Grupo lineal de matrices 𝐺𝐿2 (𝔽3 ) 𝑎 𝐺𝐿2 (𝔽3 ) = {𝐴 = [ 𝑐 𝑏 ] ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝔽3 = {0̅, 1̅, 2̅}, 𝑑𝑒𝑡𝐴 = 𝑎𝑑 − 𝑏𝑐 ≠ 0̅} 𝑑 Nota: |𝐺𝐿2 (𝔽3 )| = (32 − 1)(32 − 31 ) = 8 ∙ 6 = 48 Observaciòn, específicamente 0 1 0 𝐺𝐿2 (𝔽3 ) = {[ ],[ 1 0 2 1 0 2 0 ],[ ],[ 0 1 0 2 2 0 1 0 ],[ ],[ 0 1 1 2 1 0 2 0 ],[ ],[ 1 1 1 1 2 0 2 0 ],[ ],[ 2 2 1 2 ⋯ ,[ 1 0 2 0 1 0 2 0 1 1 2 1 1 1 1 2 2 1 2 2 ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],⋯ 0 1 0 1 0 2 0 2 0 1 0 1 0 2 0 2 0 2 0 2 ⋯ ,[ 1 1 1 1 1 2 2 1 2 1 2 1 2 2 2 2 1 2 1 0 ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],⋯ 1 2 1 0 0 1 1 1 1 0 2 0 0 1 1 0 1 1 1 1 ⋯ ,[ 0 1 1 1 1 0 2 0 0 1 1 0 2 1 2 2 1 2 2 2 ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],[ ],⋯ 1 2 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 ⋯ ,[ 0 1 1 1 2 2 2 0 2 0 2 0 1 2 1 0 ],[ ],[ ],[ ],[ ],[ ],[ ],[ ]} 1 2 2 0 2 0 1 1 2 2 1 2 1 0 1 2 2 ],⋯ 2 Grupo especial lineal 𝑆𝐿2 (𝔽3 ) 𝑆𝐿2 (𝔽3 ) = {𝐴 = [ 𝑎 𝑐 𝑏 ] ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝔽3 = {0̅, 1̅, 2̅}, 𝑑𝑒𝑡𝐴 = 1} 𝑑 Observaciòn, específicamente 𝑆𝐿2 (𝔽3 ) 1 0 0 1 0 = {[ ],[ ],[ 0 1 2 0 2 2 2 1 0 1 [ ],[ ],[ 1 0 1 1 2 1 0 1 0 ],[ ],[ 0 2 1 1 0 0 1 1 ],[ ],[ 1 2 2 2 2 2 0 1 ],[ ],[ 1 0 2 0 2 1 1 2 ],[ ],[ 2 2 0 2 1 2 1 2 ],[ ],[ 1 0 2 0 0 2 0 1 ],[ ],[ 2 1 2 1 2 1 1 1 ],[ ],[ 2 1 2 0 2 0 2 0 ],[ ], [ 0 1 0 1 2 2 1 2 ],[ ],[ 1 1 1 2 2 ]} 2 Obsrvaciòn: 𝜑: 𝐺𝐿2 (𝔽3 ) → 𝔽∗3 = {1̅, 2̅} dada por 𝜑(𝐴) = det(𝐴) es un homomorfismo de grupos ya que 𝜑(𝐴𝐵) = det(𝐴𝐵) = det(𝐴) det(𝐵) Además 𝐾𝑒𝑟(𝜑) = {𝐴: det(𝐴) = 1} = 𝑆𝐿2 (𝔽3 ) luego 𝐺𝐿2 (𝔽3 ) ≅ 𝔽∗3 𝑆𝐿2 (𝔽3 ) 1 ], 0