelli, M. & Bruna, E.M. (2007): Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape. PLoSOne 9: 1–12. Gitay, H. & Noble, I.R. (1997): What are functional types and how should we seek them? In: Smith, T.M., Shugart, H.H. & Woodward, F.I. (eds.): Plant func-tionnal types: their relevance to ecosystem properties, pp. 3–19. Cambridge University Press, Cambridge, UK. Goebel, K. von. (1891): Die Vegetation der venezolanischen Páramos. In: Goebel, K. von (ed.). Pflanzenbiologische Schilderungen 2: 1–50 Marburg. Traduc-ción en español por A. Ernst: La vegetación de los páramos de los Andes venezolanos. González de Juana, C., Iturralde de Arozena, J.M., Picard Cadillat, X. (1980): Geología de Venezuela y de sus cuencas petroleras. Ediciones FONINVES, Caracas, Venezuela. Gradstein, S.R., Homeier, J. & Gansert, D. (eds.) (2008): The tropical mountain forest. Patterns and processes in a biodiversity Hotspot. Universitätsverlag Göttingen, Göttingen, Germany. 217 pp. Grubb, P.J., Lloyd, J.R., Pennington, T.D. & Whitmore, T.C. (1963): A comparison of montane and lowland rainforest in Ecuador. I. The forest structure, physiognomy, and floristics. Journal of Ecology 51: 567–601. Grubb, P.J. & Whitmore, T.C. (1966): A comparison of montane and lowland rain forest in Ecuador II. The climate and its effects on the distribution and physiognomy of the forests. Journal of Ecology 54: 303–333. Grubb, P.J. (1971): Interpretation of the ‗Massenerhebung‘ effect on tropical mountains. Nature 229: 44–45. Grubb, P.J. (1977): Control of forest growth and distribution on wet tropical mountains; with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8: 83–107. Grubb, P.J., Lloyd, J.R., Pennington, T.D. & Whitmore, T.C. (1963): A comparison of montane and lowland rainforest in Ecuador. I. The forest structure, physiognomy, and floristics. Journal of Ecology 51: 567–601. Gutte, P. (1992): Die Herkunft hochandiner zentralperuanischer Gattungen – Versuch einer Florenanalyse. Feddes Rep. 103 (3-4): 209–214. Hagen, K.B., von & Kadereit, J.W. (2003): The diversification of Halenia (Gentianiaceae): Ecological opportunity versus key innovation. Evolution 57(11): 2507–2518. Hansen, L.D., Church, J.N., Matheson, S., McCarlie, V.W., Thygerson, T., Criddle, R.S. & Smith, B.N. (2002): Kinetics of plant growth and metabolism. Thermochimica Acta 388: 415–425. Hedberg, I. & Hedberg, O. (1979): Tropical-alpine life-forms of vascular plants. Oikos 33: 297–307. Hemp, A. (2006): Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecology 184(1): 27–42. Henderson, A., Churchill, S.P. & Luteyn, J.L. (1991): Neotropical plant diversity. Nature 351: 21–22. Hill, M.O. (1979): TWINSPAN, A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics, Cornell University, Ithaca, NY, USA. Hill, M.O. & Gauch Jr., H.G. (1980): Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58. 195 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Hofstede, R. (2002): Los páramos Andinos; su diversidad, sus habitantes, sus problemas y sus perspectivas. Un nuevo diagnóstico regional del estado de conservación de los páramos. Memoria Congreso Mundial de Páramos 2: 82–109. Gente Nueva Editorial, Bogotá, Colombia. Hofstede, R., Segarra, P. & Mena V., P. (eds.) (2003): Los Páramos del Mundo. Proyecto Atlas Mundial de los Páramos. Global Peatland Initiative/NC-IUCN/EcoCiencia. Quito, Ecuador. 299 pp. Hokche, O., Berry, P. & Huber, O. (editors). (2008): Nuevo catálogo de la flora de Venezuela. Fundación Instituto Botánico de Venezuela, Caracas, Venezuela. 859 pp. Holst, B. (1994): Checklist of Venezuelan Bromeliaceae with notes on species distribution by state and levels of endemism. Selbyana 15(1): 132–149. Hooghiemstra, H. & Van der Hammen, T. (1993): Late Quaternary vegetation history and paleoecology of Laguna Pedro Palo (subandean forest belt, Eastern Cordillera, Colombia). Review of Palaeobotany and Palynology 77: 235–262. Hooghiemstra, H., Wijninga, V. M. & Cleef, A. M. (2006): The paleobotanical record of Colombia: Implications for biogeography and biodiversity. Ann. Missouri Bot. Gard. 93: 297–325. Holder, C. D. (2006): The hydrological significance of cloud forests in the Sierra de las Minas Biosphere Reserve, Guatemala. Geoforum 37: 82–93. Howorth, R.T. & Pendry, C.A. (2006): Post-cultivation secondary succession in a Venezuelan lower montane rain forest. Biodiversity and Conservation 15: 693–715. Huber, O. (1986): Las selvas nubladas de Rancho Grande. Observaciones sobre su fisionomía, estructura y fenología. In: Huber, O. (ed.): La selva nublada de Rancho Grande Parque Nacional ―Henri Pittier‖, el ambiente físico, vegetal y anatomía vegetal, pp. 131–170. Fondo Editorial Acta Científica Venezolana, Seguros Anauco, C.A., Caracas, Venezuela. Huber, O. & Alarcon, C. (1988): Mapa de vegetación de Venezuela. 1: 2000000. Ministerio del Ambiente y de los Recursos Naturales Renovables. Caracas, Venezuela. ICAE (2005): 35 Años de estudios ecológicos: Páramo, agroecología, sabanas, ecofisiología, selvas nubladas. Universidad de los Andes, Mérida,Venezuela. CDRom. ICAE, Centro de Investigación de la Vivienda, Departamento de Medicina Preventiva y Social & Universidad de Los Andes. (2004): Plan de acción para la conservación del Páramo de Gavidia, Mérida, Venezuela. 39 pp. Illig, J., Schatz, H., Scheu S., Maraun, M. (2008): Decomposition rates and micro-arthropod colonization of litterbags with different litter types (Graffenrieda emarginata, Purdiaea nutans) in a tropical mountain rain forest in southern Ecuador. Journal of Tropical Ecology 24:157–167. Jørgensen, P.M. & Ulloa Ulloa, C. (1994): Seed plants of the high Andes of Ecuador: a checklist. AAU Rep. 34: 1–443. Aarhus University Press, Denmark. Kappelle, M., Van Uffelen, J.G. & Cleef, A.M. (1995): Altitudinal zonation of montane Quercus forests along two transects in the Chirripó National Park, Costa Rica. Vegetatio 119:119–153. Kappelle, M. & Brown, A. (eds.). (2001): Bosques Nublados del Neotropico. INBIO, Costa Rica. 704 pp. Keddy, P.A. (1992): Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164. 196 References _______________________________________________________ Kelly, D.L., Tanner, E.V., Nic Lughadha, E.M. & Kapos, V. (1994): Floristics and biogeography of a rain forest in the Venezuelan Andes. J. Biogeogr. 21: 421–440. Kelly, D.L., O‘Donovan, G., Feehan, J., Murphy, S., Drangeid S.O. & Marcano-Berti, L. (2004): The epiphyte communities of a montane rain forest in the Andes of Venezuela: patterns in the distribution of the flora. Journal of Tropical Ecology 20:643–666. Kercher, S.M., Frieswyk, C.B. & Zedler, J.B. (2003): Effects of sampling teams and estimation methods on the assessment of plant cover. Journal of Vegetation Science 14: 899–906. Kitayama, K. (1992): An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102: 149–171. Lambers, H., Chapin, F.S. & Pons, T.L. (2008): Plant physiological ecology. Springer, New York, USA. Lamprecht, H. (1954): Estudios silviculturales en los bosques del valle de la Mucuy, cerca de Mérida. Facultad de Ciencias Forestales, Universidad de los Andes, Mérida. Lauer, W., Rafiqpoor, M.D. & Theisen, I. (2001): Physiographie, Vegetation und Syntaxonomie der Flora des Páramo de Papallacta (Ostkordillere Ecuador). Erdwiss. Forsch. 39. 142 pp. Stuttgart, Germany. Lavorel, S. & Garnier, E. (2002): Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556 Legendre, P., Galzin, R. & Harmelin-Vivien, M.L. (1997): Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78: 547–562. Legendre, P. & Legendre, L. (1998): Numerical ecology. Elsevier, Amsterdam. Leuschner, C. & Moser, G. (2008): Carbon allocation and productivity in tropical mountain forests. In: Gradstein, S. R., Homeier, J. & Gansert, D. (eds.): The tropical mountain forest. Patterns and processes in a biodiversity Hotspot, pp.109–128. Universitätsverlag Göttingen, Göttingen, Germany. Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. (1996): Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84: 137–152. Llambí, L.D., Smith, J.K., Pereira, N., Pereira, A.C., Valero, F., Monasterio, M. & Dávila, M.V. (2005): Participatory Planning for Biodiversity Conservation in the High Tropical Andes: Are Farmers Interested?. Mountain Research and Development 25(3): 200–205. Lomolino, M.V. (2001): Elevation gradients in species density: historical and prospective views. Global Ecology and Biogeography 10: 3–13. Lozano, P., Cleef, A.M. & Bussmann, R. (2009): Phytogeography of the vascular páramo flora of Podocarpus Biosphere Reserve, South Ecuador. Arnaldoa 16 (2): 69–85. Luces, Z. (1953): Especies de gramíneas nuevas para la Ciencia. Boletín de la Sociedad Venezolana de Ciencias Naturales 15 (80): 3–20. Luteyn, J.L. (1999): Páramos: a checklist of plant diversity, geographical distribution, and botanical literature. Mem. New York Bot. Gard. 84: 1–278. Luteyn, J.L. & Churchill, S.P. (2000): Vegetation of the Tropical Andes. In: Lentz D. (ed.): Imperfect balance: landscape transformations in the Pre-Columbian Americas, pp. 281–310. Columbia University Press, New York, USA. Mabberley, D.J. 2008. Mabberley‘s plant-book. A portable dictionary of plants, their classification and uses. 3rd ed. Cambridge Univ. Press, New York, USA. 1021 pp. 197 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Malcuit, G (1929): Contributions a l‘étude phytosociologique des Vosges Méridionales Saônoises – Les associations végétales de la vallée de la Lanterne. Arch. Bot. Mém. 2(6): 1–211, 8 plates. Marvéz, P. & Schargel, R. (1999): Características y génesis de los suelos del Parque Nacional Guaramacal. In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 35–44. Unellez- Fundación Polar. Caracas, Venezuela. Mayfield, M.M., Boni, M.E., Daily, G.C., Ackerly, D. (2005): Species and functional diversity of native and human-dominated plant communities. Ecology 86: 2365–2372. McCune, B. & Mefford, M.J. (1999): PC-ORD. Multivariate Analysis of Ecological Data. Version 4.10. MjM Software, Gleneden Beach, OR, U.S.A. McGill1, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006): Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21 (4): 178–185. McIntyre, G.A. (1953): Estimations of plant density using line transects. Journal of Ecology 41(3): 19–330. Medina, E. & Klinge, H. (1983): Productivity of tropical forests and tropical woodlands. In: Lange, O.L. (ed.): Physiological Plant Ecology, pp. 281–303. Springer, New York, USA. Meudt, H.M. & Simpson, B.B. (2007): Phylogenetic analysis of morphological characters in Ourisia (Plantaginaceae): taxonomic and evolutionary implications. Ann. Missouri Bot. Gard. 94: 554–570. Meier, W. (2004): Flora y vegetación del Parque Nacional El Ávila (Venezuela, Cordillera de la Costa), con especial énfasis en los bosques nublados. Freiburg, Germany. Spanish version of Meier, W. 1998. "Flora und Vegetation des Ávila-Nationalparks (Venezuela/Küstenkordillere) unter besonderer Berücksichtigung der Nebelwaldstufe". Dissertationes Botanicae 296. 485 pp. J. Cramer (Borntraeger), Berlin – Stuttgart, Germany. Ministerio de Minas e Hidrocarburos. (s/f): Mapa Geológico de la Región de Calderas, estados Trujillo, Barinas y Portuguesa. Escala 1:50.000. Dirección de Geología, Caracas, Venezuela. Ministerio de Minas e Hidrocarburos. (1970): Léxico Estratigráfico de Venezuela. Bol. Geol. Public. Esp. 1: 1–728. Dirección de Geología. Caracas, Venezuela. Mittermeier, R.A., Myers, N., Robles Gil, P. & Mittermeier, C.G. (1999): Hotspots. CEMEX. Mexico City, México. Molinillo, M. & Monasterio, M. (1997): Pastoralism in Páramo Environments: Practices, Forage, and Impact on Vegetation in the Cordillera of Merida, Venezuela. Mountain Research and Development 17(3): 197–211. Molinillo, M. & Monasterio, M. (2002): Patrones de vegetación y pastoreo en ambientes de páramo. Ecotrópicos 15(1): 19–34. Monasterio, M. (ed.) (1980a): Estudios ecológicos en los páramos andinos. Ediciones de la Universidad de los Andes, Mérida, Venezuela. 312 pp. Monasterio, M. (1980b): Las formaciones vegetales de los páramos de Venezuela. In: Monasterio, M. (ed.): Estudios ecológicos en los páramos andinos, pp. 93–158. Ediciones de la Universidad de los Andes, Mérida, Venezuela. Monasterio, M. & Molinillo, M. 2003. La integración del Desarrollo agrícola y la conservación de áreas frágiles en los páramos de la Cordillera de Mérida, Venezuela. Congreso Mundial de páramos, Tomo II. Paipa, 2002, pp. 734–749, Gente Nueva Editorial, Bogotá, Colombia. 198 References _______________________________________________________ Monasterio, M. & Reyes, S. (1980): Diversidad ambiental y variación de la vegetación en los páramos de los Andes Venezolanos. In: Monasterio, M. (ed.): Estudios ecológicos en los páramos andinos, pp. 47–91. Ediciones de la Universidad de los Andes, Mérida, Venezuela. Morillo, G. (1988): Nuevas especies de Asclepiadaceae para Venezuela. Ernstia 34: 12–30. Moscol Olivera, M. & Cleef, A.M. (2009a): A phytosociological study of the páramo along two altitudinal transects in northern Ecuador. Phytocoenologia 39(1): 79–107. Moscol Olivera, M. & Cleef, A.M. (2009b): Vegetation composition and altitudinal distribution of Andean rain forests in El Carchi Province, northern Ecuador. Phytocoenologia 39 (2): 175–204. Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000): Biodiversity hotspots for conservation priorities. Nature 403: 853–858. Naeem, S. & Wright, J.P. (2003): Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters 6: 567–579. Nakashizucha, T., Yusop, Z. & Nik, A.R. (1992): Latitudinal zonation of forest communities in Selangor, Peninsular Malasia. Journal of Tropical Forest Science 4: 233–244. Niño, S. M., Licata, A. & Rivero, J. (1997): Caracterización botánica del páramo y subpáramo de Cendé, Parque Nacional Dinira, estado Trujillo, Venezuela. BioLlania 13: 97–110. Niño, M., Dorr, L. & Stauffer, F.W. (2005): Una nueva especie de Aiphanes (Arecaceae) de la Cordillera de Mérida, Venezuela. Sida 21: 1529–1606. Olson, D., Dinerstein, E. Castro, G. & Maravi, E. (1997): Identifying gaps in botanical information for biodiversity conservation in Latin America and the the Caribbean. World Wildlife Funds, Washington, D.C., USA. Ortega, F., Aymard, G. & Stergios, B. (1987): Aproximación al conocimiento de la flora de las Montañas de Guaramacal, Edo. Trujillo, Venezuela. BioLlania 5: 1–60. Osvald, H. (1923): Die Hochmoortypen Europas. Veröffentl. Geobot. Inst. der ETH, Stiftung Rübel (Zürich) 3: 707–723. Pietsch, W. (1966): Bemerkungen zur Gliederung der Littorelletea-Gesellschaften Mitteleuropas. Ber. Arbeitsgemeinsch. Sächs. Botaniker N.F. 7: 239–246. Pouyllau, M. (1989): Geomorphologie du Venezuela: Carte a 1:4.000.000 et Bibliographie Selective. Venezuela, Environnements et Changements 63(2): 5–36. CEGET, CNRS, Bordeaux, France. Rada, F., Gonzalez, J., Azocar, A., Briceño, B. & Jaimez, R. (1992): Net photosynthesisleaf temperature relations in plant species with different height along an altitudinal gradient. Acta Oecologica 13: 535–542. Ramsay, P.M. (1992): The páramo vegetation of Ecuador: the community ecology, dynamics and productivity of tropical grasslands in the Andes. Ph.D. thesis, University of Wales, Bangor, UK. 274 pp. Ramsay, P.M. & Oxley, E.R.B. (1997): The growth form composition of plant communities in the Ecuadorian páramos. Plant Ecology 131: 173–192, Rangel-Ch., J.O. (1991): Vegetación y ambiente en tres gradientes montañosos en Colombia. Ph.D. Thesis, Universiteit van Amsterdam, The Netherlands. 349 pp. Rangel-Ch., J.O. (ed.) (1994): Ucumari un caso típico de la diversidad biótica andina. CARDER-Instituto de Ciencias, Universidad Nacional de Colombia. Pereira, Colombia. 454 pp. 199 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Rangel-Ch., J.O. (1994): La vegetación del Parque Regional Natural Ucumari. In: RangelCh., J.O. (ed.): Ucumarí. Un caso típico de la diversidad biótica andina, pp. 59–81. Carder - Universidad Nacional de Colombia, Pereira, Colombia. Rangel-Ch., J.O. (ed.) (2000a): Colombia Diversidad Biótica III, La región paramuna de Colombia. Unibiblos, Universidad Nacional de Colombia, Bogotá, Colombia. 903 pp. Rangel-Ch., J.O. (2000b): La diversidad beta: Tipos de Vegetación. In: Rangel-Ch., J. O. (ed.): Colombia Diversidad Biótica III, La región paramuna de Colombia. Pp. 658-719. Unibiblos, Universidad Nacional de Colombia, Bogotá, Colombia. Rangel-Ch., J.O. (2000c): Catálogo florístico de los macizos de Chingaza y Sumapaz. In: Rangel-Ch., J. O. (ed.): Colombia Diversidad Biótica III, La región paramuna de Colombia. Unibiblos, Bogotá, Colombia. Rangel-Ch., J.O. (ed.) (2007): Colombia Diversidad Biologica V. La alta montaña de la Serranía de Perijá, Departamento del Cesar. Universidad Nacional de Colombia, Bogotá, Colombia. 473pp. Rangel-Ch., J.O. & Arellano, H. (2007): Vegetación. In: Rangel-Ch., J.O. (ed): Colombia Diversidad Biológica V. La alta montaña de la Serranía de Perijá, Departamento del Cesar, pp. 173–192. Universidad Nacional de Colombia, Bogotá, Colombia. Rangel-Ch., J.O. & Ariza-N., C. (2000): La vegetación paramuna de los volcanes de Nariño. In: Rangel-Ch., J.O. (ed.): Colombia diversidad biótica III. La región paramuna de Colombia. P. 754–784. Unibiblos. Universidad Nacional de Colombia. Bogotá, Colombia. Rangel-Ch., J.O., Cleef, A.M. & Salamanca, S. (2003): The equatorial interandean and subandean forests of the Parque Los Nevados Transect. Cordillera Central, Colombia. In: Van der Hammen, T. & Dos Santos, A.G. (eds.): La Cordillera Central Colombiana. Transecto Parque Los Nevados. Estudios de Ecosistemas Tropandinos 5: 143–204. Cramer, Berlin-Stuttgart, Germany. Rangel-Ch., J.O., Cleef, A. M., Salamanca, S. & Ariza-N., C. (2005): La vegetación de los bosques y selvas del Tatamá (The forest vegetation of the Tatamá area). In: Van der Hammen, T. Rangel-Ch., J.O. & Cleef, A.M. (eds.): La Cordillera Occidental Colombiana. Transecto de Tatamá. Studies on Tropical Andean Ecosystems 6: 459– 643. Cramer, Berlin-Stuttgart, Germany. Rangel-Ch., J.O. & Franco-R., P. (1985): Observaciones fitoecológicas en varias regiones de vida de la cordillera Central de Colombia. Caldasia 14(67): 211–249. Rangel-Ch., J.O. & Lozano C., G. (1986): Un perfil de vegetación entre La Plata (Huila) y el Volcán del Puracé. Caldasia 14: 503–547. Rangel-Ch., J.O. & Lozano C., G. (1989): The forest vegetation of the Valle de la Plata. In: Herrera, L.F., Drennan, R.D. & Uribe, C.A. (eds.): Prehispanic chiefdoms in the Valle de la Plata 1: 95–119. University of Pittsburgh. Memoirs in Latin American Archaeology 2. Rangel-Ch., J.O., Rivera, O. & Cleef, A.M. (2008): Flora vascular del macizo Sumapaz. In: Van der Hammen, T., Rangel, J.O. & Cleef, A.M. (eds.): La Cordillera Oriental Colombiana. Transecto Sumapaz. Estudios de Ecosis-temas Tropandinos 7: 203–210. J. Cramer (Borntraeger), Berlin-Stuttgart, Germany. Reaud-Thomas, G. (1989): Vegetatión et utilizatión du sol dans la Région GuanareMasparro, Andes Vénézueliennes. Venezuela. Environnement et Changements 63(2): 137–201. CEGET, CNRS, Bordeaux, France. Restrepo, C. & Duque, A. (1992): Tipos de vegetación del Llano de Paletará, Cordillera Central Colombia. Caldasia 17 (1): 21–34. 200 References _______________________________________________________ Ricardi, M, Gaviria, J. & Estrada, J. (1997): La flora del superpáramo venezolano y sus relaciones fitogeográficas a lo largo de Los Andes. Plantula 1(3): 171–187. Ricardi, M, Gaviria, J. & Estrada, J. 2000. Los Andes de Mérida, una nueva subprovincia fitogeográfica de la provincia de los Andes del Norte. Plantula 3(1): 41–46. Richter, M. (2003): Using epiphytes and soil temperatures for eco-climatic interpretations in Southern Ecuador. Erdkunde 57: 161–181. Richter, M. & Moreira-Muñoz, A. (2005): Heterogeneidad climática y diversidad vegetacional en el sur de Ecuador: un método de fitoindicación. In: Weigend, Rodríguez & Arana (comps.): Bosques relictos del NO de Perú y SO de Ecuador. Revista Peruana de Biología 12(2): 217–238. Ries, L., Fletcher Jr., R.J., Battin, J. & Sisk, T.D. (2004): Ecological responses to habitat edges: mechanisms, models, and variabiolity explained. Annual Review of Ecology and Systematics 35: 491–522. Rivera-Díaz, O. (2007): Caracterización florística de la alta montaña de Perijá. In: RangelCh., J.O. (ed.): Colombia Diversidad biótica V: La alta montaña de la Serranía de Perijá, pp.71–132. Arfo Editores e Impresores, Bogotá, Colombia. Rivero, R. & Ortega, F. (1989): Notas fitogeográficas y adiciones a la Pteridoflora de las montañas de Guaramacal, estado Trujillo, Venezuela. BioLlania 6: 133–142. Rundel, P. W. (1994): Tropical alpine climates. In: Rundel, P. W., Smith, A. P. & Meinzer, F. C. (eds.): Tropical Alpine Environments: Plant form and function, pp. 21–44. Cambridge University Press. Cambridge, UK. Ruthsatz, B. (1977): Pflanzengesellschaften und ihre Lebensbedingungen in den Andinen Halbwüsten Nordwest-Argentiniens. Dissertationes Botanicae 39: 1–168. J. Cramer. Vaduz. Salamanca, S., Cleef, A.M. & Rangel, J.O. (2003): The páramo vegetation of the volcanic Ruíz-Tolima massif. In: Van der Hammen, T. & Dos Santos, A.G. (eds.): La Cordillera Central Colombiana. Transecto Parque Los Nevados. Estudios de Ecosistemas Tropandinos 5: 1–77. J. Cramer (Borntraeger), Berlin-Stuttgart, Germany. Sale, P.F. (1978): Coexistence of coral reef fishes — a lottery for living space. Environmental Biology of Fishes 3: 85–102. Salgado-Laboriau, M.L. (1979): Cambios climáticos durante el Cuaternario tardío paramero y su correlación con las tierras tropicales calientes. In: Salgado-Labouriau, M.L. (ed.): El medio ambiente páramo, pp. 67–78. Centro de estudios avanzados, Caracas, Venezuela. Salgado-Laboriau, M.L. (1980): Paleoecología de los páramos venezolanos. In: Monasterio, M. (ed.) (1980): Estudios ecológicos en los páramos andinos, pp. 159–169. Ediciones de la Universidad de los Andes, Mérida, Venezuela Sánchez, R. & Rangel-Ch., J.O. (1990): Estudios ecológicos en la Cordillera Oriental colombiana V: Análisis fitosociológico de la vegetación de los depósitos turbosos paramunos de los alrededores de Bogotá. Caldasia 16 (77): 155–192. Sarmiento, G. (1986): Ecological features of climate in high tropical mountains. In: Vuilleumier, F. & Monasterio, M. (eds.): High Altitude Tropical Biogeography, pp. 11–45. Oxford University Press, Oxford, UK. Sarmiento, G., Monasterio, M., Azocar, A., Castellano, E. & Silva, J. (1971): Vegetación natural. Estudio integral de la Cuenca de los Ríos Chama y Capazón. Sub-proyecto No. III. Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela. 201 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Sarmiento, L. Llambí, L.D., Escalona, A. & Marquez, N. (2003): Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecology 166: 63–74. Sarmiento, L. (2006): 35 Años de Estudios Ecológicos. Páramo. CD-ROM. ICAE. Universidad de los Andes, Mérida, Venezuela. Schneider, J.V. (2001): Diversity, structure and biogeography of a succesional and mature upper montane forest of the Venezuelan Andes. Ph.D. Thesis. University of Frankfurt, Frankfurt, Germany. Schneider, J.V., Gaviria, J. & Zizka, G. (2000): Inventario florístico de un bosque altimontano húmedo en el Valle de San Javier, Edo. Mérida, Venezuela. Plantula, 3(2):65–81. Schröter, C. (1926): Das Pflanzenleben der Alpen. Ed. 2:32. Zürich. 1288 pp. Schubert, C. (1980): Late-Cenozoic pull-apart basins, Boconó fault zone, Venezuelan Andes. J. Struct. Geol. 2(4):463–468. Simpson, B.B. & Todzia, C.A. (1990): Patterns and processes in the development of the high Andean flora. American Journal of Botany 77: 1419–1432. Sklenář, P. & Balslev, H. (2007): Geographic flora elements in the Ecuadorian superpáramo. Flora 202(1): 50–61. Small, R.L. & Hickey, R.J. (2001): Systematics of the northern Andean Isoëtes karstenii complex. American Fern Journal 91(2): 41–69. Smith, J.M.B. & Cleef, A.M., (1988): Composition and origins of the world‘s tropicalpine floras. Journal of Biogeography 15: 631–645. Smith, R. (1985): La vegetación de las cuencas de los Ríos Guasare, Socuy y Cachiri, estado Zulia. Boletín de la Sociedad Venezolana de Ciencias Naturales 143(40): 295– 325. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (eds.). (2007): Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, USA. 996 pp. Stancik, D. (2004): Festuca dinirica and F. guaramacalana (Poaceae, Loliinae), two new species from the Venezuelan Andes. Novon 14 (3): 341–344. Stergios, B. (1999): La flora espermatófita de las Montañas de Guaramacal. In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 73–91. Unellez- Fundación Polar. Caracas, Venezuela. Stergios, B. & Dorr, L. (2003): Bomarea amilcariana (Amarylidaceae). Acta Botánica Venezuelica 26: 31–40. Steyermark, J.A. (1979): Plant refuges and dispersal centres in Venezuela: Their relict and endemic element. In: Larsen, K. & Holm-Nielsen, L.B. (eds.): Tropical Botany. pp. 185–221. Academic Press, London, UK. Steyermark, J.A., & Huber, O. (1978): Flora del Ávila. Vollmer Foundation & MARNR, Caracas, Venezuela. 971 pp. Steyermark, J. Berry, P.E., Yatskyevich, K. & Holst, B.K. (eds.) (1995): Flora of Venezuelan Guayana. Missouri Botanical Garden Press, St. Louis, USA. Strong, M.T. (2006): Rhynchospora guaramacalensis, una nueva especie de Rhynchospora sección Paniculatae (Cyperaceae) de Venezuela. Acta Botánica Venezuelica 29(2): 207–210. 202 References _______________________________________________________ Sturm, H. & Rangel, J.O. (1985): Ecología de los páramos Andinos: Una visión preliminar integrada. Instituto de Ciencias Naturales – Museo de Historia Natural Biblioteca José Jerónimo Triana 9. Bogotá, Colombia. 292 pp. Sugden, A.M. (1985): Leaf anatomy in a Venezuelan montane forest. Botanical Journal of the Linnean Society 90: 231–241. Svenning, J.C. & Condit, R. (2008): Biodiversity in a warmer world. Science 322: 206–207. Taylor, C. (2002): Rubiacearum Americanarum Magna Hama Pars 10. New species and a new subspecies of Faramea (Coussareae) from Central and South America. Novon 12 (4): 563–570. Ter Braak, C.J.F. (1986): Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5): 1167–1179. Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. & Siemann, E. (1997): The influence of functional diversity and composition on ecosystem processes. Science 277: 1300–1302. Troll, C. (1959): Die tropischen Gebirge. Bonner Geogr. Abh 25:1–90 Troll, C. (ed.). (1968): Geo-ecology of the mountainous regions of the tropical Americas. Colloquium Geographicum. Bonn 9, Germany. 224 pp. Troll, C. (1973): The upper timberlines in different climatic zones. Arct. Alp. Res. 5(3, 2): 3–18. Urriola, P. (1999): Una interpretación de la geología y geomorfología de Guaramacal. In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 21–34. Unellez- Fundación Polar. Caracas, Venezuela. Van der Hammen, T. (1974): The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography. 1: 3–26. Van der Hammen, T. (1995): Global change, Biodiversity, and Conservation of Neotropical Montane forests. In: Churchill, S., Balslev, H., Forero, E. & Luteyn, J. (eds.): Biodiversity and Conservation of Neotropical Montane Forests, pp. 603–607. The New York Botanical Garden, New York, USA. Van der Hammen, T. (2002): Diagnóstico, cambio global y conservación. Memoria Congreso Mundial de Páramos Tomo 1: 60–71. Gente Nueva Editorial, Bogotá, Colombia. Van der Hammen, T. & Cleef, A.M. (1986): Development of the high Andean páramo flora and vegetation. In: Vuilleumier, F. & Monasterio, M. (eds.): High altitude tropical biogeography, pp. 153–201. Oxford University Press. Oxford, UK. Van der Hammen, T. & Dos Santos A. (eds.) (2003): La Cordillera Central Colombiana. Transecto Parque Los Nevados. Estudios de Ecosistemas Tropandinos 5. J. Cramer (Borntraeger), Berlin-Stuttgart, Germany. 545 pp. Van der Hammen, T. & Hooghiemstra, H. (2001): Historia y paleoecología de los bosques montanos andinos neotropicales. In: Kappelle, M. & Brown, A. (eds.): Bosques nublados del neotrópico, pp. 63–84. INBio, Costa Rica. Van der Hammen, T. & Ruíz, P.M. (eds.) (1984): La Sierra Nevada de Santa Marta (Colombia). Transecto Buritica–La Cumbre. Estudios de Ecosistemas Tropandinos 2. J. Cramer, Berlin-Stuttgart, Germany. 603 pp. Van der Hammen, T., Díaz, P. & Alvarez, V.J. (eds.) (1989): La Cordillera Central Colombiana. Transecto Parque Los Nevados (Segunda Parte). Estudios de Ecosistemas Tropandinos 3. J. Cramer (Borntraeger) Berlín- Stuttgart, Germany. 600 pp 203 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Van der Hammen, T., Perez-P., A. & Pinto, P. (eds.) (1983): La Cordillera Central colombiana. Transecto Parque Los Nevados. Estudios de Ecosistemas Tropandinos 1: 150–173. J. Cramer, Berlin-Stuttgart, Germany. Van der Hammen, T., Rangel, J.O. & Cleef, A.M. (eds.) (2005): La Cordillera Occidental Colombiana. Transecto Tatamá. Estudios de Ecosistemas Tropandinos 6. J. Cramer (Borntraeger), Berlin-Stuttgart, Germany. 972 pp. Van der Hammen, T., Rangel, J.O. & Cleef, A.M. (eds.) (2008): La Cordillera Oriental Colombiana. Transecto Sumapaz. Estudios de Ecosistemas Tropandinos 7. J. Cramer (Borntraeger), Berlin-Stuttgart, Germany. 1010 pp. Van der Maarel, E. & Sykes, M.T. (1993): Small-scale plant species turnover in a limestone grassland: the carousel model and some comments on the niche concept. Journal of Vegetation Science 4: 179–188. Van Steenis, C.G.G.J. (1961): An attempt towards an explanation of the effect of mountain mass elevation. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Series. C.64: 435–442 Van Steenis, C.G.G.J. (1972): The mountain flora of Java. Brill, Leiden. The Netherlands. 90 pp. Vareschi, V. (1953): Sobre las superficies de asimilación de sociedades vegetales de cordilleras tropicales y extratropicales. Boletín de la Sociedad Venezolana de Ciencias Naturales 14(79): 121–173. Vareschi, V. (1955): Monografías geobotánicas de Venezuela. I. Rasgos geobotánicos sobre el Pico de Naiguatá. Acta Científica Venezolana. 6(5/6): 180–201. Vareschi, V. (1966): Sobre las formas biológicas de la vegetación tropical. Boletín de la Sociedad Venezolana de Ciencias Naturales 110: 508–518. Vareschi, V. (1970): Flora de los páramos de Venezuela. Universidad de los Andes, Ediciones del Rectorado, Mérida, Venezuela: 429 pp. Vargas, G. & Sánchez, J.J. (2005): Plantas con flores de los páramos de Costa Rica y Panamá: El páramo ístmico. In: Kappelle, M. & Horn, S.P. (eds.): Páramos de Costa Rica, pp. 397–435. Editorial INBio, Santo Domingo de Heredia, Costa Rica. Vargas, O. & Zuluaga, S. (1985): Estudio fitoecológico en la región de Monserrate. In: Sturm, H. & Rangel, O. (eds.): Ecología de los páramos andinos: una visión preliminar integrada. Biblioteca J.J. Triana, 9. Editorial Guadalupe. Bogotá, Colombia. 292 pp. Vásquez, J.A. & Givnish, T. (1998): Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manatlán. Journal of Ecology 86: 999–1020. Veillon, J.P. (1965): Variación altitudinal de la masa forestal de los bosques primarios en la vertiente nor-occidental de la cordillera de los Andes, Venezuela. Turrialba 15: 216– 224. Veillon, J.P. (1985): El crecimiento de algunos bosques naturales de Venezuela en relación con los parámetros del medio ambiente. Revista Forestal Venezolana 29: 5–119. Violle, C., Navas, M.L., Vile, D., Kazakou, E. Fortunel, C. Hummel, I. & Garnier, E. (2007): Let the concept of trait be functional! Oikos 116: 882–892. Vivas, Leonel. (1992): Los Andes Venezolanos. Academia Nacional de la Historia, Caracas, Venezuela. Vuilleumier, F. & Monasterio, M. (Eds.) (1986): High Altitude Tropical Biogeography. Oxford University Press, Oxford, UK. 649 pp. Walter, H. (1979): Vegetation of the earth. 2nd. edition. Springer-Verlag. New York, USA. 274 pp. 204 References _______________________________________________________ Weber H.E., Moravec, J. & Theurillat J.-P. (2000): International code of phytosociological nomenclature. 3rd edition. Journal of Vegetation Science 11(5): 739–768. Weiher, E. & Keddy, P.A. (1995): Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74: 159–164. Westhoff, V. & Van der Maarel, E. (1973): The Braun-Blanquet approach. In: Whittaker, R.H. (ed.): Handbook of vegetation science 5: 617–726. Junk, The Hague, The Netherlands. Whittaker, R.H. (1960): Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30: 279–338. Wolf, J.H.D. (1993): Ecology of epiphyte communities in montane rain forests, Colombia. Ph.D. Thesis. Universiteit van Amsterdam, The Netherlands. 238 pp. Wolf, J.H.D. (2003): Diversidad y ecología de comunidades epifíticas en la Cordillera Central, Colombia. In: Van der Hammen, T. & Dos Santos, A.G. (eds.): La Cordillera Central Colombiana. Transecto Parque Los Nevados. Estudios de Ecosistemas Tropandinos 5: 453–502. J. Cramer (Borntraeger), Berlin-Stuttgart, Germany. Yánez, P. (1998): Caracterización florística en un sector de cambio Páramo – Selva Nublada en el Parque Nacional Sierra Nevada, Venezuela. Revista Forestal Venezolana 42(1): 51–62. Young, K.R., Ulloa, C.U., Luteyn, J.L. & Knapp, S. (2002): Plant evolution and endemism in Andean South America: an introduction. Botanical Review. 68: 4–21. 205 APPENDIX Appendix _______________________________________________________ Appendix 1. Checklist and vouchers of vascular species recorded from plots surveys in the montane forest of Ramal de Guaramacal. Species are alphabetically ordered by class, family and genus. Asterisc (*) indicates annotated/collected for forest description, but not documented in the plot surveys. Collectors NC: N. Cuello et al., AL: A. Licata et al. Lycopodiopsida: LYCOPODIACEAE: Huperzia sp. * NC 2822; H. sp. * NC 2268; H. mollicoma (Spring) Holub. * NC 1471; Lycopodium contiguum Kl. * NC 2696; L. jussiaei Desv. ex Peir * NC 1075; SELAGINELLACEAE: Selaginella difussa (C. Presl) Spring * NC 1452; S. producta Baker. * NC 1472; S. substipitata Spring * NC 1298. Filicopsida: ASPLENIACEAE: Asplenium sp. * NC 2814; A. alatum Alvaro Cogollo * NC 2150; A. auriculatum Sw. * AL 220, 235, 260; A. cirrhatum Rich. ex Willd * NC 2385; A. cristatum Lam. * NC 1860, 1862; A. cuspidatum Lam. * AL 221; A. flabellulatum Kunze * AL 222; A. harpeodes Kunze * AL 228, 251; A. raddianum Gaudich. * NC 1247, 1523; A. radicans L. * NC 1631, 2014; A. uniseriale Raddi * NC 1719. BLECHNACEAE: Blechnum ensiforme (Liebm.) C. Chr. * NC 1305; B. schomburgkii (Klotzsch) C. Chr. CYATHEACEAE: Alsophila angelii Tryon NC 2432; A. erinacea (Karst.) Conant. NC 1765, 2209, 2224, 2302; Cyathea aff. straminea H. Karst NC 2394; C. caracasana (Klotzsch) Domin NC 1101, 1226, 1276, 1857, 1875, 1938, 2391, 2473, 2482, 2483; C. fulva (Mart. & Gal.) Fée NC 1032, 1701, 1887, 2011, 2041, 2096, 2365, 2396, 2461, 2582,2286,2295, 2301; C. kalbreyeri (Baker) Domin NC 1512, 1763, 2206, 2603, 2624; C. pauciflora (Kuhn) Lellinger NC 1157, 1971, 2353, 2392, 2633; C. pungens (Willd.) Domin NC 1324; Sphaeropteris sp. NC 1051. DENNSTAEDTIACEAE: Dennstaedtia sp. * NC 1473. DICKSONIACEAE: Dicksonia sellowiana Hook. NC 1873, 1921, 2429. DRYOPTERIDACEAE: Arachniodes denticulata (Sw) Ching * NC 1246, 1477, 1628; Didymochlaena truncatula J. Smith * NC 2151; Diplazium celtidifolium Kunze NC 2154; D. hians Kunze ex Klotzsch. NC 1841, 2136; Elaphoglossum cuspidatum (Will.) Moore * AL 266; E. eximium (Mett.) H. Christ * AL 245; Polystichum muricatum (L.) Fée * NC 2181; P. platyphyllum (Will.) C. Presl * NC 1863. GRAMMITIDACEAE: Melpomene flabelliformis (Poir.) A.R. Sm. & R.C. Moran * NC 2877; M. xiphopteroides (Liebm.) A.R. Sm. & R.C. Moran * AL 270; Micropolypodium truncicola (Klotzsch) A.R. Sm. * AL 275; Terpsichore asplenifolia (L.) A. R. Sm. * NC 1499, 2427; T. subtilis (Kunze ex Klozsch) A. R. Smith, vel aff * AL 271; T. taxifolia (L.) A. R. Sm. * NC 1302; T. xanthotrichia (Klotzsch) A. R. Smith * AL 244. HYMENOPHYLLACEAE: Hymenophyllum fucoides (Sw.) Sw. * NC 1317; H. microcarpum Desv. * NC 1492; H. myriocapum Hook. * NC 1465; H. polyanthos (Sw.) Sw. * AL 248; H. trichomanoides Bosch * NC 1489, 1491; Trichomanes capillaceum L. * NC 1490; T. radicans Sw. * NC 2152. MARATTIACEAE: Danaea moritziana C. Presl. * NC 1533. POLYPODIACEAE :Campyloneurum ophiocaulon (Klotzsch) Fée * NC 2153; C. serpentinum (H. Christ) Ching. * NC 1846; Microgramma percussa (Cav.) de la Sota * NC 1630; Pecluma divaricata (E. Fourn.) Mickel & Beitel * NC 2089; Polypodium sp.* NC 2809; P. buchtienii H. Christ. & Rosenst. * AL 287; P. fraxinifolium Jacq. * NC 1248. PTERIDACEAE: Eriosorus flexuosus (Kunth) Copel. * NC 2824. THELYPTERIDACEAE: Thelypteris concinna (Will.) Ching * AL 337; T. dentata (Forssk.) E.P. St. John * AL 338. VITTARIACEAE Polytaenium lineatum (Sw.) J. Sm. * NC 1203; Vittaria graminifolia Kaulf. * AL 274. Pinopsida: PODOCARPACEAE: Podocarpus oleifolius D. Don ex Lambert var. macrostachyus (Parl.) J. Bunchholz & N. E. Gray NC 1126, 2410, 2647. Magnoliopsida: ACANTHACEAE: Aphelandra macrophylla Leonard NC 1736, 2535, 2557; Mendoncia tovarensis (Klotzsch & Karsten ex Nees) Leonard NC 1800; Ruellia tuberosa L. * NC 2499; R. tubiflora Kunth var. tetrastichantha (Lindau) Leon NC 1038. ACTINIDIACEAE: Saurauia tomentosa (Kunth) Spreng. NC 1190; S. yasicae Loes NC 1026, 1143. ANACARDIACEAE: Tapirira guianensis Aubl. NC 1546, 1854, 2281. ANNONACEAE: Rollinia mucosa (Jacq.) Baill. NC 1814, 2558; Trigynaea duckei (R.E. Fr.) R.E. Fr. NC 1526, 2512. AQUIFOLIACEAE: Ilex guaramacalensis Cuello & Aymard, sp. nov. NC 2853; I. laurina Kunth NC 1147, 1338, 1920, 1961, 2599, 2693; I. myricoides Kunth NC 1140; I. sp.1 NC 1189; I. sp.2 NC 1333, 2462, 2470; I. truxillensis Turcz. subsp. bullatissima Cuatrec. NC 1120, 2412, 209 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes 2471. ARALIACEAE: Dendropanax arboreus (L.) Dcne. & Planch. NC 1503, 1787, 2297; Oreopanax discolor (Kunth) Decne. & Planch. NC 1257, 2448; O. sp. NC 2768, 2826; Schefflera ferruginea (Willd. ex Roem. & Schult.) Harms NC 1083, 1328, 1966, 2393. ASTERACEAE: Ageratina neriifolia (B.L. Rob.) R.M. King & H. Rob. NC 2079; A. theifolia (Benth.) R. M. King & H. Rob. NC 2881; Baccharis brachylaenoides DC. NC 2869; Critoniopsis paradoxa (Sch. Bip.) V.M. Badillo NC 1110, 1253, 1291, 1318, 1935, 2625 Diplostephium obtusum S.F. Blake NC 2678; Fleischmannia pratensis (Klatt) R.M. King & H. Rob. * NC 1548; Libanothamnus griffinii (Ruiz-Teran & Lop. Fig.) Cuatr. NC 2704; Mikania banisteriae DC. NC 1004, 2010, 2379; M. bogotensis Benth. * NC 1355; M. houstonians (L.) B.L. Rob. NC 2232; M. nigropunctulata Hieron NC 2068; M. sp.1 NC 2082; M. stuebelii Hieron NC 2075, 2316, 2363, 2852; Paragynoxys cuatrecasasii Ruiz-Teran & Lopez Figueiras NC 1217; P. venezuelae (V.M. Badillo) Cuatrec. NC 1238; Pentacalia cachacoensis (Cuatrec.) Cuatrec. NC 1242; P. greenmanniana (Hieron.) Cuatr. NC 2879; P. theifolia (Benth.) Cuatrec. NC 2838; P. vicelliptica (Cuatrec.) Cuatrec. NC 2085; Ruilopezia paltonioides (Standl.) Cuatrec. NC 2616. BEGONIACEAE: Begonia sp.* NC 2182; B. trispathulata (A. DC.) Warb. in Engler & Prantl * NC 2553; B. vareschii Irmscher * NC 1464. BIGNONIACEAE: Schlegelia spruceana K. Schum. NC 1816; Tabebuia guayacan (Seem.) Hemsl. NC 1609, 1790. BOMBACACEAE: Matisia sp. NC 2508; Quararibea magnifica Pittier NC 2133, 2225, 2505. BORAGINACEAE: Cordia cylindrostachya (Ruiz & Pav.) Roem. & Schult. * AL 283. BRASSICACEAE: Cardamine fulcrata Greene * AL 272. BRUNELLIACEAE: Brunellia acutangula Humb. & Bonpl. NC 1241; B. cf. integrifolia Szyszyll. NC 1105, 1864, 1936, 2104, 2600. BURSERACEAE: Protium tovarense Pittier NC 1283, 1558, 1778, 2257. CAESALPINIACEAE: Senna pendula (Humb. & Bonpl. ex Willd.) H. Irwin & Barneby * AL 333. CAMPANULACEAE Centropogon cornutus (L.) Druce * AL 309; C. elmanus Wimm. * NC 1420; C. solanifolius Benth. * NC 1479. CAPRIFOLIACEAE: Viburnum tinoides L.f. var. venezuelensis (Killip & A. C. Smith) Steyerm. NC 1258, 1919. CARICACEAE: Vasconcella microcarpa (Jacq.) A. DC. NC 1201, 2526. CARYOPHYLLACEAE: Drymaria cordata (L.) Willd. ex Roem. & Schult. * NC 1457; D. ovata willd. ex Roem & Schult * NC 1439; Stellaria ovata Willd. * NC 2810; Stellaria sp. * NC 2763. CELASTRACEAE: Celastrus liebmanii Standl. NC 1011, 2241, 2357; Maytenus sp. A NC 1293, 1582, 1659, 2626; Perrottetia quinduensis Kunth NC 2030, 1003, 1068. CHLORANTHACEAE: Hedyosmum cf. gentryii D'Arcy & Liesner NC 1518, 1593, 1813, 1870, 2008, 2283, 2380, 2604; H. crenatum Occhioni NC 1115, 1933, 1949, 2101, 2254; H. cuatrecazanum Occhioni NC 989, 1025, 2047; H. goudotianum Solms-Laubach * NC 1441; H. racemosum (Ruiz & Pav.) G. Don NC s/n; H. sp. A NC 1232, 1323, 2450, 2629; H. translucidum Cuatrec. NC 1223, 1326, 2799. CLETHRACEAE: Clethra fagifolia Kunth var. fagifolia NC 1059, 1148, 1330, 1931, 1959, 2356. CLUSIACEAE Clusia alata Triana & Planch. NC 1215, 1219, 1356, 1578, 1883, 1942, 1967, 2001, 2051, 2445, 2617, 2250, 2453; C. sp. 1 NC 2270, 2360; C. sp. A? (C. multiflora group) NC 1676, 1748, 1970; C. trochiformis Vesque NC 1017, 1113, 1255, 1288, 1357, 1674, 1934, 1968, 2120, 2219, 2467, 2251, 2408, 2510; Hypericum paramitanum N. Robson NC 2831; H. thesiifolium Kunth * AL 319; Vismia baccifera (L.) Triana & Planch subsp. dealbata (Kunth) Ewan NC 1274. CUCURBITACEAE: Elateriopsis oerstedii (Cogn.) Pittier NC 2514. CUNONIACEAE: Weinmannia aff. balbisiana Kunth NC 1648, 1877, 2106, 2451, 2638, W. auriculata D. Don NC 2849; W. fagaroides Kunth NC 2252, 2850; W. glabra L.f. NC 1116, 1929, 1964, 2109, 2398; W. karsteniana Szyszyll. NC 2848; W. lechleriana Engl. NC 1351; W. sorbifolia Kunth NC 1195, 2586. DICHAPETALACEAE: Dichapetalum pedunculatum (DC.) Baill. NC 2263. ELAEOCARPACEAE: Sloanea brevispina F. Sm. NC 2265; S. guianensis Aubl. NC 919, 1541, 1775, 1995, 2170, 2231, 2271; S. laurifolia (Benth.) Benth. NC 937; S. rufa Planch. ex Benth. NC 1070, 1513, 2003, 2140, 2276, 2287. EREMOLEPIDACEAE: Antidaphne viscoidea Poepp. & Endl. * NC 1014. ERICACEAE: Diogenesia tetrandra (A. C. Jm.) Sleumer NC 2118, 2589; Disterigma alaternoides (Kunth) Nied. NC 2861; D. sp. NC 2437; Indet. Eric-1 NC 2417; Gaultheria anastomosans (L.f.) Kunth NC 2680; G. erecta Vent. 2827; G. myrsinoides Kunth [Pernettya prostrata (Cav.) DC. NC 2706]; Macleania rupestris (Kunth) A.C. Sm. NC 1575; Psammisia hookeriana Klotzsch. NC 1125, 1637, 1896, 2063, 2334, 2338, 2498; P. penduliflora Klotzsch * NC 1717; Themistoclesia dependens (Benth.) A. C. Smith NC 1974; Thibaudia floribunda Kunth. NC 2693; Vaccinium corymbodendron Dunal NC 2687. ESCALLONIACEAE: cf. Escallonia hispida (Vell.) Sleumer 210 Appendix _______________________________________________________ NC 2431. EUPHORBIACEAE: Acalypha macrostachya Jacq. NC 1177; Alchornea glandulosa Poepp. & Endl. NC 1855, 2536; A. grandiflora Muell. Arg. NC 927, 1186, 1273, 1565, 1584, 1667, 1806, 2129, 2326, 2354, 2415; Croizatia brevipetiolata (Secco) Dorr NC 1703; Hyeronima cf. oblonga (Tul.) Mull. Arg. NC 953, 1309, 1655, 1999, 2035, 2073, 2291, 2628; H. moritziana (M. Arg.) Pax & Hoffmann NC 948, 1081, 1292, 1339, 1773, 1988, 2036, 2601; H. scabrida (Tul.) Mull. Arg. NC 1231, 1352, 2447, 2618; Mabea occidentalis Benth. NC 1519; Phyllanthus