Instructor's M anual to Accompany Statics and Strength of Materials For Architecture and Building Construction Fourth Edition Barry Onouye Pearson/Prentice Hall Upper Saddle River, New Jersey Columbus, Ohio Chapter 2 Problem Solutions 2.3 y 2.5 2.6 F=1000 lb. By similar triangles: 4 3 5 Fx = £ f = £(1000#) = 800# Fy = i F = i(l0 0 0 # ) = 600# 3 sin0 = — 5 and 4 co s0 = — 5 Fx = F co s6 = (l0 0 0 # )(-|) = 800# Fy = F sin 0 = (1000#)(|) = 600# Tx = T sin 10° Ty = T cosl0° T= Ty _ _250N _ 254 N cos 10° 0.985 2.8 6 = tan"1^ ) = 18.43° Px = P(i2fe) = (300#Xa3 1 6 ) = 94-9# Py = P ( ^ ) = (300#X0.949) = 285# Purlin Detail 2.9 Fly = +F, cos30° = 10k(0.866) = 8.66k Flx = +F, sin 30° = 10k(0.50) = 5k F2 = -F 2x= -1 2 k 1 18k V2 V2 18k F3 y = - ^ ( F 3) = - ^ 18 k R =2F„ = +5k -1 2 k + - ^ = +5.73k V2 18k R = 2 F = +8.66k = -4.07k y y V2 tan6 = ^ = — = 0.710 Rx 5.73 6 = tarf‘(0.710) = 35.4° from horizontal -4.07 k x sin0 = R„ R„ sin0 sin 35.4° R = i ^ L = 7.03k (0.579) Graphical solution using the tip-to-tail method 2.10 -T A C , -T ac -T,A Cy -T Ac sin 60° = -0.866T ac ; cos 60° = -0 .5T,AC Rx = 59.6N +TAg = +TAg cos40° = +0.766TAB “ T ab, = -T ab sin40° = -0.642T ab 0 = 86.8 Rx = 2FX = -(0.5X800N) + (0.766)(600N) = 59.6N <j>= 3.2” Ry = £Fy =-(0.866)(800N )-(0.642)(600N ) = -1078N 0 = ta n '1( ^ ) = Rv <)>= tan tan-1(l8 .l) = 86.8° Rx | ,/5 9 .6 \ —— =: tantan“‘l ------ I= ttan_1(0.055) = 3.2° vRy =V59.62 + 1078 = 1079N R = 1079N Ry = 1078N I ivl ii i 2.10 cont’d G raphical Solution: 2.11 -W x = -W cos 30° = -0.866W -W y = -W sin 30° = -0.50W -F x = - F cos 40° = -0.766F +F„ = +F sin 40° = +0.642F Ry = SFy = 0; • 0.50(200#)+ 0.642F = 0 , F = i ° 2 i = 156# 0.642 R = Rx = 2FX= -0.866(200#) - 0.766(156#) R = -173#-120#= -293# by Scale: 1” = 100# 2.12 -F2, = -F2cos 25° -F2y = -F2sin 25° Since the resultant must be vertical, Then: Rx =ZF x =0 -F2, + F i = 0 F2cos2 5 ‘ = F, From this equation, it is seen that F, Is only a fraction of F2 , therefore, F2 = 7kN. Then, F, = F2cos25° = (7kN)(0.706) F, = 6.34kN and F2 = 7kN R = F2y = (7kN)(sin25°) = 2.95kN. Graphical solution 2.13 Tlx = - T 1cos30° = -0.866T1 Tly = -T[ sin30° = -0.50TJ T2x = -T 2 cos 60° = -0 .50T2 T2y = -T 2 sin 60° = -0.866T2 +FX = +F cos 45° = +0.707(8k) = +5.65k -F y = -F sin 45° = - 707(8k) = -5.65k But Tj = T2 For the resultant to be vertical, Rx =ZFx = 0 -0 .8 6 6 T -0 .5 0 T + 5.65k = 0 T = 4 .14k R = Ry = 2Fy = -0 .5 0 (4 .14k)-0 .8 6 6 (4 .1 4 k -5 .6 5 k ) = -11.3k 2.14 Ma = -20#(5’) + 25#(4’) = -100 #-ft + 100 #-ft = 0 The box is just on the verge of tipping over. 2.15 W=700N SOON 2m (2M a = 0) +800N (lm )-700N (x) = 0 _ (800N)(lm) - = 1.14m (700N) Since x > 1m, the man is OK. 1m 2.16 2 M a = -3 6 # (l3 ') + 15#(8") = -(5 4 0 # -in ) + (l2 0 # -in ) = -4 2 0 # -in. 2.17 W = 