Subido por Luciano Palacios

pdf-ejercicios-mecnica-de-fluidos-unipap compress

Anuncio
EJERCICIOS DE MECÁNICA DE FLUIDOS
UNIDAD I. PROF. DOMINGO OSORIO
1.- Se mide la distribución de velocidad en un tubo de 2 cm de diámetro y resulta ser de
2
u(r) 10(1 r 2 ) m/s, donde ro es el radio del tubo. Calcule el esfuerzo cortante en la pared si el
ro
líquido que fluye es agua a 25°C.
=
−
2.- La distribución de velocidad para dos cilindros concéntricos giratorios de 0,2 m de largo está
0,4 1000r
dada por u(r)
m/s. si los de los cilindros son 2 cm y 4 cm respectivamente, calcule
r
el esfuerzo cortante en la pared si el líquido que fluye es agua a 75°F.
=
−
3.- Una banda de 60 cm de ancho se mueve como se muestra en la figura. Calcule la potencia
requerida en caballos de fuerza (hp) suponiendo un perfil de velocidad lineal en el agua a 10°C.
4m
10 m/s
2 mm
4.- La viscosidad del agua a 20°C es de 0,001 N.s/m 2, y a 80°C es de 0,000357 N.s/m2. Utilizando
la ecuación de Andrade μ Ae B/T , estime la viscosidad del agua a 40°C. Determine el porcentaje
de error.
=
5.- Un eje de diámetro Di se aloja en el interior de una carcasa de diámetro interior De y
longitud L. Dicha carcasa está llena de un aceite (fluido Newtoniano) cuya viscosidad es μ y la
diferencia De – Di es mucho menor que L (De – Di << L).
Determínese:
a) La fu
fuer
erza
za de resi
resist
sten
enci
ciaa qu
quee el ac
acei
eite
te prod
produc
ucee sobr
sobree el eje
eje si éste
éste se desp
despla
laza
za
longitudinalmente a una velocidad v. Aplicación numérica: De = 80 mm Di = 81 mm, L = 300 mm, F
= 1690 N.
b) El par resistente y la potencia consumida si, manteniendo el eje fijo en la dirección axial, se le
hace girar con velocidad ω, ω = 150 rpm.
6.- Un cilindro de radio 12 cm gira concéntricamente en el interior
interior de un cilindro fijo de
cm de radio. Ambos cilindros tienen una longitud de 30 cm.
12,6
la viscosidad del líquido que llena el espacio entre los cilindros si se necesita un par
de 9 cm .N para mantener una velocidad angular de 60 rpm.
Determínese
7.- Una placa grande se mueve con una velocidad Vo por encima de una placa estacionaria sobre
una capa de aceite. Si el perfil de velocidades es parabólico y el aceite en contacto con las placas
tiene la misma velocidad que éstas, ¿cuál es el esfuerzo cortante causado por el aceite sobre la
placa en movimiento? Si se supone un perfil lineal, entonces ¿cuál es el esfuerzo cortante sobre
la placa superior?
8.- Calcule el torque requerido para hacer girar el cono que se muestra en la figura a 2000 rpm si
el espacio está lleno de aceite SAE-30 a 40°C. Suponga un perfil de velocidad lineal.
ω
8 cm
°
0
9
0,2 mm
9.- Un eje vertical rota dentro de un rodamiento. Se supone que el eje es concéntrico con el
cojinete del rodamiento. Una película de aceite de espesor e y viscosidad μ el eje del cojinete.
Si el eje rota con una velocidad de ω radianes por segundo y tiene un diámetro D, ¿cuál es el
torque friccional que debe superarse a esta velocidad? No tenga en cuenta los efectos
centrífugos en los extremos del rodamiento pero suponga un perfil de velocidades lineal. ¿Cuál es
la potencia disipada?
Descargar