niruri L. * AL 325; Sapium stylare Mull. Arg. NC 2029; Tetrorchidium rubrivenium Poepp. NC 1196, 1812, 2022. FABACEAE: Desmodium intortum (Mill.) Urb. * AL 300; D. molliculum (Kunth) DC. * NC 1400, 1438; Dussia coriacea (Sw.) Roem. & Schult. NC 1607, 1977, 2053, 2138; Machaerium cf. floribundum Benth. NC 1807, 2277. FLACOURTIACEAE: Casearia tachirensis Sleumer NC 2032, 2165, 207. GENTIANIACEAE: Macrocarpea bracteata Ewan NC 2806; Symbolanthus vasculosus (Griseb.) Gilg. NC 1329, 1649, 1891, 2122, 2474. GESNERIACEAE: Alloplectus aff. chrysantha Planch. & Linden * NC 1424; Besleria pendula Hanst. NC 942, 1930; Columnea sanguinea (Pers.) Hanst. * AL 307; Drymonia crassa C. V. Morton * NC 2492; D. crassa C.V. Morton NC 2048; Heppiella viscida (Lindl. & Paxt.) Fritzsch * NC 1622, 1724; Kohleria hirsuta (Kunth) Regel * NC 1716. HIPPOCRATEACEAE: Salacia aff. cordata (Miers.) Mennega NC 1786, 2259. HYDRANGEACEAE: Hydrangea aff. peruviana Moricard NC 1180; H. cf. preslii Briq. NC 2238, 2525; H. sp.1 NC 2211. ICACINACEAE: Calatola venezuelana Pittier NC 1005, 2135, 2221, 2282, 2564; Citronella costaricensis (Donn. Sm.) R.A. Howard NC 1165, 1914, 2033. LAMIACEAE: Hyptis vilis Kunth & Bouché * AL 331. LAURACEAE: Aiouea dubia (Kunth) Mez NC 926, 1916, 1998, 2092, 2208, 2444, 2640; Aniba cf. cinnamomiflora C. K. Allen NC 1514, 1596, 1780, 1902, 1992, 2262; Beilschmiedia tovarensis (Meissn.) Sa. Nishida NC 1313, 1587, 1888, 1987, 2023, 2245, 2266; Endlicheria sp. NC 2285, 2330; Nectandra aff. membranacea (Sw.) Griseb. NC 1835, 2532; N. aff. purpurea (Ruiz & Pav.) Mez NC 1536, 2520; N. sp. NC 1838; Ocotea aff. puberula (Rich.) Nees NC 922, 1991; O. aff. tarapotana (Meissn.) Mez NC 1799; O. auriculata Lasser NC 1178; O. calophylla Mez NC 2460; O. cernua (Nees) Mez, vel aff. NC 1828, 2162; O. cf. hexanthera Kopp. NC 2369, 2397; O. floribunda (Sw.) Mez NC 1010, 1037, 1539, 2099, 2351; O. jelski Mez NC 1137, 1962; O. karsteniana Mez NC 1123, 1197, 1307, 1707, 1912, 1996, 2121, 2414; O. leucoxylon (Sw.) de Lanessen, s.l. NC 1664, 1893, 2110, 2366, 2438; O. macropoda (Kunth) Mez NC 1084, 1791, 1880, 1960, 2115, 2318, 2475; O. rubrinervis Mez NC 1563, 2000; O. sericea Kunth NC 2076, 2479; O. sp. s/n; O. sp. A NC 1044, 1295, 1660, 1867, 2290; O. sp. C NC 2518, 2569, 2574; O. terciopelo C. K. Allen NC 2086; O. vaginans (Meissn.) Mez NC 1045, 1290, 1989, 2037, 2641; Persea aff. mutisii Kunth NC 1928, 1954, 1975, 2449, 2464; P. ferruginea Kunth. NC 2480; P. meridensis Kopp. NC 943, 1985, 1897, 1885; P. peruviana Nees NC 976, 1569, 1817, 2142, 2223, 2575; P. sp.1 NC 1953, 1963, 2472; P. sp.2 NC 2434; P. sp.3 NC 1770; Pleurothyrium costanense van der Werff NC 1188, 2128. LECYTHIDACEAE: Eschweilera perumbonata Pittier NC 1521, 1646, 2260, 2278; E. sp. nov NC 1832. LORANTHACEAE: Aetanthus nodosus (Desr.) Engl. * NC 1066, 1345, 2401; Dendrophtora sp. * NC 2795; Gaiadendron punctatum (R. & P.) G. Don NC 1121, 2084, 2847; Struthanthus dichotrianthus Eichl. * AL 320. LYTHRACEAE: Cuphea denticulata Kunth * NC 1401. MAGNOLIACEAE: Talauma sp. NC 1745. MALPIGHIACEAE: Bunchosia armeniaca (Cav.) DC. NC 1181, 2126; Byrsonima karstenii W. R. Anderson NC 1131; B. sp. NC 2439, 2481, 2642; Mascagnia sp. A NC 1552. MARCGRAVIACEAE: Marcgravia brownei (Tr. & Pl.) Krug & Urb. NC 2176, 2578. MELASTOMATACEAE: Anaectocalyx bracteosa (Naud.) Triana NC 1112, 1254, 1285, 1685, 1907, 1941, 2078, 2341, 2477; Blakea schlimii (Naud.) Triana NC 944, 1277, 1571; Chaetolepis lindeniana (Naudin) Triana NC 2691; Henriettella cf. verrucosa Triana NC 1769; H. sp. NC 2303; H. tovarensis Cogn. NC 1550; Meriania grandidens Triana NC 2002, 2046, 2648; M. macrophylla (Benth.) Triana NC 1997, 2141; Miconia aeruginosa Naud. * NC 1549; M. amilcariana Almeda & Dorr NC 999, 1185, 1327; M. cf. dolichopoda Naud. NC 1174, 1836, 2025, 2098, 2299, 2442, 2534; M. donaeana Naud. NC 2577; M. elvirae Wurdack NC 1362; M. cf. minutiflora (Bonpl.) DC. NC 960, 1598, 1662, 2045, 2594; M. jahnii Pittier NC 2828; M. lonchophylla Naud. NC 1043, 1555, 1577, 1771, 1886, 207, 2215, 2300, 2346; M. lucida Naud. NC 932, 941, 1657, 1900, 1978, 2333, 2342; M. mesmeana Gleason subsp. longipetiolata Wurdack NC 1948; M. sp. C (hibrido) NC 1028; M. sp.B NC 2644; M. spinulosa Naudin * NC 1460; M. suaveolens Wurdack NC 1222; M. theaezans (Bonpl.) Cogn., s.l. NC 1151, 1237, 1271, 211 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes 1349, 1540, 2637; M. tinifolia Naud. NC 1106, 1325, 1336, 2062, 2436, 2631; M. tovarensis Cogn. NC 1278, 1231, 2621; M. tuberculata (Naud.) Triana * AL 315; M. ulmarioides Naud. NC 1119, 1225, 1320, 1939, 2097, 2390; Monochaetum discolor H. Karst. NC 2710; Mouriri barinensis (Morley) Morley NC 1504, 1830, 2205; Ossaea micrantha (Sw.) Macfad. NC 2168. MELIACEAE: Guarea kunthiana A. Juss. NC 1171, 1525, 1810, 2210,2555, 2568; Ruagea glabra Triana & Planch. NC 928; R. pubescens H. Karst. NC 1270, 1642, 1801, 1881, 2361, 2523; Trichilia hirta L. NC 2517; T. pallida Sw. NC 1545; T. septentrionalis C. DC. NC 1909, 2043, 2164, 2213. MIMOSACEAE: Inga aff. densiflora Benth. NC 1595, 2226, 2605; Inga edulis Mart. NC 1179, 2524; Zygia bisingula L. Rico NC 1737. MORACEAE: Cecropia sararensis Cuatrec. NC 1746; C. sp. NC 2311; C. telenitida Cuatrec. NC 1826; Ficus nymphaefolia P. Miller NC 1793, 2538; F. sp. NC 1843; F. tonduzii Standl. NC 1198, 2145, 2570; F. tovarensis Pittier NC 2294; Morus insignis Bureau NC 2527; Pseudolmedia rigida (Planch. & Karst.) Cuatrec. subsp. rigida NC 1537, 2273.MYRICACEAE: Myrica pubescens Willd. * AL 314; MYRSINACEAE Cybianthus cuspidatus Miq. NC 1652, 1895; Cybianthus iteoides (Benth.) Agost. NC 1141, 2403; C. laurifolius (Mez) Agost. NC 1153, 1926, 2409; C. marginatus (Benth.) Pipoly NC 2679; C. stapfii (Mez) Agostini NC 2832; Geissanthus fragans Mez NC 1199, 2620; Myrsine dependens (Ruiz & Pav.) Spreng NC 2792; M. coriacea (Sw.) R. Br. ex Roem & Schult. NC 1107, 2117; Parathesis venezuelana Mez NC 1744, 2173, 2506; Stylogyne longifolia (Mart. ex Miq.) Mez NC 2530, 2559; S. sp. A NC 2236, 2645; Geissanthus andinus Mez NC 2863. MYRTACEAE: Calyptranthes cf. meridensis Steyerm. NC 1104, 1951, 1965, 2343, 2359, 2646; Calyptranthes sp. NC 2446; Eugenia albida Humb. & Bonpl. NC 1951, 1980; E. cf. oerstediana O. Berg. NC 1560, 1739, 1788,2264, 2264, 2298, 2584; E. cf. patens Poir. NC 1337, 1766, 1792, 1798,1815; E. cf. tamaensis Steyerm. NC 951, 954,1021, 1142, 1133, 1127,1874, 2114, 2220, 2348, 2340, 2345, 2406,2430; E. grandiflora O. Berg. NC 1535, 1625, 1591, 1603; E. moritziana H. Karst. NC 1173, 2519; E. sp. 1 NC 1567, 1617, 2292, 2350, 2350; E. sp. 2 NC 1889, 1905, 2222; E. sp. 3 NC 2161, 2166, 2218; E. triquetra Berg NC 2804; Myrcia acuminata (Kunth) DC. NC 1616, 1670, 1673, 1680, 2595, 2608, 2650; M. aff. guianensis (Aubl.) DC. NC 1130, 1144, 1280, 2413; M. cf. sanisidrensis Steyerm. NC 1272, 1649, 1709, 1876, 2202, 2368, 24692, 2399, 2404, 2443; M. sp.1 NC 1866, 1899, 1903, 2615; Myrcianthes sp. NC 1023; Myrtaceae sp 2 p14 NC 1510, 1774, 1840, 2513, 265; Myrtaceae-indet. ‘hojita chiquita’ NC 2854. NYCTAGINACAE: Neea sp. NC 1851; OLACACEAE: Heisteria acuminata (Humb. & Bonpl.) Engler NC 2511. OLEACEAE: Chionanthus sp. NC 2230. ONAGRACEAE: Fuchsia nigricans Linden * NC 1493; Ludwigia peruviana (L.) H.Hara * AL 316. PICRAMNIACEAE: Picramnia sp. A NC 1802, 1839, 2314; Picramnia sp. C NC 2137, 228, 2515, 2579. PIPERACEAE: Peperomia * NC 1391; Peperomia acuminata Ruiz & Pav. * NC 2204; P. ouabianae C. DC. * NC 1202; P. peltoidea H. B. K. * NC 2489; P. portuguesensis Steyerm. * NC 2187; P. rotundata Kunth * NC 1861; P. tetraphylla (G. Frost.) Hook. & Arn. * NC 1467; Piper aduncum L. var. cordulatum (C. DC.) Yunck. NC 1183; P. aequale Vahl * NC 1450; P. dilatatum L. C. Rich. * AL 334; P. hispidum Sw. NC 2567; P. longispicum C. DC. var. glabratum (Yunck.) Steyerm. NC 1538, 2174; P. phytolaccifolium Opiz NC 1735; P. sp. NC 2019; P. sp. Liana NC 2144, 2214; P. veraguense C. DC. NC 2242. PLANTAGINACEAE: Plantago australis Lam * NC 1402. POLYGALECEAE: Bredemeyera sp. NC 2267; Monnina meridensis Planch. & Lindl. ex Wedd. NC 1221; M. smithii Chodat * AL 282; M. sp. NC 2825. POLYGONACEAE: Coccoloba cf. llewelynii R.A. Howard NC 1906, 2344, 2623; Coccoloba sp. NC 2516. PROTEACAE: Panopsis sp. NC 2616; Panopsis suaveolens (H. Karst.) Pittier NC 1911, 2081; Roupala barnettiae Dorr NC 2637. RANUNCULACEAE Clematis guadeloupae Pers * NC 1757. RHAMNACEAE: Rhamnus sphaerosperma Sw. var. polymorpha (Reiss.) M.C. Johnst NC 2441, 2395. ROSACEAE: Hesperomeles obtusifolia (Pers.) Lindl. NC 2685; Hesperomeles sp. NC 3080; Prunus moritziana Koehne NC 1245,1314, 1650, 1915, 1990, 2031, 2100, 2352, 2485, 2597, 2619, 2639. RUBIACEAE: Arachnothrix reflexa (Benth.) Planchon * AL 301; Borreria laevis (Lam.) Griseb. * AL 332; Coffea arabica L. NC 1561; Coussarea moritziana (Benth.) Standl. NC 935, 1574, 1767, 1986; Dioicodendron dioicum (K. Schum. & Krause) Steyerm. NC 1135, 2095, 2418; Elaeagia karstenii Standl. NC 1590, 2362; E. myriantha (Standl.) Hammel & C. M. Taylor NC 1192; E. ruiz-teranii Steyerm. NC 921, 991, 1644, 1918, 2009, 2237; Faramea guaramacalensis Taylor NC 1297, 1623, 1699, 2364, 2607, 2635; F. killipii Standl. NC 938, 1030; Guettarda crispiflora Vahl subsp. discolor (Rusby) Steyerm. NC 212 Appendix _______________________________________________________ 1007, 2055, 2216; Hillia parasitica Jacq. * NC 1389; Hippotis albiflora H. Karst. NC 1733, 2554; Hoffmannia pauciflora Standl. NC 2167; Ladenbergia cf. buntingii Steyerm. NC 1842; Manettia moritziana (Schum.) Wernham * NC 2491; Notopleura patria (Standl. & Steyerm.) C.M. Taylor * NC 1462; N. steyermarkiana C.M. Taylor * NC 1094; Palicourea angustifolia Kunth NC 1239, 2240, 2602; P. apicata Kunth NC 1894, 2339, 2609; P. demissa Standl. NC 994, 1109, 1184, 2049; P. jahnii Standl. NC 2830; P. petiolaris Kunth * NC 2549; P. puberulenta Steyerm. NC 917; Posoqueria coriacea M. Mart. & Galeotti subsp. formosa NC 1187, 1559, 1740, 2132; Psychotria amita Stand. NC 2217; P. aubletiana Steyerm. * NC 1095; P. dunstervilleorum Steyerm. * NC 2807; P. fortuita Standl. NC 1172, 2160, 2235; P. lindenii Standley * NC 1448; NC 1554; P. longirostris (Rusby) Standl. NC 1200, 1794; P. macrophylla Ruiz & Pav. * NC 1483; P. molliramis (Schum. & Kr.) Steyerm. * NC 1403; P. trichotoma Mart. & Gal. NC 1849, 2560; Randia cf. dioica H. Karst. NC 1782; Rudgea nebulicola Steyerm. NC 1794, 2177, 2556; R. tayloriae Aymard, Dorr & Cuello NC 1331, 2332, 2347, 2358, 2630; Simira erythroxylon (Willd.) Brem. var. meridensis Steyerm. NC 1176, 1833, 2507; S. lezamae Steyerm. NC 1979, 2312; Tammsia anomala Karst. NC 2533; Tocoyena costanensis Steyerm. subsp. andina Steyerm. NC 1777,1827. RUTACEAE: Conchocarpus larensis (Tamayo & Croizat) Kallunki & Pirani NC 1451; Zanthoxylum acuminatum (Sw.) Sw subsp. juniperinum (Poepp.) Reynel NC 1230; Z. melanostictum Schltdl. & Cham. NC 1687, 2411. SABIACEAE: Meliosma meridensis Lasser NC 1086; Meliosma pittierana Steyerm. NC 1562, 1804, 2052; M. tachirensis Steyerm. & Gentry NC 1080, 1250, 2243, 2591; M. venezuelensis Steyerm. NC 1354, 2112. SAPINDACEAE: Allophylus cf. glabratus (Kunth) Radlk NC 2018; Billia columbiana Planch. & Lindl. ex Triana & Planch. NC 1583, 2172; Cupania cf. scrobiculata Rich. NC 1829; Matayba camptoneura Radlk. NC 1544, 2566, 2593; Paullinia capreolata (Aubl.) Radlk. NC 1856; P. cf. latifolia Benth. ex Radlk NC 1823, 2563. SAPOTACEAE: cf. Elaeoluma nuda (Baehni) Aubr. NC 1087, 1671; Chrysophyllum cf. cainito L. NC 939, 950, 1542, 2258, 2337; C. sp. NC 2239; Pouteria baehniana Monachino NC 1501, 2146. SCROPHULARIACEAE: Sibthorpia repens (Mutis ex L.) Kuntze * NC 2801. SMILACACEAE: Smilax kunthii Killip & C. V. Morton NC 2071. SOLANACEAE: Browallia americana L. * NC 1434; Cestrum bigibbosum Pittier NC 2163, 2233; C. buxifolium Kunth NC 2457; C. darcyanum Benitez & N.W. Sawyer NC 1053, 2056; Cuatresia riparia (Kunth.) Hunz NC 2149, 2158, 2529, 2562; Deprea paneroi Benitez & Martinez * NC 1218; Lycianthes radiata (Sendtn.) Bitter * NC 1212; Markea sp. NC 2057; Solanum acerifolium Dunal * AL 330; S. aturense Humb. & Bonpl. ex Dunal NC 2034; S. confine Dunal NC 995, 1024,1411; S. nudum Dunal NC 2130, 2249, 2234; S. pentaphyllum Bitter * NC 2496; S. torvun Sw. * AL 322. STAPHYLEACEAE: Huertea glandulosa Ruiz & Pav. NC 1194, 1837; Turpinia occidentalis (Sw.) G. Don. NC 2024, 2246. SYMPLOCACEAE: Symplocos bogotensis Brand. NC 1129, 2059; Symplocos tamana Steyerm. NC 1957. THEACEAE: Freziera serrata A. L. Weitzman, ined. NC 2459; Gordonia fruticosa (Schrader) H. Keng NC 1191, 1576; Ternstroemia acrodantha Kobuski & Steyerm. NC 1154; T. sp. A NC 1917; T. sp.B NC 1973. THYMELAEACEAE: Daphnopsis sp.* NC 1714; Schoenobiblus suffruticosa Barringer & Nevling, vel aff. * NC 1484. URTICACEAE: Pilea A * NC 1470; Pilea B * NC 1399; P. C * NC 1408; P. rhombea (L.f.) Liebm. * NC 1436; Urera caracasana (Jacq.) Griseb. NC 1175, 2531. VERBENACEAE: Aegiphila floribunda Moritz & Moldenke NC 1170, 1853, 2576; Aegiphila moldenkeana Lopez-Pal. NC 1243; A. ternifolia (Kunth) Moldenke NC 1214, 2028; Citharexylum venezuelense Mol. NC 2539; Petrea pubescens Turcz. NC 1502; Verbenaceae indet. NC 1532. VITACEAE: Cissus trianae Planch NC 1872. WINTERACEAE: Drimys granadensis L.f. NC 1118, 1947, 2484. Liliopsida: ARACEAE: Anthurium bernardii Croat. * AL 688; Anthurium eminens Schott NC 2580; A. gehrigeri Croat. * NC 1469, 1606; A. ginesii Croat NC 2465; A. humboldtianum Kunth NC 2435; A. nymphaeifolium K. Koch & Bouche NC 1890; A. scandens (Aubl.) Engl. * NC 1469, 2307; A. smargdianum Bunting NC 2159; Philodendron fraternum Schott * AL 238. ARECACEAE: Aiphanes stergiosii Niño, Dorr & Stauffer NC 1868, 2592; Chamaedorea pinnatifrons (Jacq.) Oersted * AL 288; Geonoma jussieuana Mart. NC 1651, 1901, 2105; G. orbigniana Mart. NC 1950, 2244; G. undata Klotzsch NC 1613, 1731, 2193, 2509; Prestoea acuminata (Willd.) H.E. Moore var. acuminata NC 1282, 2428; Wettinia praemorsa (Willd.) Wess. Boer NC 1275. BROMELIACEAE: Greigia albo-rosea (Griseb) Mez NC 2080; Pitcairnia brevicalycina Mez. * NC 1359; Racinaea sp.* NC 2425. COMMELINACEAE: Tradescantia 213 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes zanonia (L.) Sw. * AL 292. CYCLANTHACEAE: Asplundia vagans Harling NC 1803; Sphaeradenia laucheana (Mast.) Harling NC 1509, 1898, 2192, 2416, 2561. CYPERACEAE: Carex jamesonii Boot, s.l. * NC 2819; Rhynchospora immensa Kük. * NC 1159; R. tuerckheimii * NC 1160;Uncinia hamata * NC 2845. DIOSCOREACEAE: Dioscorea lisae Dorr & Stergios * NC 2433. HELICONIACEAE: E Heliconia hirsuta L. F. * NC 1747, 2548; H. meridensis Klotzsch * NC 1481. ORCHIDACEAE: Anathallis sclerophylla (Lindl.) Pridgeen & M. W. Chase * NC 2306; Brachionidium tuberculatum Lindl. * NC 2823; Cirtochilum megalophium (Lind.) Känzl. * NC 2794; Corymborkis flava (Sw.) Kuntze * NC 2155; Dichaea camaridioides Schlechter * NC 1466; Elleanthus flavescens (Lindl.) Rchb.f. * NC 1430; Epidendrum cereiflorum Garay & Dunst. * AL 689; E. unguiculatum (C. Schweinf.) Garay & Dunst. * NC 2185; Gomphichis costaricensis (Schltr). Ames, F. T. Hubbard & C. Schweinf. * NC 2754; Jacquiniella teretifolia (Sw.) Britton & P. Wilson * NC 1732; Malaxis licatae Carnevali & Ramirez * AL 218; M. nidiae Carnevali & Ramirez * NC 2372; Maxillaria nigrescens Lindl. * NC 2184; Odontoglossum crocidipterum (Rchb. f.) * AL 230; O. schillerianum Rchb.f. * NC 2817; Ornithidium ruberrimum Reichb. F. * NC 2322; Pachyphyllum sp. * NC 2760; Platystele pisifera (Lindl.) Luer. * NC 2374; Pleurothallis biserrula Rchb.f. * NC 2279; P. bivalvis Lindl. * NC 1413; P. calamifolia Luer y R. Escobar R. * NC 2327; P. semiscabra Lindl. * NC 2308, 2328; Scaphyglottis summersii L.O. Williams * NC 2269; Scelochilus ottonis Kl. * AL 231; Sobralia sp.* NC 2310; Stelis chamaestelis (Rchb.f.) Garay & Dunst. * NC 1604; S. oblonga Willd. * AL 329; S. vulcanii Rchb.f. * AL 327; Trichocentrum pulchrum Poepp. & Endl. * NC 1528. POACEAE: Arthrostylidium venezuelae (Steud.) McClure * NC 2426; 2426; Chusquea angustifolia (Soderstr. & C.E. Calderon) L. G. Clark NC 2757, 2884; Ch. purdieana Munro NC 1240; Ichnanthus nemorosus (Sw.) Doll * NC 2503; Muhlenbergia diversiglumis Trin. * NC 2551; Rhipidocladum geminatum (McClure) McClure 2466. INDETS. bejuco NC 2178; Indet. Liana NC s/n. 214 Appendix _______________________________________________________ Appendix 2. Location of montane forest plots in Ramal de Guaramacal, Andes, Venezuela. (*) Indicates plots selected for vegetation profiles. (1) Indicates areas outside Guaramacal National Park borders. No. Altitude Plot size Slope Park Sector Plot m m2 1* 1960 1000 N Guaramacal 2* 2100 1000 N Guaramacal 3 2300 1000 N Guaramacal 4* 2400 1000 N 5* 1850 1000 N 6* 2470 1000 7 1950 1000 8 2300 9 10* Date of survey Geograp. Pos. UTM Zone 19 East North May. 1995 365900 1022968 Jun 1995 366824 1022883 Jun 1995 367166 1022341 Guaramacal Jun 1995 367452 1022406 Guaramacal Jun. 1995 365980 1022056 S Guaramacal Dec 1995 371908 1019855 S Guaramacal Jan 1996 372280 1018020 1000 S Guaramacal Dec 1995 371741 1019544 2100 1000 S Guaramacal Dec 1995 372345 1018661 1600 1000 S Agua Fría (El Alto) Mar 1999 381199 1031364 11 1800 1000 S Agua Fría (El Alto) Mar 1999 381241 1031827 12 1950 1000 S Agua Fría (El Alto) May 1999 381390 1032534 13 1550 1000 S Agua Fría (La Divisoria) Dec. 1999 380077 1027005 14 1830 1000 N Agua Fría (El Mogote1) Dec. 1999 382173 1033526 15 1880 1000 S Agua Fría (La Divisoria) Jan 2000 379322 1027005 16 2580 1000 N Guaramacal Mar 2000 368580 1022299 17 2480 1000 N Guaramacal Feb 2000 368011 1022672 18 2170 1000 N Guaramacal Mar 2000 367020 1022769 19 2070 1000 N Guaramacal Feb. 2000 366542 1022989 20 2350 1000 N Guaramacal Mar 2000 367166 1022341 21* 1880 1000 NO Guaramacal (El Santuario) Nov. 2001 359185 1012298 22 2100 1000 NO Guaramacal (El Santuario) Mar 2002 359318 1013285 23 2250 1000 NO Guaramacal (El Santuario) Aug 2002 359120 1013013 24 2580 1000 S Guaramacal Jan 2002 371718 1022127 25 1900 1000 N Agua Fría (Laguna Negra) Apr 2002 371016 1028548 26 2100 1000 N Agua Fría (Laguna Negra) Apr. 2002 371722 1028117 215 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes No. Altitude Plot size Slope Park Sector Date of survey Geograp. Pos. UTM Zone 19 Plot m m2 27 2260 1000 N Agua Fría (Laguna Negra) 28 1330 1000 S Agua Fría (Río Frío1) 1 East North Jun. 2002 371703 1027261 Nov 2002 378834 1025276 29 1450 1000 S Agua Fría (Río Frío ) Dec. 2002 378380 1024991 30 1875 1000 S Agua Fría (La Peña) Jan 2003 376567 1023983 31 1770 1000 S Agua Fría (La Peña) Jan 2003 376797 1023835 32 2125 1000 S Agua Fría (La Peña) Feb. 2003 375862 1024743 33 2474 300 N Agua Fría (Laguna Negra) Apr. 2003 371661 1026420 34* 3050 200 N Guaramacal May. 2004 369585 1020286 35 2890 1000 N Pumar Feb. 2005 368063 1018997 36 2870 400 N Pumar Mar. 2005 368111 1018943 37* 2870 1000 N Pumar Mar. 2005 368024 1018958 38* 2810 200 N Guaramacal Apr. 2005 369881 1021648 39 2750 1000 N Guaramacal Apr. 2005 369545 1021382 40 2950 200 S Guaramacal Apr. 2005 370212 1020519 41 2950 400 S Guaramacal May. 2005 370209 1020530 PL3 2830 100 N Guaramacal Dec. 2004 369784 1021281 43 3060 50 S Guaramacal Dec, 2006 369951 1020437 44 3050 100 N Guaramacal Jan. 2007 369474 1020570 216 Appendix _______________________________________________________ Appendix 3. Morphological and chemical characteristics of some soil profiles representative from Ramal de Guaramacal (from Marvez & Schargel 1999). ls: loamy sand, sl: sandy loam, l: loam, scl: sandy clay loam, cl: clay loam; c: clay 4-H2 5-H1 2-H2 3-H1 37-48 7.5YR5/1 48-56 7.5YR4/1 15 2.450 5 7 56-70 > 70 0-15 1.950 15-30 > 30 0-10 10-20 20-50 50-70 2.100 70-100 100-115 5YR2.5/2 7.5YR4/2 10YR4/6 5YR3/3 5YR4/6 7.5YR4/6 7.5YR5/1 7.5YR5/2 10YR4/6 10YR3/3 7.5YR4/4 10YR4/2 7.5YR5/3 7.5YR6/4 7.5YR5/6 10YR6/4 7.5YR6/2 MARNR48 115-150 7.5YR6/4 60 1.820 0-10 -25 -45 -73 -102 -125 -150 10YR2/2 10YR3/2 7.5YR5/8 7.5YR5/8 7.5YR5/8 7.5YR5/8 7.5YR5/8 6,2 3,8 1,2(*) Rock 32,5 5,6 65,8 Limestone boulders 0,5-1m sl 10 5,5 5,3 16,9 l 3,5 6,7 8,2 Fractured rock sl 20 7,5 4,0 1,6 sl 30 6,2 4,4 0,9 sl 50 3,0 4,4 1,1 Fractured rock ls 6,5 3,8 1,1 sl 1,4 4,1 1,1 7.5YR l 2,0 4,2 1,3 4/4-5/8 7.5YR l 3,2 4,3 0,8 4/4-5/8 10YR4/3 scl 4,2 4,5 1,3 Fractured rock sl 5 5,5 3,5 1,2 scl 15 3,5 3,7 0,8 Fractured rock l 6,2 4,7 3,6 l 4,4 4,5 2,0 2.5YR6/4 cl 3,0 4,4 1,3 7.5YR6/2 cl 1,0 4,4 1,0 7.5YR6/2 scl 0,4 4,3 0,9 7.5YR6/8 sl 0,4 4,5 1,1 7.5YR7/1 sl 0,4 4,5 1,2 2.5YR4/6 sl 2 15,6 4,2 10YR5/4 cl 2 9,6 4,1 c 2 4,0 4,1 c 5 1,6 3,8 c 10 1,2 4,1 c 15 0,5 4,2 c 25 0,3 4,0 - Exchangeable Aluminum me/100gr ls Sum Bases me/100gr - pH 7.5YR3/1 Orgánic matter (%) 0-14 > 14 0-10 30 1.850 > 10 0-18 40 1.850 18-60 > 60 0-20 20-40 20 2.300 40-100 > 100 0-25 25-37 <5 1.950 % of Coarse fragments Depth of layer (cm) Elevation (m) Texture 1-H2 Color * * (Mottling) 1-H4 Color ** (moist) 2-H1 Slope (%) Profile North Slope 0,3 1,4 0,8 0,4 1,0 0,6 1,0 2,0 0,8 2,3 3,2 0,3 1,0 1,6 2,1 1,6 1,7 1,0 - 217 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Appendix 3. Cont. MARNR 54 * 8-H1 40-50 > 50 0-20 20-35 40 2.450 35-90 > 90 0-15 15-27 15 2.300 27-50 50-80 80-110 0-9 9-26 26-45 45-62 62-81 45 1.670 81-94 94-97 97-99 99-111 111-191 191-195 4,6 2,0 0,3 4,2 4,1 4,1 2,5 1,3 0,9 0,7 0,5 0,4 4,8 4,8 4,8 1,1 1,2 1,2 0,4 0,6 0,6 3,8 4,1 4,2 4,6 4,5 4,0 3,8 3,8 4,2 4,6 4,5 4,3 4,7 4,6 - 1,0 1,4 0,9 1,0 1,0 0,4 0,2 0,2 0,1 t t t t t - 0,9 1,0 1,1 1,8 0,6 0,4 0,8 0,6 0,3 0,2 1,0 1,1 6,8 2,9 1,8 4,9 4,8 4,8 1,3 0,9 1,2 0,2 1,3 1,0 5,6 1,7 1,4 4,6 4,5 4,7 0,5 0,2 0,2 1,9 2,5 1,8 Orgánic matter (%) Texture % of Coarse fragments Color * * (Mottling) ls Exchangeable Aluminum me/100gr 7-H2 35 2.100 - Sum Bases me/100gr 9-H1 7.5YR4/1 pH 10-H1 45 1.950 0-10 > 10 0-10 10-20 20-40 > 40 0-18 18-40 Color ** (moist) 10-H2 45 1.950 Depth of layer (cm) Elevation (m) Slope (%) Profile South Slope 2,2 Rock 7.5YR4/1 ls 10 4,2 5YR4/1 ls 40 3,9 5YR5/1 ls 50 2,8 Fractured rock 10YR4/1 l 9,6 10YR5/1 7.5 YR5/6 l 3,4 5YR6/27.5 YR5/6 l 2,2 7/1 Fractured rock 5YR4/2 sl 50 4,7 7.5YR6/6 sl 60 4,4 7.5YR6/8 sl 60 3,4 Fractured rock 5YR4/2 l 20 6,9 7.5YR6/8 5YR5/2 l 25 4,8 7.5YR6/8 7.5YR6/1 l 30 1,8 7.5YR6/8 scl 50 1,0 7.5YR6/6 scl 30 0,9 10YR2/2 scl 2 4,6 10YR4/2 sl 20 2,9 10YR4/1 ls 20 2,4 10YR7/1 ls 40 0,5 10YR7/1 ls 20 0,1 10YR7/1 ls 20 0,1 10YR5/2 sl 20 0,4 Plácico 10YR6/4 10YR7/1 sl 20 0,1 10YR7/1 sl 20 0 Placic - 4,5 4,0 4,2 0,8 1,2 - Páramo MARNR 57 * 6-H2 >60 3.100 30 2.830 0-23 23-38 38-60 7.5YR4/1 7.5YR4/4 7.5YR5/1 5YR5/6 5YR5/2 sl l l > 60 0-15 15-28 28-56 10YR4/1 5YR7/1 5YR5/8 7.5YR6/6 10YR7/3 sl l scl >56 * Soils with placic horizons ** Munsell color chart 218 Rock - Rock. Placic horizon at 40 cm Appendix _______________________________________________________ Appendix 4. Checklist and vouchers of all plant species diversity recorded from the studies of páramo vegetation of Ramal de Guaramacal (including both zonal and azonal vegetation). All vouchers numbers correspond to N. Cuello et al. Lichenized Ascomycetes. BAEOMYCETACEAE: Phyllobaeis imbricata (Hook. in Kunth) Kalb & Gierl 3173. CLADONIACEAE: Cladia aggregata (Sw.) Nyl. 2966, 2977, 3067, 3148; Cladina arcuata (Ahti) Ahti & Follmann 2973; cf. Cladina rangiferina (L.)Nyl. 2973; Cladonia andesita Vain. 2971; Cladonia cf. pyxidata (L.) Hoffm. 