100# P 2 M a = -W (l8.8") = -100#(l8.8") = -1 8 8 0 # -in. (clockwise) [SM A = 0] -1 0 0 # (l 8.8") + P(45.1") = 0 p _ 1880#-in. _ 41 7jy 45.1 in. 2.18 [ZM a = 0] -2 0 0 # (l2 ") = F(26") = 0; F = 92.3# [2M b =0] + F (4")-P (36") = 0; P = 10.3# 2.19 M a = -(5kN )(24m ) - (10kN)(20m) - (9kN )(l 6m) - (8kN)(l 2m) -(8 k N )(8 m )-(8 k N )(4 m ) M a = -( l 20kN - m) - (200kN - m) - (144kN - m) -(96kN - m) - (64kN - m) - (32kN - m) M a = -6 5 6 k N - m 2.2 0 Fk = {§(1300#) = 1200# Fy = j|(l300#) = 500# M b = -F x(5') + Fy(0) = -1200# (5') = -6 0 0 0 # - f t Mc = —Fx(5') + Fy(12') = -1200# (5') + 500# (12') Mc = -(6 00 0# -f t) + (6000#-ft) = 0 2.21 M a = Fy(6") = (27.2#)(4“) = 108.8'“in CCW M e = -F y(6") - Fx(2") = -(12.7#)(6") - (27.2#)(2") = -130.6'"" 2.22 F = 1.5kN 30° " ---- Fx dy Fx = F cos 30° = (1.5kN)(0.866) = 1.3kN Fy = Fsin30° = (1.5kN)(0.50) = 0.75kN dx = dcos60° = (200mm)(0.50) = 100mm dy = dsin60° = (200mm)(0.866) = 173mm MA= -F x(dy) + Fy(120mm + dx) MA =-1.3kN(173mm) + 0.75kN(220mm) M a == -60kN - mm = -0.06kN - m 2.23 Tx = T cos 30° = 2000# (.866) = 1732# Ty = T sin 30° = 2000#(0.50) = 1000# d d = 7' cos 60° = 7 (0 .5 0 ) = 3.5 d x2 = 1 0 (0.50) = 5 dy = 7' sin 60° = 7' (.866) = 6.06' [2 M C = 0] Tx(dy ) - T y (dxl) - W ( d ![2) = 0 (1732#)(6.06') - (1000#)(3.5I) - W (5) = 0 5W = 10,500#_ft - 3500#_ft 2.24 M a = -(10k)(l 1.3,)-(4k)(14') = -113k ft-5 6 kft =-169k M b = -(10k)(l 1.3') - (4k)(14') = -169k' fL 2.25 R Ax and R Bx fo rm a couple M couple 1 2 5 # (l2 ') = + 300, "ft RAy and 150# m an fo rm a cou p le M couple2 Since the moment due to a couple is constant, MA= MB= Mc = +300"" - 300#ft = 0 -(1 5 0 # )(2 ') = - 3 0 0 #_ft 2.26 90k N 125mm - -180mm = 90kN(0.305m) = 27.45kN-m 90kN 2.27 Fx = (85 lb.) cos 55° = 48.8 lb. Fy = (85 lb.) sin 55° = 69.6 lb. M A = - F y(l5 ') + Fx(4") = -(6 9 .6 lb.)(l5') + (48.8 lb.)(4") = -8 4 9 lb .- in . M B = - F y(l2 ,,) + Fx(4") = -(6 9 .6 lb.)(l2")+ (48.8 lb.)(4") = - 6 4 0 l b . - i n 2.28 A x = A cos6 0 ° = 0.50A A y = A sin 6 0 ° = 0.866A C x = C eos 45° = 0.707C C y = C s in 4 5 ° = 0.707C [2FX=0] - Cx + Ax = 0 -0.707C + 0.50A = 0 [2Fy = 0 ] + C y + A y -1 0 0 0 # = 0 0.707(0.707A) + 0.866A = 1000# .-. 1.37A = 1000# A = 732# C = 0.707(732#) = 518# 2.29 Free-body diagram of joint C Force Magnitude F ____ E*----------- F 500N -500cos20° = -470N -500sin20°: -171 N AC ? +ACsin10p = +0.174AC +ACcos10° : +0.984AC +BCsin30P = +0.50BC -BCcos30°: -0.066BC BC ? [EFX= 0] - 470N + 0 .174AC + 0.50BC = 0 ... Eq (1) [2Fy = 0 ] -171N + 0.984A C -0.866B C = 0 ... Eq (2) Solving equations (1) and (2) simultaneously, 0.866 x [0.50BC + 0.174AC = 470N] ... Eq (1) 0.50 x [-0.866BC -0.984A C = 171N] ... Eq (2) +0.433BC + 0 .15AC = 407N ... Eq (1) -0.433BC + 0.492AC = 86N ... Eq (2) Adding the two equations; AC = +768N (compression) Substitute and solve for BC; BC = 672N (tension) 2.30 F2 = 1 5 0 # F1 = 5 0 # 2 5 ) \ s<^ x ■ W = 60# Force Maanitude Fx Fv F1 50* -50*COS25° = -45.3* +50#sin25° = +21.1* F2 150* +150*(3/5) = +90* +150*(4/5) = +120* W 60* 0 -60* P ? +PCOSa +Psina [2F X = 0 ] - 4 5 .3 # + 9 0 # + P c o s a = 0 (l) [2Fy = 0 ] + 21. l# + 1 2 0 # -6 0 # + P s in a = 0 ....