2972; Cladonia co-rymbites Nyl. 3195; Cladonia crispata (Ach.) Flot. 3146; Cladonia didyma (Fee) Vain 3146; Cladonia furcata (Huds.) Schrad. 3036, 3049; Cladonia isabellina Vain. 2975; Cla-donia squamosa (Scop.) Hoffm. 2964, Cladonia sp. 3068. ICMADOPHILACEAE: Siphula pteruloides Nyl.3145. PARMELIACEAE: Rimelia reticulata (Tayl.) Hale & Fletcher 3015, 3172; Usnea sp. 3025.PELTIGERACEAE: Peltigera neopolydactyla (Gyeln.) Gyeln. 3162. PERTUSARIACEAE: Pertusaria sp. 3165. STEREOCAULACEAE: Stereocaulon didymi-cum Lamb 3195. cf. Stereocaulon microcarpum Müll.Arg. 3024. Hepaticae. ANEURACEAE: Riccardia spp. 2955, 2965. HERBERTACEAE: Herbertus pensilis (Tayl.) Spruce 2986; Herbertus grossispinus (Steph.) Fulf. 3129, 3236, 2950; Her-bertus juniperoideus (Sw.) Grolle 3078, 3149, 3270, 2980; Herbertus acanthelius Spruce 3242, 3119; Herbertus subdentatus (Steph.) Fulf. 3246. LEPIDOZIACEAE: Bazzania latidens (Gottsche ex Stephani) Fulford 3257, 3258; Bazzania spp. 3066, 3136. METZGE-RIACEAE: Metzgeria sp 3250. PLAGIOCHILACEAE: Plagiochila cf aerea Taylor 3126; Plagiochila tabinensis Steph. 3071; Plagiochila spp. 2948, 2952, 2957, 2958, 2961, 2962, 2969, 2979, 2982, 2985, 3042, 3132, 3163, 3239. SCAPANIACEAE: Scapania porto-ricensis Hampe & Gottsche 3130, 2967, 3073, 3124, 3159. JUNGERMANIACEAE: Jamesoniella rubricaulis (Nees) Grolle 2949, 2959, 2963, 3021. JUBULACEAE: Frullania spp. 2970, 2976, 3022, 3038, 3039. Hepaticae indet. 2979, 3132. Musci. BARTRAMIACEAE: Breutelia rhythidoides Herz. 2978, 3035, 3075, 3099; Breu-telia squarrosa Jaeg. 2954, 2960, 3030, 3110. BRYACEAE: Bryum grandifolium (Tayl.) C. Muell., 2946, 3120.DICRANACEAE: Campylopus albidovirens Herz. 3100, 3101, 3107, 3109; Campylopus cuspidatus (Hsch.) Mitt. var. dicnemioides (C. Muell.) J.-P. Frahm 3105, 3108; Campylopus flexuosus (Hedw.) Brid. 3065; Campylopus fragilis (Brid.) B.S.G. 3048; Campylopus insignis Herz., 2974 Campylopus nivalis (Brid.) Brid. 3072, 3128; Campylopus pilifer Brid. 3033, 3122; Campylopus richardii Brid. 3016, 3079;Campylopus subjugorum Herz. 3031, 3046, 3076; Campylopus trichophorus Hampe ex Herz., 2983, 3050; Dicranum frigidum C. Muell., 3118. LEUCOBRYACEAE: Leucobryum antillarum Schimp. ex Besch., 3055. POLYTRICHACEAE: Polytrichadelphus longisetus (Hook.) Mitt., 3020; Polytrichum commune Hedw., 3098; Polytrichum juniperinum Hedw., 3103, 3117. POTTIACEAE: Leptodontium viticulosoides (P. Beauv.) Wijk & Marg. var. panamense (Lor.) Zander, 3054. RHACOCARPACEAE: Rhacocarpus purpurascens (Brid.) Par., 3017. SEMATHOPHYLLACEAE: Sematophyllum swartzii (Schwaegr.) Welch & Crum, 3018; Semathophyllum sp. 3077. SPLACHNOBRYACEAE: Tetraplodon mnioides (Hedw.) B.S.G., 3121. SPHAGNACEAE: Sphagnum cuspidatum Ehrhart ex Hoffm. 3051, 3089, 3113; S. magellanicum Brid. 3041, 3104, 3115; Sphagnum meridense (Hpe.) C. Muell. 3074; Sphagnum recurvum P. Beauv. 3106; Sphagnum sancto-josephense Crum & Crosby; Sphagnum sparsum Hpe., 3114. Ferns. BLECHNACEAE: Blechnum schomburgkii (Kl.) C. Chr. 2937, 2940. DRYOPTERIDACEAE: Elaphoglossum appressum Mickel 2936; Elaphoglossum cf. lingua (C. Presl) Brack. 2893. GRAMMITIDACEAE: Lellingeria myosuroides (Sw.) A.R. Sm. & R.C. Moran 2933; Melpomene flabeliformis (Lag. Ex Sw.) A.R. Sm & R.C. Moran 2732, 2877; M. moniliformis (Lag. Ex Sw.) A.R. Sm & R.C. Moran 2720; M. xiphopteroides (Liebm.) A.R. Sm. 2896; Melpomene sp. 3157. HYMENOPHYLLACEAE: Hymenophyllum myrio-carpum Hook.; H. trichomanoides Bosch. 2728, 2895; Hymenophyllum sp. ISOETACEAE: Isoetes karstenii A. Braun 3367, 3386; LYCOPODIACEAE: Huperzia amentacea (B.Øllg.) Holub.; H. riobanbensis (Herter) B.Øllg. 2723; Lycopodium clavatum subsp. contiguum Kl. 2696. OPHIOGLOSSA- 219 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes CEAE: Ophioglossum crotalophorioides Walter 2931. POLYPODIACEAE: Polypodium funckii Mett. 2809; Polypodium sp. 3070. PTERIDACEAE: Eriosorus flexuosus (Kunth) Copel var. flexuosus 2824, 2897, 2934; Jamesonia imbricata (Sw.) Hook. & Grev. 2722. Magnoliopsida. APIACEAE: Daucus montanus H. & B. ex Spreng. 2997. AQUIFOLIACEAE: Ilex guaramacalensis Cuello & Aymard 2701, 2942. ASTERACEAE: Ageratina theifolia (Benth.) R.M. King & H. Rob. 2746; Diplostephium obtusum S.F. Blake 2748; D. venezuelense Cuatrec. 2688, 3096; Hieracium avilae Kunth 2890; Libanothamnus griffinii (Ruiz-Teran & Lopez-Fig.) Cuatrec. 2704; Pentacalia cachacoensis (Cuatrec.) Cuatrec. 2694; P. greenmaniana (Hieron.) Cuatrec. 2747; Ruilopezia jabonensis (Cuatrec.) Cuatrec. 2695, 2715; R. lopez-palacii (Ruiz-Teran & Lopez-Figueiras) Cuatrec. 2899; R. paltonioides (Standl.) Cuatrec. 2716; R. viridis (Aristeguieta) Cuatr. 2717; Asteraceae indet. 3299. CARYOPHYLLACEAE: Arenaria venezuelana Briq. 3082. CLUSIACEAE: Hype-ricum cardonae Cuatrec. 2700; H. juniperinum Kunth; H. paramitanum N. Robson; H. sp. ERICACEAE: Bejaria aestuans L. Disterigma acuminatum (Kunth) Nied. D. alaternoides (kunth) Nied. 2730; Gaultheria anastomosans (L.f.) Kunth 2724, 2752; G. erecta Vent. 3058; G. hapalotricha A.C. Sm. 2714; Pernettya prostrata (Cav.) DC. 2706, 2713, 2727; Sphyrospermum buxifolium Poepp. & Endl. 3321; Themistoclesia dependens (Benth.) A.C. Sm. 2733; Vaccinium corymbodendron Dunal 2708, 2729. GENTIANIACEAE: Gentianella nevadensis (Gilg.) Weaver & Rudenberg. 2915. GERANIACEAE: Geranium stoloniferum Standl. 2913. LENTIBULARIACEAE: Utricularia alpina Jacq. 2901. MELASTOMATACEAE: Chaetolepis lindeniana (Naud.) Triana 2705; Miconia tinifolia Naud. 2702, 3064; Monochateum discolor H. Karst. 2710, 2750. MYRSINACEAE: Cybianthus laurifolius (Mez) G. Agostini; C. marginatus (Benth.) Pipoly; C. stapfii (Mez) Agostini 2703; Myrsine dependens (Ruiz & Pav.) Spreng. 2792; 2796. MYRTACEAE: Ugni myricoides (Kunth.) O. Berg. 2721. POLYGALACEAE: Monnina sp. 3061. POLYGONACEAE: Muehlenbeckia thamnifolia (Kunth) Meisn. 2731. ROSACEAE: Hesperomeles obtusifolia (Pers.) Lind. var. obtusifolia 2707; Hesperomeles sp. 3080; Lachemilla verticillata (Fielding & Gardner) Rothn. 3116.; Rubus acanthophyllos Focke 3060. RUBIACEAE: Arcytophyllum nitidum (Kunth) Schltdl.2718; Galium hypocarpium (L.) Endl. Ex Griseb.; Nertera granadensis (Mutis ex L.f.) Druce 2734; Palicourea jahnii Standl. 2943; SCHROPHULARIACEAE: Castilleja fissifolia L.f. 2902; VALERIANACEAE: Valeriana quirorana Xena 2935, 3322. Liliopsida. BROMELIACEAE: Greigia sp.; Puya aristeguietae L.B. Sm.; Puya sp.; CYPERACEAE: Carex bonplandii Kunth 2741; Eleocharis acicularis (L.) Roem. & Schult. 3088, 3368; Eleocharis sp. 3174; Oreobolus venezuelensis Steyerm. 2891; Rhynchospora gollmeri Boeck. 2739; R. guaramacalensis M. Strong 2889; Rhynchospora macrochaeta Steud. Ex Boeck. 2697, 2740, 2743.; Rhynchospora spp.2697, 2735. ERIOCAULACEAE: Paepalanthus pilosus (Kunth) Kunth 2996, 3097; IRIDACEAE: Orthrosanthus acorifolius (Kunth) Ravenna 2904; Sisyrrhinchium tinctorium Kunth 2911. Sisyrhynchium sp. 3391. ORCHIDACEAE: Cyrtochilum ramosissimum (Rchb.f.) Kränl. 3001; Epidendrum frutex Rchb.f. 2719; Pterichis multiflora (Lindl.) Schltr. 2916. POACEAE: Agrostis basalis Luces. 2803, 3085, 3389; A. perennans (Walter) Tucker 2917, 3189, 3084, 3092; Agrostis sp. B 3155, 3093; Calamagrostis bogotensis (Pilg.) Pilg.; C. planifolia (Kunth) Trin. Ex Steud. 2905, 2914, 2925, 29991; Calamagrostis sp. A, 2926; Calamagrostis sp. 3388; Chusquea angustifolia (Sodestr. & C.E. Calderon) L.G. Clark 2941, 2995; Ch. tessellata Munro 3153; Cortaderia hapalotricha (Pilg.) Conert. 2737; Festuca guaramacalana Stancik 2900; Neurolepis glomerata Swallen 2726; Ortachne erectifolia (Swallen) Clayton 3390; Polypogon elongatus Kunth 2990; Indets. 3090, 3142. TOFIELDIACEAE: Isidrogalvia robustior (Steyerm.) Cruden. XYRIDACEAE: Xyris subulata Ruiz & Pav.var. acutifolia Heimerl. 2699, 2738. 220 Appendix _______________________________________________________ Appendix 5. Species list from páramo areas [zonal (Pzo) and azonal (Paz) páramo vegetation, including, subpáramo (SP) and páramo-connected dwarf forest (SARF) vegetation islands] present in the summit of Ramal de Guaramacal in the Venzuelan Andes. Species distribution group (1-10.4) as presented in Table 5.4, Group 0 for unknown distribution. Introduced species indicated with asterisk (*). FAMILY/SPECIES ASPLENIACEAE Asplenium serra Langsd. & Fisch. BLECHNACEAE Blechnum aff. atropurpureum A.R. Sm. B. auratum (Fee) R.M. Tryon & Stolze B. binervatum (Poir) C.V. Morton subsp. fragile (Desv). R.M. Tryon & Stolze B. schomburgkii (Klotzsch) C. Chr. CYATHEACEAE Cyathea fulva (Mart. & Gal.) Fee DENNSTAEDTIACEAE Histiopteris incisa (Thunb.) J. Sm. Paesia acclivis (Kunze) Kuhn DICKSONIACEAE Culcita coniifolia (Hook.) Maxon DRYOPTERIDACEAE Diplazium hians Kunze ex Klotzsch Elaphoglossum andicola (Fee) T. Moore E. appressum Mickel E. cf. lingua (C. Presl) Brack. E. cuspidatum (Willd) Moore E. minutum (Pohl ex Fee) T. Moore E. muscosum (Sw.) T. Moore E. nigrocostatum Mickel E. paleaceum (Hook. & Grev.) Sledge E. papillosum (Baker) H. Christ. E. rhynchophyllum H. Christ. EQUISETACEAE Equisetum bogotense Kunth GLEICHENIACEAE Sticherus revolutus (Kunth) Ching GRAMMITIDACEAE Ceradenia intonsa L.E. Bishop, ined Cochlidium pumilum L.E. Bishop Grammitis leptopoda (C.H. Wright) Copel. G. xanthotrichia (Kl.) A.R. Sm. Lellingeria major (Copel.) A.R. Sm. & R.C. Moran Distr. Group VEG. TYPE 2 SARF 10.2 SP 6 SARF/Pzo 2 SARF 5 Pzo/SARF 6 SARF 1 7 Pzo Pzo/SARF 2 SARF 2 SP/SARF 7 7 4 6 SARF Pzo Pzo SARF 4 4 7 Pzo Pzo SARF 4 6 10.2 Pzo SARF SARF/Pzo 2 Pzo 4 Pzo 8 SP/Pzo 7 SARF 5 10.2 Pzo SARF 7 SARF/Pzo Distr. FAMILY/SPECIES Group L. myosuroides A.R. Sm. & R.C. Moran 1 Melpomene flabelliformis (Lag. ex Sw.) A.R. Sm & R.C. Moran 1 M. moniliformis (Lag. ex Sw.) A.R. Sm & R.C. Moran 4 M. xiphopteroides (Liebm.) A.R. Sm. 4 M. sp. 0 Terpsichore cultrata (Bory ex Willd.) A.R. Sm. 2 T. longisetosa (Hook.) A.R. Sm. 6 T. semihirsuta (Kl.) A.R. Sm. 6 HYMENOPHYLLACEAE Hymenophyllum aff. apiculatum Mett. ex Kuhn 5 H. fucoides (Sw.) Sw. 2 H. karstenianum J.W. Sturm 7 H. myriocarpum Hook. 6 H. sp. 0 H. tegularis (Desv.) Proctor & Lourteig 6 H. trichomanoides Bosch. 2 ISOETACEAE Isoëtes karstenii A. Braun 9 LYCOPODIACEAE Huperzia amentacea (B. Øllg.) Holub 6 H. cf. capellae (Herter) Holub. 7 H. eversa (Poir.) B. Øllg. 6 H. molongensis (Herter) Holub. 7 H. ocanana (Herter) Holub 9 H. riobambensis (Herter) B. Øllg. 9 H. rufescens Hook. Trevis 7 H. sp. 0 Lycopodiella cernua (L.) Pic. Serm. 0 L. pendulina (Hook.) B. Øllg. 0 L. riofrioi (Sodiro) B. Øllg. 6 Lycopodium clavatum L. subsp. contiguum Kl. 6 L. jussiaei Desv. ex Poir. 4 L. thyoides H. & B. ex Willd. 2 OPHIOGLOSSACEAE Ophioglossum crotalophorioides Walter 1 PLAGIOGYRIACEAE Plagiogyria pectinata (Liebm.) Lellinger 4 POLYPODIACEAE Campyloneurum amphostenon (Kunze ex Klotzsch) Fée 4 VEG. TYPE SARF/Pzo Pzo Pzo Pzo Pzo SARF SARF SARF/SP SARF SARF SARF SARF/Pzo Pzo SARF Pzo Paz Pzo Pzo Pzo SARF/Pzo Pzo Pzo Pzo SARF SP SP B-P Paz/Pzo B-P Pzo Paz/Pzo SARF/Pzo Pzo 221 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Distr. VEG. FAMILY/SPECIES Group TYPE Polypodium funckii Mett. 7 Pzo P. sp. 0 Pzo PTERIDACEAE Eriosorus flexuosus (Kunth) Copel. var. flexuosus 4 SARF/Pzo Jamesonia imbricata (Sw.) Hook. & Grev. 7 Pzo THELYPTERIDACEAE Thelypteris cheilanthoides (Kunze) Proctor 4 Pzo T. frigida (H. Christ) A.R. Sm. 6 Pzo/SP T. prolatipedis Lellinger 6 SARF APIACEAE Daucus montanus H. & B. ex Spreng. 1 Pzo Hydrocotyle venezuelensis Rose ex Mathias 10.1 Pzo/SARF AQUIFOLIACEAE Ilex guaramacalensis Cuello & Aymard 10.4 Pzo/SARF ARALIACEAE Oreopanax discolor (Kunth) Decne. & Planch. 9 SARF O. sp.1 0 SARF O. sp.2 0 SARF ASTERACEAE Achyrocline moritzianum Klatt 8 Pzo A. vargasiana DC. 3 SP Ageratina theifolia (Benth.) R. M. King & H. Rob. 9 Pzo/SARF Baccharis prunifolia Kunth 7 SP/SARF Cotula mexicana L. 2 Paz Diplostephium obtusum S.F. Paz/Pzo/SAR Blake 10.3 F D. venezuelense Cuatrec. 10.3 Pzo Gamochaeta americana (Mill.) Wedd. 1 Pzo Hieracium avilae Kunth 8 Paz/Pzo H. erianthum Kunth 7 Pzo Libanothamnus griffinii (RuízTerán & Lóp. Fig.) Cuatrec. 10.4 Pzo/SARF Mikania nigropunctulata Hieron 5 LMRF/SARF M. stuebelii Hieron 7 SARF Munnozia senecionidis Benth. 6 Pzo Paragynoxys cuatrecasasii RuízTerán & López-Fig. 0 SARF Pentacalia cachacoensis (Cuatrec.) Cuatrec. 9 Pzo/SARF P. greenmaniana (Hieron.) Cuatrec. 10.3 Pzo/SARF P. theaefolia (Benth.) Cuatrec. 7 SARF P. vicelliptica (Cuatrec.) Cuatrec. 10.3 SARF Ruilopezia jabonensis (Cuatrec.) Cuatrec. 10.3 Paz/Pzo R. lopez-palacii (Ruíz-Terán & López-Figueiras) Cuatrec. 10.4 Paz/Pzo R. paltonioides (Standl.) Cuatrec. 10.3 Pzo/SARF R. viridis (Aristeguieta) Cuatrec. 10.4 Pzo Sonchus oleraceus L.* BALANOPHORACEAE Corynaea crassa Hook.f 6 SARF 222 Distr. VEG. FAMILY/SPECIES Group TYPE BEGONIACEAE Begonia formosissima Sandwith 10.3 SARF-Pzo B. lipolepis L.B. Sm. var. luteynorum (L.B. Sm. & Wassh.) Dorr 10.3 SP/SARF BORAGINACEAE Cynoglossum amabile Stapf & J.R. Drumm. 1 Pzo CAMPANULACEAE Centropogon aff. elmanus E. Wimm. 10.3 SARF C. lanceolatus E. Wimm. 10.3 SP/Pzo Siphocampylus odontosepalus Vatke 7 Pzo/SP CARYOPHYLLACEAE Arenaria venezuelana Briq. 9 Paz/Pzo Stellaria cuspidata Willd. ex Schltdl. 2 SARF CHLORANTHACEAE Hedyosmum translucidum Cuatrec. 7 SARF CLETHRACEAE Clethra fagifolia Kunth var. fagifolia 6 SARF/UMRF CLUSIACEAE Hypericum cardonae Cuatrec. 6 Paz/Pzo H. juniperinum Kunth 9 Paz/Pzo H. juniperinum x cardonae 10.4 PAz H. paramitanum N. Robson 10.3 Pzo/SARF CUNONIACEAE Weinmannia auriculata D. Don 7 SARF W. fagaroides Kunth 2 SARF W. karsteniana Szyszyll. 9 SARF W. lechleriana Engl. 7 SARF ERICACEAE Bejaria aestuans L. 6 Pzo Cavendishia bracteata (Ruíz & Pavon ex St.-Hil.) Hoerold 6 Pzo/SARF Disterigma acuminatum (Kunth) Nied. 3 Pzo D. alaternoides (Kunth) Nied. 6 Pzo/SARF Gaultheria anastomosans (L.f.) Kunth 6 Pzo/SARF G. buxifolia Willd. 7 Pzo G. erecta Vent. 2 Pzo/SARF G. glomerata (Cav.) Sleum. 7 Pzo G. hapalotricha A.C. Sm. 7 Pzo Pernettya prostrata (Cav.) DC. 2 Pzo/Paz Psammisia hookeriana Klotzsch. 9 SARF Sphyrospermum buxifolium Poepp. & Endl. 5 Pzo Themistoclesia dependens (Benth.) A. C. Smith 8 Pzo/SARF Thibaudia floribunda Kunth. 7 SARF Vaccinium corymbodendron Dunal 7 Pzo/SARF GENTIANIACEAE Gentianella nevadensis (Gilg.) Weaver & Rudenberg. 8 Paz/Pzo Halenia sp. 0 Pzo Macrocarpaea bracteata Ewan 10.3 UMRF/SARF GERANIACEAE Geranium stoloniferum Standl. 10.3 Paz/Pzo Appendix _______________________________________________________ Distr. VEG. FAMILY/SPECIES Group TYPE GESNERIACEAE Glossoloma chrysanthus (Pl. & Tr.) J. Clark 10.3 SARF LENTIBULARIACEAE Utricularia alpina Jacq. 2 Pzo LORANTHACEAE Dendrophtora sp. A. 0 Pzo/SARF Gaiadendron punctatum (R. & P.) G. Don 5 UMRF/SARF Phoradendron sp. 0 Pzo/SARF MELASTOMATACEAE Chaetolepis lindeniana (Naudin) Triana 9 Pzo/SARF Miconia arbutifolia Naud. 10.1 SARF/SP M. elvirae Wurdack 10.4 SARF M. jahnii Pittier 8 SARF M. tinifolia Naud. 8 Pzo/SARF Monochaetum discolor H. Karst. 10.3 Pzo/SARF MYRSINACEAE Cybianthus laurifolius (Mez) Agost. 9 SARF C. marginatus (Benth.) Pipoly 7 Pzo/SARF C. stapfii (Mez) Agostini 9 SARF Geissanthus andinus Mez 8 SARF Myrsine dependens (R. & P.) Spreng 6 Pzo/SARF MYRTACEAE Myrcianthes myrsinoides (Kunth) Grifo 7 SARF Ugni myricoides (Kunth.) O. Berg. 4 Pzo ONAGRACEAE Epilobium denticulatum Ruíz & Pavon 6 Pzo Fuchsia membranacea Hemsl. 10.3 SARF OXALIDACEAE Oxalis sp. 0 Pzo PHYTOLACCACEAE Phytolacca rugosa A. Braun & C.D. Bouche 6 Paz PIPERACEAE Peperomia acuminata Ruíz & Pavon 4 SARF P. sp. 1 0 SARF P. sp. 2 0 SARF PLANTAGINACEAE Plantago australis L. 2 Pzo POLYGALACEAE Monnina meridensis Planch. & Lind. ex Wedd 10.3 Pzo M. sp.1 0 SARF M. sp.2 0 SARF POLYGONACEAE Muehlenbeckia tamnifolia (Kunth) Meisn. 2 Pzo Rumex acetosella L.* ROSACEAE Hesperomeles obtusifolia (Pers.) Paz/Pzo/SAR Lindl. 6 F H. sp. 0 Pzo/SARF Lachemilla verticillata (Fielding & Gardner) Rothm. 6 Paz Rubus acanthophyllos Focke 7 Pzo Distr. VEG. FAMILY/SPECIES Group TYPE RUBIACEAE Arcytophyllum nitidum (Kunth) Schltdl. 9 Pzo Galium hypocarpium (L.) Endl. ex Griseb. 6 Pzo Manettia lindenii Sprague 10.3 Pzo M. moritziana (K. Schum.) Werham. 10.1 Pzo/SP Nertera granadensis (Mutis ex L.f.) Druce 1 Paz/Pzo Palicourea jahnii Standl. 10.3 Pzo/SARF Psychotria dunstervilleorum Steyerm. 10.3 SARF SCROPHULARIACEAE Calceolaria tripartita R. & P. 2 Pzo Castilleja fissifolia L.f. 2 Pzo Sibthorpia repens (L.) Kuntze 6 SARF/Pzo SOLANACEAE Cestrum buxifolium Kunth 9 SARF/SP Deprea paneroi Benitez et Martinez 10.4 Pzo/SARF Solanum macrotonum Bitter 5 Pzo SYMPLOCACEAE Symplocos tamana Steyerm. 10.3 SARF THEACEAE Freziera serrata A. L. Weitzman, ined. 10.3 UMRF/SARF TROPAEOLACEAE Tropaeolum deckerianum Moritz & H. Kar 8 Pzo URTICACEAE Pilea sp. 0 SARF VALERIANACEAE Valeriana quirorana Xena 10.3 Pzo VIOLACEAE Viola stipularis Sw. 4 Pzo WINTERACEAE Drimys granadensis L.f. 6 SARF ALSTROEMERIACEAE Bomarea amilcariana Stergios & Dorr 10.4 Pzo B. edulis (Tussac) Herb. 2 SARF BROMELIACEAE Greigia sp. 0 Pzo Guzmania squarrosa (Mez & Sodiro) L.B. Sm. & Pittdn. 7 Pzo/SARF Puya aristeguietae L.B. Sm. 8 Pzo Puya sp. nov. 10.4 Pzo Tillandsia complanata Benth 4 SP CYPERACEAE Carex bonplandii Kunth 1 Paz/Pzo C. jamesonii Boott 6 Pzo Eleocharis acicularis (L.) Roem. & Schult. 1 PAz Oreobolus venezuelensis Steyerm. 6 Paz/Pzo Rhynchospora gollmeri Boeck 10.2 Paz/Pzo R. guaramacalensis M. Strong 10.4 Pzo R. cf. lechleri Steud. 5 Pzo R. macrochaeta Steud. ex Boeck. 6 Pzo R. ruiziana Boeck 6 Pzo R. sp. 0 Pzo 223 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Distr. FAMILY/SPECIES Group ERIOCAULACEAE Paepalanthus pilosus (Kunth) Kunth 6 HYPOXIDACEAE Hypoxis decumbens L. 0 IRIDACEAE Orthrosanthus acorifolius (Kunth) Ravenna 9 Sisyrinchium tinctorium Kunth 6 S. sp. 0 JUNCACEAE Juncus bufonius L. 1 J. stipulatus Nees & Meyen 3 Luzula gigantea Desv. 6 LILIACEAE Excremis coarctata (Ruíz & Pav.) Baker 7 ORCHIDACEAE Brachionidium tuberculatum Lindl. 7 Cranichis antioquensis Schltr. 6 Elleanthus aurantiacus (Lindl.) Rchb.f 2 E. flavescens (Lindl.) Rchb.f. 7 E. maculatus (Lindl.) Rchb. f. 6 Epidendrum frutex Rchb.f. 7 E. guaramacalensis Hagsater 10.4 Gomphichis costaricensis (Schltr.) Ames, F.T. Hubb. & Schweinf. 6 Odontoglossum megalophium Lindl. 7 O. ramosissimun Rchb.f. 7 O. schillerianum Rchb.f. 9 Pachyphyllum crystallinum Lindl. 6 Pleurothallis glossopogon Rchb. f. 8 Pterichis multiflora (Lindl.) 8 224 VEG. TYPE Paz/Pzo SP Paz/Pzo Pzo Paz Pzo Pzo Pzo Pzo SARF SARF Pzo Pzo Pzo Pzo Pzo SP/SARF SARF Pzo SARF SARF SARF Pzo Distr. VEG. FAMILY/SPECIES Group TYPE Schltr. POACEAE Agrostis basalis Luces 10.1 PAz A. perennans (Walter) Tucker 1 PAz A. sp. B 0 PAz Aulonemia trianae (Munro) McClure 9 SP Calamagrostis bogotensis (Pilg.) Pilg. 6 Paz/Pzo C. planifolia (Kunth) Trin. ex Steud. 7 Pzo C. sp. A 0 Paz/Pzo Chusquea aff. fendleri Munro 9 Pzo C. angustifolia (Soderstr. & C.E. Pzo/Paz/SAR Calderon) L. G. Clark 9 F C.mollis (Swallen) L.G. Clark 9 Pzo/SP C. spectabilis L.G. Clark 8 Pzo/SP C. spencei Ernst. 9 Pzo/SARF C.steyermarkii L.G. Clark 10.2 Pzo C. tessellata Munro 7 Pzo Cortaderia hapalotricha (Pilg.) Conert. 6 Paz/Pzo Danthonia secundiflora J. Presl. subsp. secundiflora 2 Pzo Festuca guaramacalana Stancik 10.4 Pzo Festuca sp. 0 Pzo Ortachne erectifolia (Swallen) Clayton 6 PAz Poa annua L.* 1 Pzo Polypogon elongatus Kunth* TOFIELDIACEAE Isidrogalvia robustior (Steyerm.) Cruden. 10.3 Pzo XYRIDACEAE Xyris subulata Ruíz & Pav. var. acutifolia Heimerl. 6 Paz/Pzo Appendix _______________________________________________________ Appendix 6. List of species and their trait states (trait state codes are in Table 6.1). The DCA axis columns give the sample scores (following CANOCO 4.5 terminology) of the DCA analyses of the species-to-trait state matrices (compare Fig. 6.2). Family Species name Acanthaceae Aphelandra macrophylla Leonard trait state code Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 1, 4, 5, 16, 20, 30, 38, 52, 56, 64 2.51 1.68 3.21 2.38 1, 4, 5, 16, 20, 31, 35, 52, 56, 64 2.51 1.68 3.50 2.25 Actinidiaceae Saurauia tomentosa (Kunth) Spreng. 4, 5, 16, 19, 30, 36, 52, 56, 64 2.51 1.68 3.75 1.46 Anacardiaceae Tapirira guianensis Aubl. 4, 5, 13, 21, 30, 34, 52, 58, 64 1.67 2.58 2.88 0.70 Annonaceae Rollinia mucosa (Jacq.) Baill. 4, 5, 12, 27, 33, 35, 52, 56, 64 2.51 1.68 3.88 2.39 4, 5, 16, 19, 31, 35, 52, 56, 64 2.51 1.68 3.72 1.54 4, 5, 13, 21, 30, 34, 52, 56, 61 3.10 2.49 2.88 0.70 4, 5, 13, 21, 30, 34, 52, 56, 63 3.36 1.99 2.88 0.70 Ilex myricoides Kunth 4, 5, 13, 21, 30, 34, 52, 56, 61 3.10 2.49 2.88 0.70 Ilex sp. 1 4, 5, 13, 21, 29, 34, 52, 56, 62 3.48 2.29 2.60 0.72 Ilex sp. 2 4, 5, 13, 21, 29, 34, 52, 56, 62 3.48 2.29 2.60 0.72 Ilex truxillensis Turcz. subsp. bullatissima Cuatrec. 4, 5, 13, 21, 30, 35, 52, 56, 61 3.10 2.49 3.26 0.86 Araceae Anthurium eminens Schott 4, 5, 16, 19, 30, 34, 41, 58, 65 0.67 2.43 3.22 1.13 Anthurium ginesii Croat 4, 5, 16, 19, 30, 34, 41, 56, 63 2.96 1.04 3.22 1.13 Anthurium humboldtianum Kunth 4, 5, 16, 19, 30, 34, 41, 56, 65 1.51 1.54 3.22 1.13 Anthurium nymphaeifolium K. Koch & Bouche Anthurium smaragdinum Bunting 4, 5, 16, 19, 30, 34, 45, 56, 64 1.83 0.73 3.22 1.13 4, 5, 16, 19, 30, 34, 41, 56, 64 2.10 0.74 3.22 1.13 4, 5, 14, 22, 30, 34, 52, 56, 63 3.36 1.99 3.24 1.80 4, 5, 7, 16, 21, 30, 35, 52, 56, 64 2.51 1.68 3.73 0.92 4, 11, 13, 19, 30, 35, 52, 56, 64 2.51 1.68 3.04 1.03 4, 5, 16, 21, 30, 34, 52, 58, 64 1.67 2.58 2.92 1.05 4, 5, 16, 21, 30, 35, 48, 58, 65 0.00 4.17 3.31 1.20 4, 5, 13, 19, 30, 34, 48, 58, 65 0.00 4.17 3.17 0.79 Ruellia tubiflora Kunth var. tetrastichantha (Lindau) Leon Trigynaea duckei (R.E. Fr.) R.E. Fr. Aquifoliaceae Ilex guaramacalensis Cuello & Aymard Ilex laurina Kunth Araliaceae Dendropanax arboreus (L.) Dcne. & Planch. Oreopanax discolor (Kunth) Decne. & Planch. Oreopanax sp. Schefflera ferruginea (Willd. ex Roem. & Schult.) Harms Arecaceae Aiphanes stergiosii Nino, Dorr & Stauffer Geonoma jussieuana Mart. 225 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Geonoma orbignyana Mart. 4, 5, 13, 19, 30, 34, 48, 58, 65 Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 0.00 4.17 3.17 0.79 Geonoma undata Klotzsch 4, 5, 14, 19, 30, 34, 48, 58, 65 0.00 4.17 3.07 1.21 Prestoea acuminata (Willd.) H.E. Moore var. acuminata Wettinia praemorsa (Willd.) Wess. Boer 1, 4, 5, 14, 21, 31, 35, 48, 58, 65 0.00 4.17 3.33 1.82 1, 4, 5, 16, 21, 31, 35, 48, 58, 65 0.00 4.17 3.46 1.75 2, 5, 16, 18, 28, 35, 52, 56, 63 3.36 1.99 2.03 1.74 2, 5, 16, 18, 29, 35, 55, 56, 61 4.15 2.51 2.38 1.71 Family Species name Asteraceae Ageratina neriifolia (B.L. Rob.) R.M. King & H. Rob. Ageratina theifolia (Benth.) R. M. King & H. Rob. Baccharis brachylaenoides DC. trait state code 2, 10, 13, 18, 28, 34, 52, 56, 61 3.10 2.49 1.49 0.78 Critoniopsis paradoxa (Sch. Bip.) V.M. Badillo Diplostephium obtusum Blake. 2, 5, 16, 18, 30, 36, 52, 56, 63 3.36 1.99 2.80 1.87 2, 5, 14, 18, 29, 34, 52, 56, 61 3.10 2.49 1.84 1.64 Libanothamnus griffinii (Ruiz-Teran & Lopez-Fig.) Cuatrec. Mikania banisteriae DC. 2, 5, 14, 18, 29, 35, 52, 56, 63 3.36 1.99 2.23 1.79 2, 5, 16, 18, 29, 35, 47, 56, 63 3.72 2.07 2.38 1.71 Mikania houstoniana (L.) B.L. Rob. 2, 5, 16, 18, 29, 34, 47, 56, 63 3.72 2.07 1.99 1.56 Mikania nigropunctulata Hieron 2, 5, 16, 18, 29, 35, 47, 56, 63 3.72 2.07 2.38 1.71 Mikania sp. 1 2, 5, 16, 18, 29, 35, 47, 56, 62 3.84 2.37 2.38 1.71 Mikania stuebelii Hieron 2, 5, 16, 18, 30, 35, 47, 56, 61 3.46 2.57 2.65 1.69 Paragynoxis cuatrecasasii Ruiz-Teran & Lopez Figueiras Paragynoxis venezuelae (V.M. Badillo) Cuatrec. Pentacalia cachacoensis (Cuatrec.) Cuatrec. Pentacalia greenmaniana (Hieron.) Cuatrec. Pentacalia theaefolia (Benth.) Cuatrec. Pentacalia vicelliptica (Cuatrec.) Cuatrec. Ruilopezia paltonioides (Standl.) Cuatrec. 2, 5, 16, 18, 29, 35, 52, 56, 64 2.51 1.68 2.38 1.71 2, 5, 16, 18, 29, 35, 52, 56, 64 2.51 1.68 2.38 1.71 2, 5, 14, 18, 29, 35, 55, 56, 61 4.15 2.51 2.23 1.79 2, 5, 14, 18, 28, 35, 55, 56, 63 4.42 2.01 1.87 1.82 2, 5, 16, 18, 29, 35, 47, 56, 61 3.46 2.57 2.38 1.71 2, 5, 14, 18, 29, 35, 47, 56, 61 3.46 2.57 2.23 1.79 1, 5, 14, 18, 29, 34, 50, 56, 63 4.38 1.22 2.34 1.76 4, 5, 16, 19, 30, 37, 47, 56, 63 3.72 2.07 3.92 1.46 Tabebuia guayacan (Seem.) Hemsl. 2, 5, 16, 20, 33, 38, 52, 58, 64 1.67 2.58 2.89 3.08 Blechnaceae Blechnum schomburgkii (Kl.) C. Chr. 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 Bombacaceae Matisia cf. ochrocalyx K. Schum 4, 11, 16, 21, 32, 38, 52, 56, 63 3.36 1.99 2.43 2.20 4, 11, 16, 21, 32, 38, 52, 56, 64 2.51 1.68 2.43 2.20 Bignoniaceae Schlegelia spruceana K. Schum. Quararibea magnifica Pittier 226 Appendix _______________________________________________________ Family Species name Bromeliaceae Greigia albo-rosea (Griseb) Mez trait state code Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 4, 11, 16, 19, 30, 38, 45, 56, 65 1.24 1.53 2.86 1.78 4, 5, 13, 23, 31, 34, 52, 58, 63 2.52 2.88 2.85 1.55 4, 5, 13, 23, 29, 34, 52, 58, 64 1.67 2.58 2.46 1.31 1, 4, 5, 13, 20, 31, 35, 52, 58, 63 2.52 2.88 3.45 1.96 4, 5, 7, 16, 19, 30, 35, 52, 56, 62 3.48 2.29 3.99 0.99 4, 5, 7, 13, 14, 15, 19, 32, 37, 52, 56, 64 2.51 1.68 3.69 1.45 4, 5, 13, 14, 20, 30, 34, 47, 56, 63 3.72 2.07 2.81 1.48 1, 4, 5, 13, 14, 20, 30, 34, 52, 56, 62 4, 7, 13, 19, 29, 34, 52, 56, 63 3.48 2.29 2.92 1.74 3.36 1.99 3.44 0.34 4, 10, 13, 21, 30, 34, 52, 56, 63 3.36 1.99 2.77 0.24 4, 10, 13, 21, 30, 34, 52, 56, 63 3.36 1.99 2.77 0.24 Hedyosmum cuatrecazanum Occhioni 4, 10, 13, 21, 30, 35, 52, 56, 63 3.36 1.99 3.16 0.40 Hedyosmum racemosum (Ruiz & Pav.) G. Don Hedyosmum sp. A 4, 10, 13, 21, 30, 35, 52, 56, 63 3.36 1.99 3.16 0.40 4, 10, 13, 21, 30, 34, 52, 56, 63 3.36 1.99 2.77 0.24 Hedyosmum translucidum Cuatrec. 4, 10, 13, 21, 31, 34, 52, 56, 63 3.36 1.99 2.89 0.50 Clethraceae Clethra fagifolia Kunth var. fagifolia 2, 5, 16, 20, 30, 34, 52, 56, 63 3.36 1.99 2.49 1.89 Clusiaceae Clusia alata Triana & Planch. Brunelliaceae Brunellia acutangula Humb. & Bonpl. Brunellia cf. integrifolia Szyszyll. Burseraceae Protium tovarense Pittier Caprifoliaceae Viburnum tinoides L.f. var. venezuelensis (Killip & A. C. Smith) Steyerm. Caricaceae Vasconcella microcarpa (Jacq.) A. DC. Celastraceae Celastrus liebmannii Standl. Maytenus macrocarpa (Ruiz & Pav.) Briq. Perrottetia quinduensis Kunth Chloranthaceae Hedyosmum cf. gentryii D'Arcy & Liesner Hedyosmum crenatum Occhioni 4, 5, 13, 22, 32, 38, 46, 56, 64 3.24 0.88 3.38 2.44 Clusia sp. 1 4, 5, 13, 22, 32, 38, 47, 56, 63 3.72 2.07 3.38 2.44 Clusia sp. A? (C. multiflora group) 4, 5, 13, 22, 31, 38, 46, 56, 63 4.09 1.18 3.63 2.20 Clusia trochiformis Vesque 4, 5, 13, 22, 30, 35, 46, 56, 63 4.09 1.18 3.73 1.54 3.72 2.00 2.92 2.18 3.36 1.99 3.61 1.28 Hypericum paramitanum N. Robson 1, 2, 9, 10, 16, 20, 30, 36, 52, 56, 60 Vismia baccifera (L.) Triana & Planch 4, 5, 16, 19, 30, 35, 52, 56, 63 subsp. dealbata (Kunth) Ewan Cucurbitaceae 227 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes 4, 11, 14, 19, 32, 36, 47, 56, 63 Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 3.72 2.07 2.94 2.12 Cunoniaceae Weinmannia aff. balbisiana Kunth 2, 5, 16, 23, 30, 34, 52, 56, 62 3.48 2.29 2.31 1.90 Weinmannia auriculata D. Don 2, 5, 16, 23, 30, 34, 52, 58, 61 2.26 3.38 2.31 1.90 Weinmannia fagaroides Kunth 2, 5, 16, 23, 29, 34, 52, 58, 61 2.26 3.38 2.04 1.91 Weinmannia glabra L.f. 2, 5, 16, 23, 29, 34, 52, 58, 61 2.26 3.38 2.04 1.91 Weinmannia karsteniana Szyszyll. 2, 5, 16, 23, 30, 34, 52, 56, 61 3.10 2.49 2.31 1.90 Weinmannia lechleriana Engl. 2, 5, 16, 23, 30, 35, 52, 58, 62 2.63 3.18 2.69 2.05 Weinmannia sorbifolia Kunth 2, 5, 16, 23, 30, 34, 52, 58, 63 2.52 2.88 2.31 1.90 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 Alsophila erinacea (Karst.) Conant. 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 Cyathea aff. straminea H. Karst 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 Cyathea caracasana (Klotzsch) Domin Cyathea fulva (Mart. & Gal.) Fee 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 Cyathea kalbreyeri (Baker) Domin 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 Cyathea pauciflora (Kuhn) Lellinger 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 Cyathea pungens (Willd.) Domin 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 Sphaeropteris sp. 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 4, 5, 14, 27, 32, 35, 41, 57, 64 0.99 0.00 3.14 2.35 4, 5, 14, 27, 32, 36, 45, 57, 65 0.12 0.79 3.29 2.52 4, 5, 16, 21, 30, 34, 47, 56, 63 3.72 2.07 2.92 1.05 Dicksoniaceae Dicksonia sellowiana Hook. 2, 11, 17, 26, 28, 34, 53, 58, 65 0.00 4.17 0.00 1.83 Dryopteridaceae Diplazium celtidifolium Kunze 2, 11, 17, 26, 28, 34, 45, 58, 65 0.40 2.43 0.00 1.83 2, 11, 17, 26, 28, 34, 45, 58, 65 0.40 2.43 0.00 1.83 Elaeocarpaceae Sloanea brevispina F. Sm. 1, 4, 5, 16, 20, 31, 35, 52, 56, 63 3.36 1.99 3.50 2.25 Sloanea guianensis Aubl. 1, 4, 5, 16, 20, 29, 35, 52, 56, 62 3.48 2.29 3.17 2.04 Sloanea laurifolia (Benth.) Benth. 1, 4, 5, 16, 20, 30, 34, 52, 56, 61 3.10 2.49 3.07 1.90 Sloanea rufa Planch. Ex Benth. 1, 4, 5, 16, 20, 32, 35, 52, 56, 64 2.51 1.68 3.29 2.46 Family Species name Elateriopsis oerstedii (Cogn.) Pittier Cyatheaceae Alsophila engelii Tryon Cyclanthaceae Asplundia vagans Harling Sphaeradenia laucheana (Mast.) Harling Dichapetalaceae Dichapetalum pedunculatum (DC.) Baill. Diplazium hians Kunze ex Klotzsch. 228 trait state code Appendix _______________________________________________________ Family Species name Ericaceae Diogenesia tetrandra (A. C. Jm.) Sleumer Disterigma alaternoides (Kunth) Nied. Disterigma sp. trait state code Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 4, 5, 16, 19, 30, 35, 47, 56, 62 3.84 2.37 3.61 1.28 4, 7, 16, 19, 30, 35, 55, 56, 61 4.15 2.51 4.15 0.82 4, 7, 16, 19, 30, 35, 47, 56, 60 4.07 2.08 4.15 0.82 Gaultheria anastomosans (L.f.) Kunth 2, 8, 16, 20, 30, 35, 55, 56, 60 4.77 2.03 2.87 2.48 Gaultheria erecta Vent. 4, 5, 16, 20, 30, 35, 55, 56, 62 4.53 2.31 3.35 1.79 Macleania rupestris (Kunth) A.C. Sm. Psammisia hookeriana Klotzsch. 4, 7, 16, 19, 31, 36, 47, 56, 63 3.72 2.07 4.41 1.25 4, 7, 16, 19, 30, 35, 47, 56, 63 3.72 2.07 4.15 0.82 Themistoclesia dependens (Benth.) A.C. Sm. Thibaudia floribunda Kunth. 4, 7, 16, 19, 30, 36, 55, 56, 61 4.15 2.51 4.29 1.00 4, 7, 16, 19, 31, 36, 47, 56, 63 3.72 2.07 4.41 1.25 Vaccinium corymbodendron Dunal 4, 7, 16, 19, 30, 35, 55, 56, 60 4.77 2.03 4.15 0.82 3.84 2.37 2.87 2.03 1, 10, 13, 14, 20, 29, 35, 52, 56, 63 Alchornea glandulosa Poepp. & Endl. 4, 7, 10, 13, 20, 30, 34, 52, 56, 64 Alchornea grandiflora Muell. Arg. 4, 7, 10, 13, 20, 30, 34, 52, 56, 63 Croizatia brevipetiolata Govaerts 1, 5, 13, 20, 31, 36, 52, 56, 63 3.36 1.99 2.84 1.56 2.51 1.68 3.31 0.59 3.36 1.99 3.31 0.59 3.36 1.99 3.58 2.25 Hieronyma cf. oblonga (Tul.) Mull. Arg. Hieronyma fendleri Briq. 4, 5, 13, 21, 29, 34, 52, 56, 63 3.36 1.99 2.60 0.72 4, 5, 13, 21, 29, 34, 52, 56, 62 3.48 2.29 2.60 0.72 Hieronyma scabrida (Tul.) Mull. Arg. 4, 5, 13, 21, 30, 35, 52, 56, 63 3.36 1.99 3.26 0.86 Mabea occidentalis Benth. 1, 6, 14, 20, 30, 34, 52, 56, 62 3.48 2.29 3.12 2.42 Sapium stylare Mull. Arg. 1, 5, 14, 20, 30, 34, 52, 56, 62 3.48 2.29 2.83 2.09 Tetrorchidium rubrivenium Poepp. 1, 4, 5, 14, 20, 30, 34, 52, 56, 63 3.36 1.99 2.94 1.97 1, 4, 5, 16, 24, 32, 36, 52, 58, 65 1.08 3.38 4.00 2.79 2, 5, 16, 18, 31, 35, 47, 58, 64 2.03 2.66 2.77 1.95 Flacourtiaceae Casearia tachirensis Sleumer 4, 5, 16, 20, 30, 35, 52, 56, 63 3.36 1.99 3.35 1.79 Gentianiaceae Macrocarpaea bracteata Ewan 1, 6, 16, 20, 31, 36, 52, 56, 63 3.36 1.99 3.92 2.92 1, 6, 16, 20, 32, 38, 52, 56, 63 3.36 1.99 3.31 3.40 Escalloniaceae cf. Escallonia hispida (Vell.) Sleumer 2, 3, 4, 5, 16, 20, 30, 35, 47, 56, 62 Euphorbiaceae Acalypha macrostachya Jacq. Fabaceae Dussia coriacea (Sw.) Roem. & Schult. Machaerium cf. floribundum Benth. Symbolanthus vasculosus (Griseb.) Gilg. 229 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Family Species name Gesneriaceae Besleria pendula Hanst. trait state code Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 4, 7, 16, 19, 30, 36, 52, 56, 62 3.48 2.29 4.29 1.00 4, 6, 8, 16, 22, 31, 38, 47, 56, 62 3.84 2.37 3.82 3.11 Hippocrateaceae Salacia aff. cordata (Miers.) Mennega 4, 11, 16, 21, 29, 35, 47, 56, 63 3.72 2.07 2.51 1.31 Hydrangeaceae Hydrangea aff. peruviana Moricard 2, 5, 16, 20, 29, 34, 52, 56, 63 3.36 1.99 2.22 1.90 Hydrangea cf. preslii Briq. 2, 5, 16, 20, 29, 34, 47, 56, 63 3.72 2.07 2.22 1.90 Hydrangea sp. 1 2, 5, 16, 20, 29, 34, 47, 56, 63 3.72 2.07 2.22 1.90 4, 11, 14, 15, 21, 32, 34, 52, 56, 63 4, 11, 14, 15, 21, 31, 35, 52, 56, 63 3.36 1.99 2.14 1.69 3.36 1.99 2.68 1.61 4, 5, 12, 19, 31, 34, 52, 56, 63 3.36 1.99 3.55 1.38 Aniba cf. cinnamomiflora C. K. Allen 4, 5, 12, 19, 31, 34, 52, 56, 63 3.36 1.99 3.55 1.38 Beilschmiedia tovarensis (Meissn.) Sa. Nishida Endlicheria sp. 4, 5, 16, 19, 31, 34, 52, 56, 63 3.36 1.99 3.34 1.39 4, 5, 16, 21, 31, 34, 52, 56, 63 3.36 1.99 3.04 1.30 Nectandra aff. membranacea (Sw.) Griseb. Nectandra aff. purpurea (Ruiz & Pav.) Mez Nectandra sp. 4, 5, 12, 19, 31, 34, 52, 56, 64 2.51 1.68 3.55 1.38 4, 5, 12, 19, 31, 34, 52, 56, 64 0.00 0.00 0.00 0.00 4, 5, 16, 21, 31, 34, 52, 56, 63 3.36 1.99 3.04 1.30 Ocotea aff. puberula (Rich.) Nees Drymonia crassa C.V. Morton Icacinaceae Calatola venezuelana Pittier Citronella costaricensis (Donn. Sm.) R.A. Howard Lauraceae Aiouea dubia (Kunth) Mez 4, 5, 13, 19, 30, 35, 52, 56, 63 3.36 1.99 3.56 0.94 Ocotea aff. tarapotana (Meissn.) Mez 4, 5, 16, 19, 31, 35, 52, 56, 62 3.48 2.29 3.72 1.54 Ocotea auriculata Lasser 4, 5, 16, 19, 30, 34, 52, 56, 64 2.51 1.68 3.22 1.13 Ocotea calophylla Mez 4, 5, 13, 19, 30, 35, 52, 56, 63 3.36 1.99 3.56 0.94 Ocotea cernua (Nees) Mez, vel aff. 4, 5, 13, 19, 30, 34, 52, 56, 63 3.36 1.99 3.17 0.79 Ocotea cf. hexanthera Kopp. 4, 5, 16, 19, 31, 35, 52, 56, 64 2.51 1.68 3.72 1.54 Ocotea floribunda (Sw.) Mez 4, 5, 13, 19, 30, 35, 52, 56, 62 3.48 2.29 3.56 0.94 Ocotea jelskii Mez 4, 5, 16, 19, 30, 35, 52, 56, 62 3.48 2.29 3.61 1.28 Ocotea karsteniana Mez 4, 5, 16, 19, 31, 35, 52, 56, 63 3.36 1.99 3.72 1.54 Ocotea leucoxylon (Sw.) de Lanessen, 4, 5, 13, 19, 30, 35, 52, 56, 64 s.l. Ocotea macropoda (Kunth) Mez 4, 5, 13, 19, 30, 35, 52, 56, 63 2.51 1.68 3.56 0.94 3.36 1.99 3.56 0.94 Ocotea rubrinervis Mez 4, 5, 13, 19, 30, 35, 52, 56, 63 3.36 1.99 3.56 0.94 Ocotea sericea Kunth 4, 5, 13, 19, 31, 35, 52, 56, 63 3.36 1.99 3.67 1.20 230 Appendix _______________________________________________________ Ocotea sp. 4, 5, 16, 19, 31, 35, 52, 56, 63 Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 3.36 1.99 3.72 1.54 Ocotea sp. A 4, 5, 16, 19, 31, 35, 52, 56, 62 3.48 2.29 3.72 1.54 Ocotea sp. B 4, 5, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.61 1.28 Ocotea sp. C 4, 5, 16, 19, 31, 35, 52, 56, 63 3.36 1.99 3.72 1.54 Ocotea terciopelo C. K. Allen 4, 5, 16, 19, 31, 34, 52, 56, 63 3.36 1.99 3.34 1.39 Ocotea vaginans (Meissn.) Mez 4, 5, 16, 19, 30, 34, 52, 56, 63 3.36 1.99 3.22 1.13 Persea aff. mutisii Kunth 4, 5, 16, 19, 31, 35, 52, 56, 63 3.36 1.99 3.72 1.54 Persea ferruginea Kunth. 4, 5, 16, 19, 31, 35, 52, 56, 63 3.36 1.99 3.72 1.54 Persea meridensis Kopp. 4, 5, 16, 19, 31, 35, 52, 56, 63 3.36 1.99 3.72 1.54 Persea peruviana Nees 4, 5, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.61 1.28 Persea sp. 1 4, 5, 16, 19, 31, 35, 52, 56, 63 3.36 1.99 3.72 1.54 Persea sp. 2 4, 5, 16, 19, 31, 35, 52, 56, 62 3.48 2.29 3.72 1.54 Persea sp. 3 4, 5, 16, 19, 31, 35, 52, 56, 64 2.51 1.68 3.72 1.54 Pleurothyrium costanense van der Werff 4, 11, 16, 19, 31, 35, 52, 56, 64 2.51 1.68 3.20 1.63 3.36 1.99 3.29 2.46 3.36 1.99 2.96 2.32 4, 5, 16, 19, 30, 35, 52, 56, 60 3.72 2.00 3.61 1.28 Magnoliaceae Talauma sp. 4, 5, 16, 23, 32, 38, 52, 56, 64 2.51 1.68 2.82 2.70 Malpighiaceae Bunchosia armeniaca (Cav.) DC. 4, 5, 16, 21, 31, 35, 52, 56, 63 3.36 1.99 3.42 1.46 Byrsonima karstenii W. R. Anderson 4, 5, 16, 21, 30, 35, 52, 56, 63 3.36 1.99 3.31 1.20 Byrsonima sp. 4, 5, 16, 21, 30, 36, 52, 56, 63 3.36 1.99 3.45 1.37 Hiraea sp. 2, 5, 16, 18, 30, 35, 47, 56, 62 3.84 2.37 2.65 1.69 4, 5, 7, 16, 20, 30, 37, 47, 56, 63 3.72 2.07 4.03 1.57 4, 5, 16, 19, 30, 36, 52, 56, 63 3.36 1.99 3.75 1.46 4, 5, 16, 19, 30, 36, 47, 56, 63 3.72 2.07 3.75 1.46 2, 5, 16, 20, 29, 35, 55, 56, 59 5.08 2.10 2.60 2.06 4, 5, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.61 1.28 Family Species name trait state code Lecythidaceae Eschweilera aff. antioquensis Dugand 1, 4, 5, 16, 20, 32, 35, 52, 56, 63 & Daniel Eschweilera perumbonata Pittier 1, 4, 5, 16, 20, 32, 34, 52, 56, 63 Loranthaceae Gaiadendron punctatum (R. & P.) G. Don Marcgraviaceae Marcgravia brownei (Tr. & Pl.) Krug & Urb. Melastomataceae Anaectocalyx bracteosa (Naud.) Triana Blakea schlimii (Naud.) Triana Chaetolepis lindeniana (Naud.) Triana Henriettella cf. verrucosa Triana 231 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Henriettella sp. 4, 5, 16, 19, 30, 35, 52, 56, 63 Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 3.36 1.99 3.61 1.28 Henriettella tovarensis Cogn. 4, 5, 16, 19, 29, 35, 52, 56, 63 3.36 1.99 3.34 1.30 Meriania grandidens Triana Family Species name trait state code 1, 2, 5, 16, 20, 30, 37, 52, 56, 63 3.36 1.99 3.26 2.40 Meriania macrophylla (Benth.) Triana 1, 2, 5, 16, 20, 30, 34, 52, 56, 64 2.51 1.68 2.66 2.12 Miconia amilcariana Almeda & Dorr 4, 5, 16, 19, 28, 34, 52, 56, 63 3.36 1.99 2.60 1.18 Miconia cf. dolichopoda Naud. 4, 5, 16, 19, 29, 34, 52, 56, 63 3.36 1.99 2.95 1.14 Miconia cf. minutiflora (Bonpl.) DC. 4, 5, 16, 19, 28, 34, 52, 56, 63 3.36 1.99 2.60 1.18 Miconia donaeana Naud. 4, 5, 16, 19, 29, 35, 52, 56, 63 3.36 1.99 3.34 1.30 Miconia elvirae Wurdack 4, 5, 16, 19, 29, 35, 52, 56, 63 3.36 1.99 3.34 1.30 Miconia jahnii Pittier 4, 5, 16, 19, 29, 34, 52, 56, 63 3.36 1.99 2.95 1.14 Miconia lonchophylla Naud. 4, 5, 16, 19, 29, 35, 52, 56, 63 3.36 1.99 3.34 1.30 Miconia lucida Naud. 4, 5, 16, 19, 29, 35, 52, 56, 64 2.51 1.68 3.34 1.30 Miconia mesmeana Gleason subsp. longipetiolata Wurdack Miconia sp. C (hibrido) 4, 5, 16, 19, 29, 35, 52, 56, 63 3.36 1.99 3.34 1.30 4, 5, 16, 19, 29, 34, 52, 56, 62 3.48 2.29 2.95 1.14 Miconia sp. B 4, 5, 16, 19, 32, 35, 52, 56, 63 3.36 1.99 3.48 1.78 Miconia suaveolens Wurdack 4, 5, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.61 1.28 Miconia theaezans (Bonpl.) Cogn., s.l. 4, 5, 16, 19, 28, 34, 52, 56, 63 3.36 1.99 2.60 1.18 Miconia tinifolia Naud. 4, 5, 16, 19, 29, 34, 52, 56, 62 3.48 2.29 2.95 1.14 Miconia tovarensis Cogn. 4, 5, 16, 19, 29, 34, 52, 56, 63 3.36 1.99 2.95 1.14 Miconia ulmarioides Naud. 4, 5, 16, 19, 29, 35, 52, 56, 63 3.36 1.99 3.34 1.30 Monochaetum discolor H. Karst. 4, 5, 16, 20, 30, 37, 55, 56, 61 4.15 2.51 3.66 1.96 Ossaea micrantha (Sw.) Macfad. 4, 5, 16, 20, 28, 35, 52, 56, 63 3.36 1.99 2.72 1.83 4, 5, 13, 20, 32, 36, 52, 58, 65, 1.08 3.38 3.31 2.12 Ruagea glabra Triana & Planch. 4, 5, 7, 13, 20, 31, 35, 52, 58, 64 1.67 2.58 3.82 1.34 Ruagea pubescens H. Karst. 4, 5, 7, 13, 20, 31, 35, 52, 58, 64 1.67 2.58 3.82 1.34 Trichilia hirta L. 4, 5, 13, 20, 30, 35, 52, 58, 64 1.67 2.58 3.30 1.44 Trichilia pallida Sw. 4, 5, 13, 14, 20, 30, 35, 52, 58, 64 4, 5, 13, 14, 20, 31, 35, 52, 58, 64 1.67 2.58 3.14 1.62 1.67 2.58 3.24 1.84 4, 7, 16, 21, 31, 36, 47, 56, 63 3.72 2.07 4.11 1.17 4, 5, 16, 24, 32, 35, 52, 58, 65 1.08 3.38 3.90 2.50 Meliaceae Guarea kunthiana A. Juss. Trichilia septentrionalis C. DC. Mendonciaceae Mendoncia tovarensis (Klotzsch & Karsten ex Nees) Leonard Mimosaceae Inga aff. densiflora Benth. 232 Appendix _______________________________________________________ Inga edulis Mart. 4, 5, 16, 24, 33, 36, 52, 58, 64 Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 1.67 2.58 4.41 2.80 Zygia bisingula L. Rico 1, 5, 16, 24, 33, 36, 52, 58, 64 1.67 2.58 4.43 3.18 4, 5, 13, 18, 28, 34, 52, 56, 64 2.51 1.68 2.06 0.99 Cecropia sp. 4, 5, 13, 18, 28, 34, 52, 56, 64 2.51 1.68 2.06 0.99 Cecropia telenitida Cuatrec. 4, 5, 13, 18, 28, 34, 52, 56, 65 1.92 2.48 2.06 0.99 Ficus nymphaeifolia P. Miller 4, 5, 14, 27, 31, 34, 52, 56, 63 3.36 1.99 3.00 1.95 Ficus sp. 4, 5, 14, 27, 31, 34, 52, 56, 64 2.51 1.68 3.00 1.95 Ficus tonduzii Standl. 4, 5, 14, 27, 31, 34, 52, 56, 64 2.51 1.68 3.00 1.95 Ficus tovarensis Pittier 4, 5, 14, 27, 30, 34, 52, 56, 63 3.36 1.99 2.89 1.69 Morus insignis Bureau 4, 5, 13, 14, 27, 29, 34, 52, 56, 63 4, 5, 13, 21, 30, 35, 52, 56, 63 3.36 1.99 2.64 1.48 3.36 1.99 3.26 0.86 4, 5, 13, 21, 29, 34, 52, 56, 63 3.36 1.99 2.60 0.72 Cybianthus iteoides (Benth.) Agost. 4, 5, 13, 21, 30, 34, 52, 56, 63 3.36 1.99 2.88 0.70 Cybianthus laurifolius (Mez) Agost. 4, 5, 13, 21, 30, 34, 52, 56, 63 3.36 1.99 2.88 0.70 Cybianthus marginatus (Benth.) Pipoly Cybianthus stapfii (Mez) Agostini 4, 5, 14, 21, 29, 34, 52, 56, 63 3.36 1.99 2.50 1.14 4, 5, 13, 21, 29, 34, 52, 56, 61 3.10 2.49 2.60 0.72 Geissanthus andinus Mez 4, 5, 15, 21, 30, 34, 52, 56, 61 3.10 2.49 2.79 0.94 Geissanthus fragrans Mez 4, 5, 15, 21, 30, 34, 52, 56, 64 2.51 1.68 2.79 0.94 Myrsine coriacea (Sw.) R. Br. ex Roem & Schult. Myrsine dependens (Ruiz & Pav.) Spreng. Parathesis venezuelana Mez 4, 5, 13, 21, 29, 34, 52, 56, 61 3.10 2.49 2.60 0.72 4, 5, 13, 21, 29, 34, 52, 56, 60 3.72 2.00 2.60 0.72 4, 5, 16, 21, 29, 34, 52, 56, 64 2.51 1.68 2.65 1.06 Stylogyne longifolia (Mart. Ex Miq.) Mez Stylogyne sp. A 4, 5, 16, 21, 30, 34, 52, 56, 64 2.51 1.68 2.92 1.05 4, 5, 16, 21, 29, 34, 52, 56, 63 3.36 1.99 2.65 1.06 Myrtaceae Calyptranthes cf. meridensis Steyerm. 4, 5, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.61 1.28 Family Species name Moraceae Cecropia sararensis Cuatrec. Pseudolmedia rigida (Planch. & Karst.) Cuatrec. subsp. rigida Myrsinaceae Cybianthus cuspidatus Miq. trait state code Calyptranthes sp. 4, 5, 16, 19, 30, 35, 52, 56, 62 3.48 2.29 3.61 1.28 Eugenia albida Humb. & Bonpl. 4, 5, 16, 19, 30, 36, 52, 56, 63 3.36 1.99 3.75 1.46 Eugenia cf. oerstediana O. Berg. 4, 5, 16, 19, 29, 34, 52, 56, 62 3.48 2.29 2.95 1.14 Eugenia cf. patens Poir. 4, 5, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.61 1.28 Eugenia cf. tamaensis Steyerm. 4, 5, 16, 19, 30, 35, 52, 56, 62 3.48 2.29 3.61 1.28 Eugenia grandiflora O. Berg. 4, 5, 16, 19, 30, 36, 52, 56, 64 2.51 1.68 3.75 1.46 233 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Eugenia moritziana H. Karst. 4, 5, 16, 19, 31, 35, 52, 56, 63 Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 3.36 1.99 3.72 1.54 Eugenia sp. 4, 5, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.61 1.28 Eugenia sp. 1 4, 5, 16, 19, 30, 35, 52, 56, 61 3.10 2.49 3.61 1.28 Eugenia sp. 2 4, 5, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.61 1.28 Eugenia sp. 3 4, 5, 16, 19, 32, 35, 52, 56, 63 3.36 1.99 3.48 1.78 Eugenia sp.? 4, 5, 16, 19, 30, 35, 52, 56, 61 3.10 2.49 3.61 1.28 Eugenia triquetra Berg 4, 5, 16, 19, 30, 35, 52, 56, 61 3.10 2.49 3.61 1.28 Myrcia acuminata (Kunth) DC. 4, 5, 16, 19, 30, 34, 52, 56, 63 3.36 1.99 3.22 1.13 Myrcia aff. guianensis (Aubl.) DC. 4, 5, 16, 19, 30, 34, 52, 56, 61 3.10 2.49 3.22 1.13 Myrcia cf. sanisidrensis Steyerm. 4, 5, 16, 19, 30, 34, 52, 56, 63 3.36 1.99 3.22 1.13 Myrcia sp. 1 4, 5, 16, 19, 30, 34, 52, 56, 61 3.10 2.49 3.22 1.13 Myrcianthes sp. 4, 5, 16, 19, 30, 34, 52, 56, 61 3.10 2.49 3.22 1.13 4, 5, 16, 18, 29, 35, 52, 56, 63 3.36 1.99 2.85 1.45 4, 5, 16, 21, 29, 34, 52, 56, 63 3.36 1.99 2.65 1.06 4, 5, 16, 21, 30, 36, 52, 56, 63 3.36 1.99 3.45 1.37 4, 5, 7, 16, 19, 31, 38, 47, 56, 61 3.46 2.57 3.90 1.56 3.36 1.99 2.07 1.33 Family Species name Nyctaginaceae Neea sp. Olacaceae Heisteria acuminata (Humb. & Bonpl.) Engler Chionanthus sp. trait state code Onagraceae Fuchsia membranacea Hemsl. Piperaceae Piper aduncum L. var. cordulatum (C. 2, 4, 5, 16, 21, 28, 34, 52, 56, 63 DC.) Yunck. Piper arboreum Aubl. 4, 5, 16, 21, 28, 34, 52, 56, 64 2.51 1.68 2.30 1.10 Piper hispidum Sw. 4, 5, 16, 21, 28, 34, 52, 56, 64 2.51 1.68 2.30 1.10 Piper longispicum C. DC. var. glabratum (Yunck.) Steyerm. Piper phytolaccifolium Opiz 4, 5, 16, 21, 28, 34, 52, 56, 64 2.51 1.68 2.30 1.10 4, 5, 16, 21, 29, 34, 52, 56, 63 3.36 1.99 2.65 1.06 Piper sp. 4, 5, 16, 21, 29, 34, 52, 56, 62 3.48 2.29 2.65 1.06 Piper sp. 1- Liana 4, 5, 16, 21, 29, 34, 47, 56, 62 3.84 2.37 2.65 1.06 Piper veraguense C. DC. 4, 5, 16, 21, 28, 34, 52, 56, 63 3.36 1.99 2.30 1.10 4, 10, 14, 15, 18, 30, 35, 39, 56, 63 4, 10, 16, 18, 30, 35, 39, 56, 61 4.32 2.32 2.79 1.12 4.06 2.82 3.02 0.98 4, 10, 16, 18, 30, 34, 39, 56, 61 4.06 2.82 2.64 0.82 Rhipidocladum geminatum (McClure) 4, 10, 16, 18, 30, 35, 39, 56, 61 McClure 4.06 2.82 3.02 0.98 Poaceae Arthrostylidium venezuelae (Steud.) McClure Chusquea angustifolia (Soderstr. & C.E. Calderon) L.G. Clark Chusquea purdieana Munro 234 Appendix _______________________________________________________ Family Species name Podocarpaceae Podocarpus oleifolius D. Don ex Lambert var. macrostachyus (Parl.) J. Bunchholz & N. E. Gray trait state code Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 4, 10, 13, 25, 30, 35, 52, 56, 61 3.10 2.49 3.70 0.00 2, 10, 16, 18, 30, 36, 47, 56, 61 3.46 2.57 2.69 1.41 Monnina meridensis Planch. & Lindl. ex Wedd. Monnina sp. 1 4, 5, 16, 21, 30, 35, 52, 56, 61 3.10 2.49 3.31 1.20 4, 5, 16, 21, 30, 35, 52, 56, 62 3.48 2.29 3.31 1.20 Monnina sp. 2? 4, 5, 16, 21, 30, 35, 52, 56, 62 3.48 2.29 3.31 1.20 Polygonaceae Coccoloba cf. llewelynii R.A. Howard 4, 5, 16, 18, 30, 34, 52, 56, 63 3.36 1.99 2.74 1.28 4, 5, 14, 18, 30, 34, 52, 56, 63 3.36 1.99 2.59 1.36 1, 5, 16, 23, 32, 35, 52, 56, 64 2.51 1.68 3.06 2.67 1, 5, 16, 23, 32, 35, 52, 56, 63 3.36 1.99 3.06 2.67 2, 5, 16, 23, 32, 36, 52, 56, 63 3.36 1.99 2.71 2.72 1, 4, 5, 16, 21, 29, 34, 52, 56, 63 3.36 1.99 2.80 1.41 3.10 2.49 3.78 1.88 3.72 2.00 3.78 1.88 Polygalaceae Bredemeyera sp. Coccoloba sp. Proteaceae Panopsis sp. Panopsis suaveolens (H. Karst.) Pittier Roupala barnettiae Dorr Rhamnaceae Rhamnus sphaerosperma Sw. var. polymorpha (Reiss.) M.C. Johnst Rosaceae Hesperomeles obtusifolia (Pers.) Lind. 4, 5, 16, 22, 30, 35, 52, 56, 61 var. obtusifolia Hesperomeles sp. 4, 5, 16, 22, 30, 35, 52, 56, 60 Prunus cf. skutchii Johnston 4, 5, 16, 21, 30, 35, 52, 56, 63 3.36 1.99 3.31 1.20 Prunus moritziana Koehne 4, 5, 16, 21, 31, 35, 52, 56, 63 3.36 1.99 3.42 1.46 Rubiaceae Coussarea moritziana (Benth.) Standl. 4, 5, 16, 21, 31, 36, 52, 56, 64 2.51 1.68 3.57 1.63 Dioicodendron dioicum (K. Schum. & 1, 5, 13, 20, 30, 34, 52, 56, 63 Krause) Styerm. Elaeagia karstenii Standl. 1, 5, 16, 20, 30, 35, 52, 56, 64 3.36 1.99 2.94 1.67 2.51 1.68 3.37 2.17 Elaeagia myriantha (Standl.) Hammel 1, 5, 16, 20, 29, 35, 52, 56, 64 & C. M. Taylor Elaeagia ruizteranii Steyerm. 1, 5, 16, 20, 30, 35, 52, 56, 64 2.51 1.68 3.10 2.18 2.51 1.68 3.37 2.17 Faramea guaramacalensis Taylor 4, 5, 16, 21, 30, 36, 52, 56, 63 3.36 1.99 3.45 1.37 Faramea killipii Standl. 4, 5, 16, 21, 30, 36, 52, 56, 63 3.36 1.99 3.45 1.37 Guettarda crispiflora Vahl subsp. discolor (Rusby) Steyerm. Hippotis albiflora H. Karst. 4, 5, 16, 21, 30, 36, 52, 56, 63 3.36 1.99 3.45 1.37 4, 5, 16, 19, 31, 38, 52, 56, 64 2.51 1.68 3.50 1.95 Hoffmannia pauciflora Standl. 4, 5, 7, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.99 0.99 235 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Ladenbergia cf. buntingii Steyerm. 2, 5, 16, 20, 30, 38, 52, 56, 65 Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 1.92 2.48 2.65 2.45 Palicourea angustifolia Kunth 4, 5, 16, 21, 30, 36, 52, 56, 63 3.36 1.99 3.45 1.37 Palicourea apicata Kunth 4, 5, 16, 21, 30, 36, 52, 56, 63 3.36 1.99 3.45 1.37 Palicourea demissa Standl. 4, 5, 16, 21, 30, 36, 52, 56, 63 3.36 1.99 3.45 1.37 Palicourea jahnii Standl. 4, 5, 16, 21, 30, 35, 52, 56, 61 3.10 2.49 3.31 1.20 Palicourea puberulenta Steyerm. 4, 5, 16, 21, 30, 36, 52, 56, 63 3.36 1.99 3.45 1.37 Posoqueria coriacea M. Mart. & Galeotti subsp. formosa Psychotria amita Stand. 4, 5, 16, 19, 32, 36, 52, 56, 64 2.51 1.68 3.62 1.96 4, 5, 16, 21, 30, 35, 52, 56, 61 3.10 2.49 3.31 1.20 Psychotria cf. lindenii Standl. 4, 5, 16, 19, 30, 35, 52, 56, 62 3.48 2.29 3.61 1.28 Psychotria fortuita Standl. 4, 5, 16, 21, 30, 35, 52, 56, 62 3.48 2.29 3.31 1.20 Psychotria longirostris (Rusby) Standl. Psychotria trichotoma Mart. & Gal. 4, 5, 16, 19, 30, 35, 52, 56, 62 3.48 2.29 3.61 1.28 4, 5, 16, 21, 30, 35, 52, 56, 64 2.51 1.68 3.31 1.20 Randia cf. dioica H. Karst. 4, 5, 13, 19, 31, 36, 52, 56, 63 3.36 1.99 3.82 1.37 Rudgea nebulicola Steyerm. 4, 5, 16, 19, 31, 36, 52, 56, 64 2.51 1.68 3.87 1.71 Rudgea tayloriae Aymard, Dorr & Cuello Simira erythroxylon (Willd.) Brem. var. meridensis Steyerm. Simira lezamae Steyerm. 4, 5, 16, 19, 30, 35, 52, 56, 63 3.36 1.99 3.61 1.28 1, 2, 5, 16, 20, 32, 35, 52, 56, 64 2.51 1.68 2.88 2.68 1, 2, 5, 16, 20, 32, 35, 52, 56, 63 3.36 1.99 2.88 2.68 Tammsia anomala Karst. 4, 5, 16, 19, 30, 36, 52, 56, 63 3.36 1.99 3.75 1.46 Tocoyena costanensis Steyerm. subsp. 4, 5, 16, 19, 32, 36, 52, 56, 64 andina Steyerm. 2.51 1.68 3.62 1.96 1, 2, 5, 16, 20, 31, 36, 52, 58, 64 1.67 2.58 3.21 2.62 4, 5, 16, 20, 31, 35, 52, 58, 64 1.67 2.58 3.46 2.04 4, 5, 16, 20, 30, 35, 52, 58, 64 1.67 2.58 3.35 1.79 4, 5, 16, 21, 30, 34, 52, 56, 63 3.36 1.99 2.92 1.05 Meliosma pittieriana Steyerm. 4, 5, 16, 21, 32, 34, 52, 56, 63 3.36 1.99 2.79 1.55 Meliosma tachirensis Steyerm. & Gentry Meliosma venezuelensis Steyerm. 4, 5, 16, 21, 31, 34, 52, 56, 63 3.36 1.99 3.04 1.30 4, 5, 16, 21, 31, 34, 52, 56, 63 3.36 1.99 3.04 1.30 4, 5, 15, 20, 30, 34, 52, 58, 63 2.52 2.88 2.83 1.52 1, 4, 5, 16, 20, 32, 37, 52, 58, 63 2.52 2.88 3.55 2.61 Family Species name Rutaceae Conchocarpus larensis (Tamayo & Croizat) Kallunki & Pirani Zanthoxylum acuminatum (Sw.) Sw subsp. juniperinum (Poepp.) Reynel Zanthoxylum melanostictum Schltdl. & Cham. Sabiaceae Meliosma meridensis Lasser Sapindaceae Allophylus cf. glabratus (Kunth) Radlk Billia rosea (Planch. & Linden) C. Ulloa & P. Jørg. 236 trait state code Appendix _______________________________________________________ Family Species name Cupania cf. scrobiculata Rich. trait state code Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 1.67 2.58 3.16 1.45 Matayba camptoneura Radlk. 4, 5, 13, 15, 20, 30, 35, 52, 58, 64 4, 5, 15, 20, 30, 34, 52, 58, 64 1.67 2.58 2.83 1.52 Paullinia capreolata (Aubl.) Radlk. 4, 5, 15, 20, 31, 34, 47, 58, 64 2.03 2.66 2.95 1.78 Paullinia cf. latifolia Benth. ex Radlk 4, 5, 15, 20, 31, 34, 47, 58, 64 2.03 2.66 2.95 1.78 3.36 1.99 3.33 1.61 Chrysophyllum cf. cainito L. 4, 5, 6, 13, 14, 19, 31, 34, 52, 56, 63 4, 6, 16, 19, 30, 34, 52, 56, 63 3.36 1.99 3.51 1.45 Chrysophyllum sp. 4, 6, 16, 19, 30, 34, 52, 56, 64 2.51 1.68 3.51 1.45 Pouteria baehniana Monachino 4, 6, 16, 19, 32, 36, 52, 56, 64 2.51 1.68 3.91 2.28 Simaroubaceae Picramnia sp. A 4, 5, 13, 19, 30, 34, 52, 58, 64 1.67 2.58 3.17 0.79 Picramnia sp. C 4, 5, 13, 19, 31, 34, 52, 58, 64 1.67 2.58 3.29 1.04 Smilacaceae Smilax kunthii Killip & C. V. Morton 4, 5, 16, 19, 30, 35, 47, 56, 63 3.72 2.07 3.61 1.28 Solanaceae Cestrum bigibbosum Pittier 4, 5, 16, 19, 30, 37, 52, 56, 62 3.48 2.29 3.92 1.46 Cestrum buxifolium Kunth 4, 5, 16, 19, 31, 36, 55, 56, 62 4.53 2.31 3.87 1.71 Cestrum darcyanum Benitez & N.W. Sawyer Cuatresia riparia (Kunth.) Humz 4, 5, 16, 19, 30, 36, 52, 56, 62 3.48 2.29 3.75 1.46 4, 5, 16, 19, 30, 36, 52, 56, 63 3.36 1.99 3.75 1.46 Markea sp. 4, 11, 16, 19, 30, 36, 52, 56, 64 2.51 1.68 3.23 1.54 Solanum aturense Humb. & Bonpl. ex 4, 5, 16, 19, 31, 36, 47, 56, 62 Dunal Solanum confine Dunal 4, 5, 16, 19, 30, 36, 52, 56, 63 3.84 2.37 3.87 1.71 3.36 1.99 3.75 1.46 Solanum nudum Dunal 4, 5, 16, 19, 30, 36, 52, 56, 63 3.36 1.99 3.75 1.46 4, 5, 16, 20, 30, 34, 52, 58, 64 1.67 2.58 2.96 1.63 4, 5, 16, 20, 30, 35, 52, 58, 64 1.67 2.58 3.35 1.79 Symplocaceae Symplocos bogotensis Brand. 4, 5, 16, 21, 30, 35, 52, 56, 61 3.10 2.49 3.31 1.20 Symplocos tamana Steyerm. 4, 5, 16, 21, 30, 35, 52, 56, 61 3.10 2.49 3.31 1.20 2, 11, 13, 20, 30, 36, 52, 56, 62 3.48 2.29 2.45 1.96 2, 5, 16, 20, 31, 38, 52, 56, 63 3.36 1.99 2.77 2.71 4, 5, 16, 20, 30, 36, 52, 56, 62 3.48 2.29 3.49 1.96 Sapotaceae cf. Elaeoluma nuda (Baehni) Aubr. Staphyleaceae Huertea glandulosa Ruiz & Pav. Turpinia occidentalis (Sw.) G. Don. Theaceae Freziera serrata A. L. Weitzman, ined. Gordonia fruticosa (Schrader) H. Keng Ternstroemia acrodantha Kobuski & Steyerm. 237 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Ternstroemia sp. A 4, 5, 16, 20, 30, 36, 52, 56, 63 Energy Fragmentati balance traits on traits DCA DCA axis axis axis axis 1 2 1 2 3.36 1.99 3.49 1.96 Ternstroemia sp. B 4, 5, 16, 20, 30, 36, 52, 56, 63 3.36 1.99 3.49 1.96 4, 10, 13, 14, 18, 30, 35, 52, 56, 64 2.51 1.68 2.86 0.92 4, 5, 16, 21, 31, 35, 52, 56, 64 2.51 1.68 3.42 1.46 4, 5, 16, 21, 30, 34, 52, 56, 63 3.36 1.99 2.92 1.05 Aegiphila ternifolia (Kunth) Moldenke Citharexylum venezuelense Mol. 4, 5, 16, 21, 30, 35, 52, 56, 63 3.36 1.99 3.31 1.20 4, 5, 16, 21, 31, 36, 52, 56, 63 3.36 1.99 3.57 1.63 Petrea pubescens Turcz. 2, 5, 16, 21, 31, 35, 52, 56, 63 3.36 1.99 2.95 1.72 Vitaceae Cissus trianae Planch 4, 5, 16, 19, 30, 34, 47, 58, 61 2.61 3.46 3.22 1.13 Winteraceae Drimys granadensis L.f. 4, 5, 16, 19, 30, 37, 52, 56, 62 3.48 2.29 3.92 1.46 Family Species name Urticaceae Urera baccifera (L.) Gaudich ex Wedd. Verbenaceae Aegiphila floribunda Moritz & Moldenke Aegiphila moldenkeana Lopez-Pal. 238 trait state code Summary _______________________________________________________ SUMMARY Ramal de Guaramacal is an outlier and lower elevation mountain range up to 3,130 m located at the northeastern end of the Venezuelan Andes. In Chapter 2, montane forest community composition of Ramal de Guaramacal was studied along the altitudinal gradient on both sides of the range with different slope expositions. Thirty five 0.1 ha plots were surveyed, with variable intervals of 30 to 150 meters between 1350 m and 2890 m and nine plots of variable size (50 m2 to 400 m2) were surveyed in dwarf forests located between 2800-3050 m. A total of 388 morphospecies with dbh ≥ 2.5 cm, corresponding to 189 genera and 78 families of vascular plants, were recorded from a total of 44 forest plots. The TWINSPAN phytosociological clustering, based on both floristic composition and species relative abundance, revealed seven forest communities at association level, grouped in three alliances and one montane forest order group. Three subandean forest (LMRF) communities and four Andean - high Andean forest (UMRFSARF) communities are distinguished and described according to the ZürichMontpellier method. The Geonomo undatae-Posoquerion coriaceae alliance contains two subandean forest communities (Simiro erythroxylonis-Quararibeetum magnificae and Conchocarpo larensis-Coussareetum moritzianae); the Farameo killipii - Prunion moritzianae alliance contains one subandean forest community (Croizatio brevipetiolatae-Wettinietum praemorsae) and one Andean forest community (Schefflero ferrugineae-Cybianthetum laurifolii) and the Ruilopezio paltonioides-Cybianthion marginati alliance includes one Andean (Geissantho andini-Miconietum jahnii) and two high Andean forest communities (Gaultherio anastomosantis-Hesperomeletum obtusifoliae and the Libanothamnetum griffinii). Altitudinal zonation, forest floristic diversity, composition and forest structure is discussed between slopes and along the altitudinal gradient and compared, where possible, to other montane forests. In LMRF, Rubiaceae, Lauraceae and Melastomataceae are the most speciose of woody families. In UMRF, the Lauraceae family is still the most diverse, followed by Melastomataceae and Myrtaceae, while in SARF the Asteraceae and Ericaceae are the most species rich families. The structure of the montane forests of Ramal de Guaramacal becomes more compressed towards higher elevations. LMRF are dense and of medium height, with canopies up to 25 m tall, while UMRF canopies can reach up to 18 m, and those of SARF are only 6-8 (10) m tall. Basal area was slightly increased on the North than on the South slopes and shows different patterns against altitude between slopes. More diversity and density of palms, lianas and climbers is clearly observed in LMRF, but richness of liana species is also important in SARF (forests). Forest altitudinal zonation is variable between the North and South slopes of Guaramacal, with the forest zones of UMRF on the windward South slope, tending toward reaching lower elevations than on the opposite and drier North slope. There is a low altitudinal limit of the uppermost forest (Upper Forest Line or UFL) apparently caused by the “top effect”. In Chapter 3 zonal páramo vegetation communities present on top of Ramal de Guaramacal, were studied with the aim to provide a syntaxonomic scheme or classification, based on analysis of the physiognomy, floristic composition, ecological relations and spatial distribution of the different vegetation 239 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes communities. A total of 91 vascular species, 33 species of bryophytes and 11 species of lichens have been documented from fifty 10 m-line intercept transects, each surveying 10 m of altititudinal interval on zonal páramo vegetation present between 2800 and 3100 m altitude. The interpretation of the TWINSPAN clustering allowed the recognition of five vegetation communities at association level grouped into two alliances and one order. Three associations of lower subpáramo or shrubby páramo and two of upper subpáramo or bunchgrass páramo dominated by rosettes and tussocks have been documented. The alliance Hyperico paramitanum-Hesperomeletion obtusifoliae groups the shrubby páramo associations: Ruilopezio paltonioides-Neurolepidetum glomeratae and Disterigmo acuminatum-Arcytophylletum nitidum, present on wind protected slopes, dwarf forests edges or along streams. The alliance Hyperico cardonae-Xyridion acutifoliae groups one widely distributed shrubby páramo association Cortaderio hapalotrichae-Hypericetum juniperinum and two open grass páramo associations: Puyo aristeguietae-Ruilopezietum lopez-palacii and Rhynchosporo gollmeriiRuilopezietum jabonensis, present on wind exposed slopes. Asteraceae and Ericaceae are the most speciose of families, followed by Poaceae and Cyperaceae. The most diverse genera are Ruilopezia (Asteraceae), Rhynchospora (Cyperaceae) and Hypericum (Clusiaceae). Diversity of species and growth forms is greater among the shrubby communities, decreasing in the bunch grass-rosette communities. Canonical correspondence analysis (CCA) indicates that floristic composition of zonal vegetation communities is mostly related to slope angle and altitude than to other observed variables such as pH, soil depth and humus thickness. The generic and species composition is that of a rain bamboo páramo. In Chapter 4 the azonal páramo vegetation present at the top of Ramal de Guaramacal was studied by means of observations, plant collections and surveys consisting of a total of 71 small plots of between 0.25 to 6 m 2. Azonal vegetation is represented in the study area by habitats experiencing water stress (peat bogs and aquatic vegetation). The azonal vegetation present in two peat bogs areas of Páramo El Pumar (Laguna El Pumar y Laguna Seca), and in a small valley where water collects in Páramo de Guaramacal, near the „Las Antenas‟ area between ~2900 and ~3000 m were analyzed. A total of 53 morphospecies, belonging to 30 species of vascular plants, 20 species of cryptogams and 3 undetermined species of algae have been documented for the azonal vegetation. The interpretation of a TWINSPAN clustering, based on affinities of floristic composition and species cover, allowed the recognition of six azonal vegetation communities grouped into three alliances and one order. The new alliance Sphagno recurvi-Paepalanthion pilosi groups the new bunchgrass association Paepalantho pilosi-Agrostietum basalis and the both new Sphagnum bog associations: Sphagno recurvi-Caricetum bonplandii and Sphagno sparsi-Caricetum bonplandii. The new alliance Carici bonplandii-Chusqueion angustifoliae contains a bamboo páramo („chuscal‟) association Carici bonplandii-Chusqueetum angustifoliae growing close to the lake shores, in periodically flooded areas, and characterized almost exclusively by Chusquea angustifolia. The alliance Ditricho submersi-Isoëtion Cleef 1981 is represented by the submerged aquatic community of Sphagnum cuspidatum and the Isoëtetum karstenii Cleef 1981. 240 Summary _______________________________________________________ Chapter 5 presents the study of the phytogeographical patterns and affinities of the low altitude and wet páramo vascular flora of Ramal de Guaramacal with emphasis in to the analysis of the floristic connections of the Guaramacal páramo flora with the neighboring dry páramos of the Sierra Nevada de Mérida and other páramo floras of the northern Andes and Central America. A total of 251 vascular plant taxa belonging to 150 genera and 69 families were recorded from the vegetation formations existing in the study area. The most species rich families are Asteraceae, Poaceae, Ericaceae and Orchidaceae, followed by the ferns families Grammitidaceae and Lycopodiacae. The most diverse genera are the ferns and fern ally Elaphoglossum, Huperzia and Hymenophyllum. The analysis of phytogeographical composition of páramo flora at genus level showed that 52.8% of the genera are Tropical. The Temperate component is represented by 33.3% of the genera and the Cosmopolitan component by 13.9%. The Neotropical montane element (38.9%) is high in Guaramacal páramo, the Páramo endemic element (1.9%) and the Andean alpine element (0.9% and represented by only one genus (Lachemilla)) are low compared to other páramo areas. The vascular flora of Páramo de Guaramacal is largely composed of (1) a group of Neotropical widespread species (31%), (2) a group of Andean distributed species (49%), part of them confined to the northern Andes and part widespread in the Andes from Colombia to Bolivia, and (3) a group of Venezuelan endemics (20%). From an eight páramo flora comparative dataset, the closest relationships among páramos is observed between the generic páramo floras of the Colombian Cordillera Oriental of Sumapáz and Sierra Nevada del Cocuy, which are both closely related to that of the Sierra Nevada de Mérida in Venezuela. The generic páramo flora of Ramal de Guaramacal shows the closest relationship to southern Ecuador páramo flora of Podocarpus National Park. According to Detrended Correspondance Analysis and Principal Component Analysis ordination results, most of the variations in páramo floras may represent a response to differences in ambient humidity. Chapter 6 presents the analysis of functional diversity of mountain forests of Ramal de Guaramacal as a function of altitude. Decreasing functional diversity is generally seen as indication of ecosystem degradation. This study aimed to examine if functional diversity changed with altitude in undisturbed Andean forests as reference information for studies of degraded Andean systems. We studied the vascular plant composition of 44 small plots located between 1330 m and 3060 m in a well-protected forest reserve. We linked each species to their functional traits related to energy balance and fragmentation, by means of literature and herbarium studies. Detrended correspondence analysis was used to detect the principal variation in the trait information. Using fourthcorner analysis, we randomized the species assemblages in our relevées using two permutation models, to test if trait composition changed with elevation. Functional trait diversity was calculated on the basis of species and individuals in the relevées, using Shannon, Simpson (1-D) and Fisher's alpha indices. Applying the same permutations models as in the fourthcorner analysis, we tested the relationship of functional diversity with elevation. Results show that forests in the Ramal de Guaramacal area became more diverse in the energy balance related traits at higher elevations, pointing at more prominent levels of overdispersion higher up the slopes. Leaf size contributed substantially to the altitudinal variation in these traits. 241 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes The diversity in fragmentation related traits showed an opposite altitudinal pattern. Subalpine rain forests (SARF) diverged from the altitudinal trends in fragmentation related traits, probably as a consequence of edge effects in the SARF-páramo mosaic, created by wind. We conclude that functional diversity of undisturbed Andean forests in the Guaramacal area changed with altitude. Global temperature rises might thus affect the functionality of Andean forests, but not necessarily in a harmful way. 242 Samenvatting _______________________________________________________ SAMENVATTING Ramal de Guaramacal is een ‘outlier’ en lage tot ca. 3130 m hoge bergrug aan het noordoostelijke einde van de Venezolaanse Andes. In Hoofdstuk 2 werd de samenstelling van het montane bos van Ramal de Guaramacal aan beide zijden van de bergrug bestudeerd langs de hoogtegradiënt en met verschillende hellingexposities. 35 0.1 ha plots met variabele hoogte intervals van 30 tot 150 m tussen 1350 en 2890 m en 9 plots variabel van afmeting (50 m2 tot 400 m2) werden bemonsterd in hoogandiene dwergbossen tussen 2850 en 3050 m. In totaal werden 388 morfospecies met dbh≥ 2.5 cm gevonden, die betrekking hadden op 189 genera en 78 vaatplanten families uit een totaal van 44 bosopname oppervlakken. De TWINSPAN phytosociologische classificatie gebaseerd op floristische samenstelling en relatieve abundantie van soorten leidde tot zeven bosgezelschappen op associatieniveau gegroupeerd in drie verbonden en een ordegroep van montane bossen. Drie subandiene (LMRF) en vier Andiene – hoogandiene (UMRF-SARF) bosgezelschappen werden onderscheiden en beschreven volgens de Zürich-Montpellier methode. (De acronymen SARF, UMRF en LMRF staan voor respectievelijk Subalpine Rain Forest, Upper Montane Rain Forest en Lower Montane Rain Forest). Het verbond Geonomo undatae-Posoquierion coriaceae bevat twee subandiene bosgezelschappen (Simiro erythroxylonis-Quararibietum magnifoliae en Conchocarpo larensis-Coussareetum moritzianae), het verbond Farameo killipii-Prunion moritzianae) bevat een subandiene bosgemeenschap (Croizatio brevipetiolatae-Wettinion praemorsae) en een andien bosgezelschap (Schefflero ferrugineae-Cybianthetum laurifolii) en het verbond Ruilopezio paltonoides-Cybianthion marginati) omvat een andien bosgezelschap (Geissantho andini-Miconietum jahnii) en twee hoogandiene bosgezelschappen (Gaultherio anastomosantis-Hesperomeletum obtusifoliae en Libanothamnetum griffinii). Hoogtezonering, floristische diversiteit van de bossen, samenstelling en bosstructuur wordt besproken tussen de tegenoverstaande hellingen en langs de hoogtegradiënt, en waar mogelijk, vegeleken met ander montane bossen. In LMRF zijn de Rubiaceae, Lauraceae en Melastomataceae de meest soortenrijke houtige families. In het UMRF is de Lauraceae familie nog steeds de meest diverse, gevolgd door Melastomataceae en Myrtaceae, terwijk in het SARF de Asteraceae en Ericaceae de meest soortenrijke families zijn. De structuur van de bossen van Ramal de Guaramacal wordt naar grotere hoogten steeds meer gecomprimeerd. LMRF zijn dichte bossen en van en met kronendak tot 25 m, terwijl UMRF kronendaken tot 18 m reiken en die van SARF slechts 6-8 (10) m hoog.De ‘basal area’ was licht verhoogd op de Noordhelling en vertoont verschillende patronen in relatie met de hoogte tussen beide hellingen. IN LMRF is de hogere diversiteit en dichtheid van palmen, lianen en klimmers duidelijk zichtbaar, maar de lianensoortenrijkdom is ook belangrijk in het SARF. 243 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes De altitudinale zonering van de bossen is variabel tussen Noord- en Zuidhellingen van de Guaramacal bergrug met de UMRF zone op de winderige zuidkant wat lager voorkomend dan op de andere drogere noordhelling. Er is een altitudinale lage bovenste bosgrens (Upper Forest Line of UFL), die waarschijnlijk veroorzaakt wordt door het ‘top effect’. In Hoofdstuk 3 werden de zonale páramo vegetatie gezelschappen op de toppen van Ramal de Guaramacal bestudeerd met als doel een syntaxonomisch overzicht of classificatie gebaseerd op de fysiognomie, floristische samenstelling, ecologische relaties en ruimtelijke verdeling van de verschillende vegetatiegezelschappen. In totaal werden 91 vaatplantsoorten, 33 soorten bryofieten en 11 lichenensoorten gedocumenteerd van 50 10 mlijnintercepttransecten van de zonale páramovegetatie elk met een 10 m hoogte interval tussen 2800 en 3100 m. De interpretatie van de TWINSPAN clustering leidde tot het vaststellen van vijf vegetatiegezelschappen op associatieniveau behorend tot twee verbonden en een orde. Drie associaties van de lage subpáramo of struikpáramo en twee van de hoge subpáramo of horstgraspáramo gedomineerd door rozetten en horstgrassen werden onderscheiden. Het verbond Hyperico paramitanum – Hesperomelion obtusifoliae omvat de struikpáramo associaties: Ruilopezio paltonioides-Neurolepidetum conglometae en Disterigmo acuminatumArcytophylletum nitidi voorkomend op wind-beschutte hellingen, randen van dwergbossen en langs beekjes. Het verbond Hyperico cardonae-Xyridion acutifoliae omvat de wijd verbreide struikpáramo associatie Cortaderio hapalotriche- Hypericetum juniperinum, alsmede twee open graspearamo associaties: Puyo arisitguietae- Ruilopezietum lopez-palacii en Rhynchosperoa gollmeri-Ruilopezietum jabonensis van de wind geëxponeerde hellingen. Asteraceae en Ericaceae zijn de meest soortenrijke families gevold door de Poaceae en Cyperaceae. De meest diverse genera zijn Ruilopezia (Asteraceae), Rhynchospora (Cyperaceae) en Hypericum (Clusiaceae). De diversiteit van soorten en groevormen is groter in de struikgezelschappen en neemt af naar de open horstgras-rozet gemeenschappn. Canonical Correspondence Analysis (CCA) geeft aan dat de floristische samenstelling van de zonale páramo gezelschappen het meest gerelateerd is aan de hellinghoek en hoogte (boven zeeniveau) dan naar andere variabelen zoals pH, bodemdiepte en humusdikte. In Hoofdstuk 4 werd de azonale páramo van de bergrug van Ramal de Guaramacal bestudeerd met behulp van observaties, plantencollecties en vegetatieopnames van in totaal 71 vlakken van 0.25 tot 6 m2. De azonale vegetatie in het studiegebied is vooral gerepresenteerd door habitats met waterstress (venen en watervegetaties). De azonale vegetatie is vooral bestudeerd in twee veengebieden van Páramo El Pumar (Laguna El Pumar en Laguna Seca), als ookin een kleine vlakke vallei bij ‘Las Antenas’ in Páramo de Guaramacal tussen 2900 en 3000 m. In totaal werden 53 morfospecies waarvan 30 soorten vaatplanten, 20 soorten cryptogamen en 3 niet gedetermineerde algen aangetroffen in de azonale vegetatie. De interpretatie van een TWINSPAN clustering, gebaseerd op floristische samenstelling en bedecking door soorten, resulteerde in zes azonale gezelschappen, behorend tot drie verbonden en een orde. Het nieuwe verbond Sphagni recurvi-Paepalanthion pilosi bevat de nieuwe horstgrasassociatie Paepalantho pilosi-Agrostietum basalis 244 Samenvatting _______________________________________________________ en de beide nieuwe Sphagnumveen associaties: Sphagno recurvi-Caricetum bonplandii en Sphagno sparsi-Caricetum bonplandii. Het nieuwe Carici bonplandii-Chusqueion angustifoliae verbond bevat een venige bamboepáramo associatie (‘chuscal’), Carici bonplandii-Chusqueetum angustifoliae, dicht bij de meeroevers met periodieke inundatie en vrijwel exclusief gekarakteriseerd door Chusquea angustifolia. Het verbond Ditricho submersi-Isoétion Cleef 1981 is gerepresenteerd door het ondergedoken gezelschap van Sphagnum cuspidatum en het Isoëtetum karstenii Cleef 1981. Hoofdstuk 5 heeft betrekking op de studie van de fytogeografische patronen en verwantschappen van de vaatplantenflora van de lage en natte bamboepáramo van Ramal de Guaramacal. Hierbij ligt de nadruk op de analyse van de floraconnecties met de naburige droge páramos van de Sierra Nevada de Mérida en andere páramo floras in de noordelijke Andes en Centraal Amerika. In totaal zijn 251 vaatplant taxa behorend tot 150 genera en 69 families gedocumenteerd van de páramovegetatie van het Guaramacal studiegebied. De meest soortenrijke families zijn: Asteraceae, Poaceae, Ericaceae en Orchidaceae gevolgd door de varenfamilies Grammitidaceae en Lycopodiaceae. De meest diverse genera zijn Elaphoglossum en Hymenophyllum van de varens en Huperzia van de wolfsklauwfamilie. De analyse van de fytogeografische samenstelling op genusniveau van de páramoflora toonde aan, dat 52.8% van de genera tot de Tropische component behoren. De Gematigde componentis vertegenwoordigd door 33.3% van de genera en de Kosmopolitische component door 13.9%. Het Neotropisch montane element (38.9%) is hoog in de Guaramacal páramo; het endemische Páramo element (1.9%) en het Andien-alpiene element (0.9%, vertegenwoordigd door slechts een genus, Lachemilla) hebben lage warden vergeleken met andere páramogebieden (behalve Podocarpus Nationaal Park in Zuid Ecuador). De vaatplantflora van Páramo de Guaramacal bestaat grotendeels uit (1) een groep van Neotropisch wijd verbreide soorten (31%), (2) een groep van soorten uit de Andes (49%), waarvan een deel uit de noordelijke Andes en een ander deel van Colombia tot Bolivia en (3) een groep Venezolaanse endemische soorten (20%). Van een comparatieve dataset van acht verschillende páramofloras is de meeste verwantschap gevonden tussen de generische páramofloras van de Colombiaanse Cordillera Oriental met Sumapaz en Sierra Nevada del Cocuy, die beide nauw verwant zijn aan de páramoflora van de Sierra Nevada de Mérida, Venezuela. De genera van de páramoflora van Ramal de Guaramacal vertoont een nauwe verwantschap met die van het Nationale Park Podocarpus in Zuid Ecuador. In overeenstemming met de ordinaties met Detrended Correspondence Analysis (DCA) en Principal Component Analysis (PCA) lijken de varieties in fytogeografische properties in de páramoflora een respons te zijn op verschillen in milieuvochtigheid. Hoofdstuk 6 tenslotte betreft de analyse van de functionele diversiteit van het bergbos van Ramal de Guaramacal in relatie tot en als functie van de hoogte. Afnemende functionele diversiteit wordt in het algemeen gezien als een aanwijzing 245 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes van ecosystem degradatie. Deze studie heeft als doel te onderzoeken of functionele diversiteit verandert met de hoogte in niet verstoorde montane bossen als referentie informatie voor studies van gedegradeerde andiene systemen. We bestudeerden de vaatplanten samenstelling van 44 kleine plots tussen 1330 en 3060 m in een goed beschermd natuur park. Elke soort werd gekoppeld aan hun functionele kenmerken wat betreft energiebalans en mate van fragmentatie met behulp van literatuur en herbarium studies. Detrended Correspondence Analysis (DCA) werd gebruikt om de belangrijkste variatie in de kenmerken set te ontdekken. Met behulp van ‘fourthcorner’ analyse randomiseerden wij de soortenassemblages in onze opnamen met gebruik van twee permutatiemodellen om te testen of de kenmerken samenstelling veranderde met de hoogte. Functionele kenmerken diversiteit werd berekend op basis van de soorten en individuele planten in de opnames met behulp van de indexen van Shannon, Simpson (1-D) en Fisher’s alpha. Door dezelfde permutatiemodellen toe te passen als in de ‘fourthcorner’ analyse testten we de associatie van functionele diversiteit met de hoogte. De resultaten laten zien dat de bossen van de Ramal de Guaramacal meer divers worden op grotere hoogten wat betreft kenmerken verband houdend met de energiebalans die zelfs tot opvallende niveaus van overdispersie leiden op de bovenste hellingen. De bladgrootte droeg substantieel bij tot de altitudinale variatie van deze kenmerken. De kenmerken verband houdend met fragmentatie vertoonden juist een tegenover gesteld beeld. Subalpiene regenbossen (SARF) weken af van de altitudinale trends van de kenmerken gerelateerd aan fragmentatie, vermoedelijk als gevolg van randeffecten in het SARF-páramo mozaiek, veroorzaakt door de wind. We concluderen dat de functionele diversiteit van niet-verstoorde montane bossen in het Guaramacal gebied veranderde met de hoogte. Globale temperatuurverhoging zou dus de functionaliteit van Andes bossen kunnen aantasten, maar niet noodzakelijkerwijs op een schadelijke wijze. 246 Resumen _______________________________________________________ RESUMEN El Ramal de Guaramacal es una pequeña ramificación montañosa con altura máxima de 3130 m, ubicada al extremo nor-oriental de los Andes venezolanos. En el Capítulo 2 se estudiaron las comunidades de bosques montanos del Ramal de Guaramacal, Andes, Venezuela, a lo largo de un gradiente altitudinal y entre diferentes vertientes. Se analizaron treinta y cinco parcelas de 0.1-ha ubicadas, con intervalos variables de 30 m a 150 m, entre 1350 m y 2890 m de altitud, y nueve parcelas de tamaño variable (50 m2 hasta 400 m2) ubicadas entre 2800-3050 m. De las 44 parcelas estudiadas, se registró un total de 388 morfoespecies con DAP ≥2.5 cm correspondientes a 189 géneros y 78 familias de plantas vasculares. La clasificación fitosociológica mediante TWINSPAN basado en la composición florística y abundancia relativa de las especies, reveló siete comunidades de bosque, agrupadas en tres alianzas y un grupo bosques montanos equivalente a orden. Se distinguen y se describen, según la metodología Zürich-Montpellier, tres comunidades de bosque subandino (LMRF), y cuatro comunidades de bosque andino/alto-andino (UMRF-SARF). La allianza Geonomo undatae-Posoquerion coriaceae incluye dos comunidades de bosque subandino (Simiro erythroxylonisQuararibeetum magnificae y Conchocarpo larensis-Coussareetum moritzianae); la alianza Farameo killipii-Prunion moritzianae incluye una comunidad de bosque subandino(Croizatio brevipetiolatae-Wettinietum praemorsae) y una de bosque andino(Schefflero ferrugineae-Cybianthetum laurifolii) y la alianza Ruilopezio paltonioides-Cybianthion marginatii incluye una comunidad de bosque andino (Geissantho andini-Miconietum jahnii) y dos comunidades de bosque altoandino (Gaultherio anastomosantis-Hesperomeletum obtusifoliae y el Libanothamnetum griffinii). Se discuten la zonificación altitudinal, diversidad y composición florística y estructura del bosque con respecto a la altitud y se compara, cuando posible, con otros bosques de montaña. En el bosque subandino, las familias de plantas leñosas más diversas en especies son Rubiaceae, Lauraceae y Melastomataceae. En el bosque andino, Lauraceae es la familia más diversa, seguido de Melatomataceae y Myrtaceae, mientras que en el bosque alto-andino las familias con mayor riqueza de especies son Asteraceae y Ericaceae. La estructura de los bosques montanos del Ramal de Guaramacal se comprime hacia las partes más altas. Los bosques subandinos son densos y de altura media, con un dosel hasta 25 m de alto, mientras que en el bosque andino el dosel puede alcanzar hasta 18 m y en el bosque alto-andino el dosel alcanza solo 6-8 (10) m de alto. El área basal se encontró ligeramente mayor en la vertiente Norte que en la Sur y presenta patrones diferentes respecto a la altitud en cada vertiente. En los bosques subandinos se observa claramente mayor diversidad y densidad de palmas, lianas y trepadoras, pero en el bosque alto-andino la riqueza de especies de lianas es también importante. La zonificación altitudinal del bosque varía entre las vertientes Norte y Sur de Guaramacal, observándose que la zona de bosque andino o montano alto tiende a alcanzar altitudes menores en la vertiente sur más húmeda que en la vertiente Norte más seca. El límite superior del bosque en el Ramal de Guaramacal es bajo, aparentemente causado por el efecto de cumbre. 247 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes En el Capítulo 3 se presenta el estudio de las comunidades de vegetación de paramo zonal existentes en las cimas del Ramal de Guaramacal, con el fin de proporcionar un esquema de clasificación sintaxonómico basado en el análisis de la fisonomía, composición florística, relaciones ecológicas y distribución espacial de las diferentes comunidades vegetales. Mediante el levantamiento de cincuenta líneas de intersección de 10 m de largo, establecidas a cada 10 m de altitud, en la vegetación zonal entre 2800 y 3100 m, se encontraron un total de 91 especies de plantas vasculares, 33 de briofitas y 11 de líquenes. La interpretación de la clasificación con TWINSPAN permitió reconocer cinco comunidades de vegetación zonal al nivel de asociación, agrupadas en dos alianzas y un orden. Tres de las asociaciones son del subpáramo bajo arbustivo y dos del subpáramo alto con pajonal, dominadas por rosetas y hierbas en macollas. La alianza Hyperico paramitanum-Hesperomeletion obtusifoliae agrupa las asociaciones de subpáramo arbustivo: Ruilopezio paltonioides-Neurolepidetum glomeratae and Disterigmo acuminatum-Arcytophylletum nitidum, presentes en vertientes protegidas del viento, a los bordes de bosques enanos o a lo largo de cursos de agua. La alianza Hyperico cardonae-Xyridion acutifoliae agrupa una asociación de subpáramo arbustivo, la asociación Cortaderio hapalotrichae-Hypericetum juniperinum, ampliamente distribuida en el área, y dos asociaciones de subpáramo alto con pajonal: Puyo aristeguietae-Ruilopezietum lopez-palacii, y Rhynchosporo gollmeri–Ruilopezietum jabonensis, presentes sobre vertientes expuestas. Las familias Asteraceae y Ericaceae son las más ricas en especies seguido de Poaceae y Cyperaceae. Los géneros más diversos son Ruilopezia (Asteraceae), Rhynchospora (Cyperaceae) e Hypericum (Clusiaceae). Tanto la diversidad de especies como de formas de crecimiento es mayor en las comunidades arbustivas y disminuye en los pajonales-acaulirrosuletales. El análisis de correspondencia canónica (CCA) indica que la composición florística de las comunidades de vegetación zonal del Páramo de Guaramacal se relaciona principalmente con la pendiente y altitud, más que con otras variables observadas como profundidad y pH de los suelos. La composición genérica y de especies es propia de un páramo muy húmedo de bambúes. En el Capítulo 4, se estudió la vegetación de páramo azonal presente en la cima del Ramal de Guaramacal, mediante observaciones, colecciones botánicas y muestreos de un total de 71 pequeñas parcelas de tamaño entre 0.25 a 6 m2. La vegetación azonal está representada en el área de estudio por habitats donde existe un estrés por exceso de agua (turberas y vegetación acuática). Se analizó las vegetaciones azonales presente en dos áreas de turberas del Páramo El Pumar (Laguna El Pumar y Laguna Seca) y en un pequeño valle con acumulación de agua cerca del área de ‘Las Antenas’ del Páramo de Guaramacal, ubicadas entre aprox. 2900 y 3000 m de altitud. Se documentó un total de 53 morfoespecies correspondientes a 30 especies de plantas vasculares, 20 de briofitas y líquenes y 3 especies indeterminadas de algas presentes en la vegetación azonal. La interpretación de la clasificación de TWINSPAN, basada en afinidades de composición florística y cobertura de especies, permitió reconocer seis comunidades de vegetación azonal agrupadas en tres alianzas y un orden. La alianza nueva Sphagno recurvi-Paepalanthion pilosi agrupa la asociación nueva de pajonal de páramo Paepalantho pilosi-Agrostietum basalis y las dos asociaciones nuevas de turberas de Sphagnum: Sphagno recurvi248 Resumen _______________________________________________________ Caricetum bonplandii y Sphagno sparsi-Caricetum bonplandii. La alianza nueva Carici bonplandii-Chusqueion angustifolia contiene una asociación de páramo de bambues (‘chuscal’), Carici bonplandii-Chusqueetum angustifoliae, que crece cerca de las orillas de las lagunas, en áreas inundadas periódicamente, caracterizada casi exclusivamente por la presencia de Chusquea angustifolia. La alianza Districho submersi-Isoëtion Cleef 1981 está representada en el área de estudio por la comunidad acuática sumergida de Sphagnum cuspidatum y la asociación Isoëtetum karstenii Cleef 1981. El Capítulo 5 presenta el estudio de los patrones fitogeográficos y afinidades de la flora vascular de páramo húmedo y de baja altitud del Ramal de Guaramacal, con énfasis en el análisis de sus conexiones florísticas con páramos secos cercanos de la Sierra Nevada de Mérida y otras floras de páramo de los Andes del Norte y Centroamérica. Un total de 251 taxa de plantas vasculares pertenecientes a 150 géneros y 69 familias se han registrado en el área de estudio. Las familias más ricas en especies son Asteraceae, Poaceae, Ericaceae y Orchidaceae, seguido por las familias de helechos Grammitidaceae y Lycopodiacae. Los géneros más diversos son Elaphoglossum, Huperzia, Hymenophyllum y Chusquea. El análisis de composición fitogeográfica a nivel de género de la flora de páramo mostró que 52,8% de los géneros son Tropical. El componente Templado está representado por 33,3% de los géneros y el componente Cosmopolita está representado por 13,9%. El elemento Montano Neotropical (38.9%) es alto en el páramo de Guaramacal, los elementos Endémico de Páramo (1,9%) y Alpino Andino (0,9%), representado por sólo un género (Lachemilla), son bajos comparado con otros páramos. La flora vascular de Páramo de Guaramacal está integrada en gran medida por (1) un grupo de especies de distribución amplia Neotropical (31%), (2) un grupo de especies de distribución Andina (49%), parte de ellos se limita a los Andes del Norte y parte generalizada en los Andes desde Colombia hasta Bolivia y (3) un grupo de especies endémicas de Venezuela (20%). De la comparación del conjunto de datos de flora de ocho páramos, las relaciones más cercanas entre los páramos se observa entre las floras genéricas de los páramos de la Cordillera Oriental colombiana, Sumapáz y Sierra Nevada del Cocuy, los cuales están estrechamente relacionadas con Sierra Nevada de Mérida en Venezuela. La flora genérica de páramo del Ramal de Guaramacal muestra la relación más cercana con la flora de páramo de la Reserva de Biósfera Podocarpus al sur del Ecuador. Según los resultados de ordenación DCA y PCA, la mayoría de las variaciones en las floras de los páramos analizados pueden representar una respuesta a diferencias de humedad ambiental. El Capítulo 6 presenta el análisis de la diversidad funcional de los bosques montanos del Ramal de Guaramacal en relación y en función de la altitud. La disminución de la diversidad funcional es generalmente vista como una indicación de degradación del ecosistema. Este estudio pretende examinar si la diversidad funcional cambió con la altitud en bosques andinos sin intervención antropica, como información de referencia para estudios de sistemas Andinos degradados. Se estudió la composición de plantas vasculares de 44 parcelas pequeñas situadas entre 1330 m y 3060 m en una reserva de bosques bien protegidos. Se vinculó cada especie a sus rasgos funcionales relacionados con balance energético y fragmentación, por medio de estudios de literatura y de material de herbario. 249 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Análisis de correspondencia linearizadas (DCA) fue usado para detectar la variación principal en la información de los rasgos. Se utilizó análisis de fourthcorner, para aleatorizar los ensambles de especies en los relevés usando dos modelos de permutación, para probar si la composición de rasgos cambió con la elevación. La diversidad de rasgos funcionales se calculó sobre la base de las especies y los individuos en los relevés, mediante los índices de Shannon, Simpson (1-D) y alfa de Fisher. Al aplicar los mismos modelos de permutaciones, como en el análisis de fourthcorner, se probó la asociación de la diversidad funcional con elevación. Los resultados muestran que los bosques en la zona del Ramal de Guaramacal se vuelven más diversos hacia las elevaciones más altas, en aquellos rasgos funcionales relacionados con balance energético, apuntando a los niveles más prominentes de sobredispersión en las partes más altas de las laderas. El tamaño de las hojas contribuye sustancialmente a la variación altitudinal en estos rasgos. La diversidad en los rasgos funcionales relacionados con la fragmentación mostró un patrón altitudinal opuesto. Los bosques húmedos altoandinos o bosques húmedos subalpinos (SARF) difieren en las tendencias altitudinales de los rasgos relacionados con fragmentación, probablemente como consecuencia de los efectos de borde creado por el viento en el mosaico de bosques enanos de SARF-páramo. Se concluye que la diversidad funcional de los bosques andinos inalterados en el área de Guaramacal cambia con la altitud. Por lo tanto, los aumentos de temperatura global podrían afectar a la funcionalidad de los bosques andinos, pero no necesariamente de una manera perjudicial. 250 Acknowledgements _______________________________________________________ ACKNOWLEDGEMENTS I wish to express my deeply appreciation to all those people that have supported me during the time I have been doing research in Guaramacal. However, there are so many people that have helped me in many different ways and occasions that I am afraid I would fail to mention every one. So, here I will refer mainly to those people who have been most helpful during the last four years that I have been working for completing this PhD thesis. For all those people I omitted their names, receive my apologies for that but also my sincere gratitude for their support. First, I am deeply grateful to my promotor Prof. Dr. Antoine Cleef and copromotor Dr. Joost Duivenvoorden for their friendship and support, without them, it had not been possible for me to complete this thesis. Antoine has been a great tutor in both professional and personal aspects, from the very moment he accepted to be my promotor, despite of the distance, he has been always available for communication, attending my questions, reviewing my manuscripts, guiding and encouraging me with enthusiasm and providing me great and valuable ideas. I appreciate also his support during my stays in Amsterdam, where he not only taught me a lot, working with my data, providing me literature and discussing ideas, but also he has been so thoughtful helping me and my family finding the best place to live and making us to feel at home. In summary, it has been a tremendous experience and a great honor working with Antoine. Joost has been also very supportive and inspiring. He taught me with a great patience and brilliant skills how to work with some technology tools for analysis ecological data to a high level of abstraction and to interpret results to obtain meaningful information. I feel privileged to share his innovative ideas and co-authoring a manuscript with him. I thank to my other promotor Prof. Dr. Henry Hooghiemstra for his support and for reviewing and providing comments that help to improve some chapters of this thesis. I thank also to the IBED secretaries staff and colleagues for their opportune collaboration when required. Special thanks to Jody Dos Santos, Ada Hoogendorp and Mary Parra. Marcela Moscol gave me a friendly support during my stays in Amsterdam providing me always with useful tips. My family and I enjoyed and appreciate very much the hospitality and invitations we received during our stays in The Netherlands. Specially, the exquisite dinners we shared with Antoine and friends at the Indonesian restaurant. Visiting Harlem and sharing with Joost and his family in a lovely evening at their home. Also, the kind and delightful evenings we pass with Paul Maas and Hiltje Maas van de Kramer at their home in Bunnik. We thank to the Gijs Haverkate family for lending us their house and making us to feel it as our home. I am indebted to the UNELLEZ (grants SEI-23195107, SEI-23105102); CONICIT (grant S1-97001662) and FONACIT (grant PEM-2001002165) which have supported fieldwork and equipment for this study. UNELLEZ also granted me permission and financial support for all my visits to Amsterdam to work on my PhD program. Alberta Mennega Fund (Utrecht University) is acknowledged for the financial contribution to my stay at IBED, in my visit to Amsterdam in 2007. 251 _______________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes INPARQUES and MARN are thanked for the corresponding permits, as well as the Superintendente of Guaramacal National Park TSU Amilcar Bencomo for his constant collaboration. I also thank to all the staff of park rangers of Guaramacal National Park, for being so eager to help when required, among them Ramon Aldana, Yelitza Briceño, Yilson Camacho, Jorge Rivero, Amabilis Teran. I specially thank to the park rangers Ramón Caracas and Luis Zambrano† who collaborated in most of the field trips. Many helpers assisted in fieldwork including students, park rangers, villagers, colleagues, brothers and friends. Special thanks to Wilfredo Albarran, Karina Bastidas, Oscar León, Luis A. Linarez, Pedro Tovar and Máximo Valladares for their solidarity and recurrent field assistant during the last four years. I am deeply thankful to the Herbario PORT staffs which have been very supportive during these past four years. I am grateful to Angelina Licata, who made all profile vegetation illustrations. Angelina has been as an older sister to me, always very supportive. She also helped me with species identifications and herbarium specimens’ curator. Rosalinda Parra and Elida Mendez were very helpful with the specimens processing and management. During these past four years, Mannelly Ramírez, José Farreras and Luis Miguel Leonido, have been very collaborative when required, with my teaching and other related activities at UNELLEZ. I appreciate the work done by Basil Stergios (UNELLEZ), Laurence Dorr (US) and Miguel Niño (UNELLEZ), who have also collected plants in Guaramacal and surrounded mountains, contributing with a valuable herbarium reference collection for my specimen identifications. G. Davidse (MO) and S. Laegaard (AAU) were helpful with the identification of some selected grasses. I thank also D. Griffin III (FLAS), Guido van Rennen (Amsterdam) and Juan Carlos Benavides (Colombia) for identification of bryophytes and H.J.M. Sipman (B) for lichens identification. Ross D. Morrison (University of Leicester, UK) kindly corrected and improved the English text of chapters 2-4. Beryl Simpson (Austin) provided important comments and language editing on the earlier version of the manuscript of chapter 5. Finally, but the most important, I thank to my family for their support. My husband Gerardo Aymard was the first person to push me to pursuit this PhD and hold me all the time during this last years. Gerardo has been very collaborative with literature finding and discussing ideas to contribute in one of my thesis’s chapters, while being also very supportive and affective at home. My daughter Marianne has been so understanding with her mom’s work, giving me no more than happiness, pride and satisfaction of having a great behaved, responsible and excellent scholar teenager, while I have been so busy working on my PhD. My mother, brothers and sisters have always been very supportive. I specially thank to my niece Karim Rodriguez Cuello for designing the cover of this thesis. Working in Guaramacal have been a passion to me, still there are many things I wish to study there. I thank God for giving me life and the chance to be in this marvelous and amazing natural place, which I wish to be conserved forever. To all those people that have helped me in any way to work in Guaramacal, thank you very much. 252 __________________________________________________________________ Curriculum Vitae CURRICULUM VITAE Nidia Lourdes Cuello Alvarado was born on 25 of October of 1964 in Barquisimeto, Venezuela. She received her BSc degree in Natural Resource Engineering at the Universidad Nacional Experimental de los Llanos Ezequiel Zamora, Venezuela, in February 12, 1988, obtaining first place of a promotion of twelve. Her research project to obtain BSc was entitled “Caracterizacion florístico-estructural de la vegetación de un sector de la cuenca media del Río Portuguesa, Edo. Portuguesa, Venezuela”. After that, during two years, she was based at the Herbario Universitario PORT of UNELLEZ participating as assistant to a project for inventory of natural resources in the Venezuelan Guayana region (Proyecto Inventario de los Recursos Naturales de la Región Guayana P.I.R.N.R.G) conducted by Corporación Venezolana de Guayana (C.V.G.TECMIN, C.A.) in the job of collecting, processing and identification of botanical specimens from the Venezuelan Guayana. During that time she had the opportunity to stay six months at The Missouri Botanical Garden receiving training and working on identification of botanical specimens from the Venezuelan Guayana for the mentioned project. Since then, she got involved as contributor for preparing floristic manuscript of some legume and Clusiaceae genera for the Flora of Venezuelan Guayana project. In 1990, she got a position as Instructor professor in Botany at Universidad Nacional Experimental de los Llanos Ezequiel Zamora, where she currently works as Titular Professor. She obtained her MSc in Biology at University of Missouri - St. Louis in May 18, 1997. Her research title for her MSc Thesis was: Floristic Diversity and Structure of the montane cloud forests of Cruz Carrillo National Park in the Venezuelan Andes. She also obtained a Graduate Certificate in Tropical Biology and Conservation at the University of Missouri-St. Louis in January 12, 1997. Since 1997 to present day, she has been in charge of the direction of Herbarium PORT of the UNELLEZ, where she has coordinated grants from FONACIT, Conservation International and The A.W. Mellon Foundation for herbarium support on collection data basing. At UNELLEZ, she has also coordinated and teaching the course of Botany for the Academic Program of Natural Resources Engineering. During her professional life she has attended and participated in different symposia and meetings, presenting her works in ten international events and in sixteen national events in Venezuela. She has been accredited by Venezuelan system of scientific researcher’s promotion (Programa de Promocion al Investigador -PPI) since 1997. She has also been awarded with grants from Alberta Mennega Stichting, Elizabeth Bascom (Missouri Botancial Garden), Smithsonian Institution, CONICIT, FONACIT. UNELLEZ, Fundación Polar, International Centre for Tropical Ecology (ICTE) of the University of Missouri-St.Louis. Since 1995 she has been doing research in Ramal de Guaramacal in the Venezuelan Andes, initially with support from the related project Flora of Guaramacal, jointly conducted by Basil Stergios (UNELLEZ) and Laurence Dorr (NMNH of Smithsonian Institution), for her MSc degree Thesis. Later, she developed her own research project with grants from UNELLEZ and FONACIT for geobotanical exploration and floristic surveys of the vegetation types occurring in Guaramacal area. Results of this work have been used in part for the completion of her PhD thesis. 253 __________________________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Publications Duivenvoorden, J. F. and Cuello, N. (submitted). Functional diversity changes with altitude in Andean forests in Venezuela. Global Ecology and Biogeography. Cuello, N., Cleef, A.M. & Aymard G. (submitted). Phytogeography of the vascular páramo flora of Ramal de Guaramacal, Andes, Venezuela. Anales del Jardín Botánico de Madrid. Cuello, N. & Cleef, A. M. 2009. The páramo vegetation of Ramal de Guaramacal, Trujillo state, Venezuela. 2. Azonal vegetation. – Phytocoenologia 39 (4): 389409. Cuello, N. & Cleef, A. M. 2009. The páramo vegetation of Ramal de Guaramacal, Trujillo state, Venezuela. 1. Zonal vegetation. Phytocoenologia 39 (3):295-329. Cuello, N. & Cleef, A. M. 2009. The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes. Phytocoenologia 39(1):109-156. Cuello, N. & G. Aymard. 2008. Ilex guaramacalensis, a new species (Aquifoliaceae) from the Ramal de Guaramacal in the Venezuelan Andes. Novon 18: 319-324. Solórzano, N., F. Romero y N. Cuello. 2006 (2003). Potencial forrajero de los bosques de Mesa de Cavacas, estado Portuguesa, Venezuela. Rev. Unellez Ciencia y Tecnologia 21:1-17. Cuello, N. 2004. A New Vining Species of Swartzia (Fabaceae) from Venezuelan Amazon. Novon 14:420-423. Cuello, N. 2004. Los bosques del Parque Nacional Guaramacal, estado Trujillo, Venezuela: Testigos del desarrollo sostenible dentro de la región Andina y Llanera. Memorias del IV Simposio Internacional de Desarrollo Sustentable en los Andes, AMA-Mérida 2001. La Estrategia Andina para el Siglo XXI (CD-Rom). sesión IV. Taller sobre selvas y bosques nublados. Aymard, G. & N. Cuello. 2004. Two new species of Aegiphila (Verbenaceae) from Venezuela and Brazil. Novon 14: 20-24. Cuello, N. 2003. A New Species of Tovomita (Clusiaceae) from the Venezuelan and Peruvian Amazon Region. Novon 13:34-36. Cuello, N. 2002. Altitudinal Changes in Forest Diversity and Composition in the Ramal de Guaramacal in the Venezuelan Andes. Ecotropicos 15(2):160-176. Cuello, N. 2001. Swartzia humboldtiana (Fabaceae), una nueva especie del Rio Casiquiare, estado Amazonas, Venezuela. BioLlania, Ed. Esp. N° 7. Dorr, L., B. Stergios, A. Smith & N. Cuello. 2000.[2001] Catalogue of the Vascular Plants of Guaramacal National Park, Portuguesa and Trujillo States, Venezuela. Contributions from the United States National Herbarium 40:1-155. Washington, DC. 155 pp. Cuello, N. 1998 [2000]. Caracterización de los bosques montanos del Parque Nacional Cruz Carrillo en los Andes de Venezuela. Memorias del IV Congreso 254 __________________________________________________________________ Publications Latinoamericano de Ecología: Ecología y Desarrollo Sostenible: Reto de America Latina para el Tercer Milenio. Arequipa, Perú. Pp.127-130. Cuello, N. (ed.) 1999 [2000]. Parque Nacional Guaramacal. Unellez - Fundación Polar, Caracas, Venezuela. 245 pp., figs., fotos a color. ISBN: 980-248-099-I, 980379-003-X. Cuello, N. y F. Romero. 1999 [2000]. Introducción. pp. 1-6. En: Parque Nacional Guaramacal, N. Cuello (ed.). Unellez - Fundación Polar, Caracas, Venezuela. Cuello, N. y O. Barbera. 1999 [2000]. Aspectos Climáticos del Parque Nacional Guaramacal. pp. 47-49. En: Parque Nacional Guaramacal, N. Cuello (ed.). Unellez - Fundación Polar, Caracas, Venezuela. Cuello, N. 1999 [2000]. Observaciones sobre la vegetación del Parque Nacional Guaramacal. pp. 105-117. En: Parque Nacional Guaramacal, N. Cuello (ed.). Unellez - Fundación Polar, Caracas, Venezuela. Cuello, N. 1999 [2000]. La Unellez en el Parque Nacional Guaramacal. pp. 183191. En: Parque Nacional Guaramacal, N. Cuello (ed.). Unellez - Fundación Polar, Caracas, Venezuela. (recopilación). Aymard, G., L. Dorr & N. Cuello. 1999. Rugea tayloriae (Rubiaceae) a new species from montane forests of Guaramacal, Trujillo, Venezuela. Novon 9:315317. Cuello, N. 1999. Two new distinctively large-leaved species of Tovomita (Clusiaceae) from the Venezuelan and Peruvian amazonian region. Novon 9:150152.. Aymard, G., N. Cuello, & R. Schargel. 1998. Floristic composition, structure, and diversity in moist forest communities along the Casiquiare Channel, amazonas state, Venezuela. Pp. 499-510. In: F. Dallmeier & J. Comisky (eds.), Proceedings of the Smithsonian Institution/Man and the Biosphere. Symposium on Measuring and Monitoring Forest Biological Diversity. Whashington, DC. Pennington, R. B., G. Aymard & N. Cuello. 1997. A new species of Andira (Leguminosae, Papilionideae) from the Venezuelan Guayana. Novon 7:72-74. Cuello, N. 1997. Floristic Diversity and Structure of the montane cloud forests of Cruz Carrillo National Park in the Venezuelan Andes. Master Thesis, University of Missouri-St. Louis, U.S.A. Aymard, G. & N. Cuello. 1995. Two new species of the genus Sterigamapetalum (Rhyzophoraceae) from Venezuela and Brazil. Novon 5:223-226. Cuello, N. 1994. Lectotipificación y nuevo estatus de Desmodium orinocense (DC.) Cuello (Leg.- Pap.). Novon 4(2):98-99. Aymard, G. & N. Cuello. 1994. Meliosma gentryi Aymard & Cuello (Sabiaceae) una nueva especie para la flora de la Guayana venezolana, BioLlania 10:30-35. 255 __________________________________________________________________ Flora, vegetation and ecology in the Venezuelan Andes Aymard, G. y N, Cuello. 1991. Catalogo y adiciones a las especies Neotropicales del género Canavalia. (Leg.-Pap.). En: Memorias del Semimario-Taller de Trabajo Internacional sobre Canavalia:1-62. Ceniap-Fonaiap-UCV. Maracay. Venezuela. Aymard, G. y N. Cuello. 1991. Dos nuevas especies neotropicales del género Canavalia (Leguminosae - Papilonaceae - Phaseoleae - Diocleinae). BioLlania 8:87-92. Cuello, N. y G. Aymard. 1991. Contribuciones a la Flora del estado Portuguesa, Venezuela: El género Desmodium (Leguminosae-Papilionoideae). Biollania 8:4759. Cuello, N. y G. Aymard, 1991. Rinoreocarpus ulei (Melchior) Ducke. (Violaceae), un genero y especie nuevo para la Flora de Venezuela. BioLlania 8:111-115. Cuello, N., T. Killeen y C. Antezana. 1991. "Linea de Intercepción" (Lineintercept), una metodología apropiada para el estudio de sabanas tropicales. In: Miranda L. C. and E. Castellano (eds.) Memoria del I Curso Internacional sobre vegetación y ecología tropical con énfasis en los métodos de estudio de la vegetación. TCA. Bolivia. 15 p. Aymard, G. y N. Cuello. 1990. Revisión del género Canavalia (Leg.-Pap.) para Venezuela. Recursos Tropicales para la alimentación animal. Vol. 1(4). Facultad de Agronomía. UCV, Venezuela. 40 p. Aymard, G., N. Cuello & A. Fernández. 1990. Observaciones sobre el hallazgo de Cinchona amazonica Standl. (Rubiaceae) en la Guayana venezolana. BioLlania 7:125-130. Cuello, N., G. Aymard & B. Stergios. 1988. Observaciones sobre la vegetación de un sector de la cuenca media del Río Portuguesa. Edo. Portuguesa. Venezuela. BioLlania 6:163-193. Aditionally, 32 contributions to floras and catalogues, 1 book review, 20 technical reports. 256