(2 ) —44.7# P=- E quating: .... (1) —44.7# -8 1 .1 # co sa sin a s in a -8 1 .1 # ------- = ta n a = -----------= +1.81 -4 4 .7 # a = tan_1(l.8 l) = 61.1° _ -r-r. ITT cos 61.1° _ t t . rr _ 0.483 Note that the negative sign for P indicates that it was initially assumed in the wrong direction. Final Free Body Diagram Graphical check 2.31 [2FX= 0 ] A c o s7 5 ° -B sin 6 0 ° = 0 A .B W 0.259 [2Fy = 0 ] Asdn75° + B co s6 0 °-2 .5 k N = 0 3.346B(0.966) + 0.50B = 2.5kN 3.732B = 2.5kN B = 0.67kN A =2.24kN Forces exerted bt the sphere onto the smooth surface. 2.32 Tx = Tsin5° ==0.087T Ty = T cos5°: = 0.996T Px = P cos 20° = 0.940P Py = Psin20° = 0.342P [2FX= 0] -0 .0 8 7 T + 0.94P = 0 T = 0u ^ f r94P =10gp 0.087 [2Fy = 0] + 0.996T - 0.342P - 2000# = 0 substituting; 0.996(10.8P) - 0.342P = 2000# P = 192# AB = T = 10.8(192#) = 2074# 2.33 Solving FBD(a) first: F o r c e _________Fx -FJL DC - —DC = -0.80DC +—DC = +0.60DC 5 DE +DE cos 15° = +0.966DE +DEsinl5° = +0.259DE W 0 -200 lb. ^ F x = - 0.80DC + 0.966DE = 0 ; D C-1.21D E Y F = + 0.60(1.21DE)+ 0.259DE- 2001b. = 0 y (DC,) 0.985DE= 2001b. ; DE-+2031b.; DC = 1.2l(2031b.)- 2461b. Writing equations of equilibrium for FBD(b); Force CD +i(2461b.) = +1971b. —|(2461b.) - -1481b. CA -CA cos 60° = -0.50CA -CAsin 60° = -0.866CA BC 0 +BC J F , = - 0.50CA +1971b. = 0 ; CA-3941b. (T) 2 Fy = -0.866(3941b.) + BC-1481b. = 0 ; BC = +4891b. (C) 2.34 [2M a = 0] + 100'(4') - 300#(3') + Bx(10') = 0 .-. Bx = +50' [SFx =0] + A X- 1 0 0 '- B x = 0 +AX- 1 0 0 ' - 5 0 ' =0 Ax = +150' [EFy =0] + Ay - 30 0 ' = 0 Ay = +300' 2.35 40kN 50kN [2 M a = 0 ] -4 0 k N (2 .5 m )-5 0 k N (5 .0 m ) + By(7.5m ) = 0 By = 46.7kN [2Fy = 0 ] + A - 4 0 k N - 5 0 k N + 46.7kN = 0 = 43.3KN No horizontal reaction is necessary for this load case. 2.36 [2M a = 0] - 2k(20') - 3k(40') - 4k(60') + By(80') = 0 40k_fl + 120k_fl + 240k_fl Cl Bv = ------------------------------- = +5k y 80' [£M b = 0] +4k(20') + 3k(40') + 2 k (6 0 ')-A y(80') = 0 Ay = +4k 2.37 1500# ^90° / \ 90y V , i/ M " 30>\ _ Dx • Dy ■Ay 30’ [EM a = 0] - 1500#(17.33') - 3000'(8.67') + Dy(30') = 0 .-. D„ = +1733' [sF y = 0] -1 5 0 0 # cos30° - 3000' cos30° -1 5 0 0 ' cos30° + Ay +1733' = 0 .-. Ay = +3463' [2FX=0] + 1500sin30° + 3000sin30° + 1500sin30°-D x =0 .-. Dx = +3000' 2.38 1kN (i)(lk N ) = 0.385kN (§)(lkN ) = 0.923kN Ax Ay [2 M A = 0 ] + B (l2m )-(0 .9 2 3 k N )(2 .5 m ) + (0.385kN )(2.5m )(0.385kN + 0.923kN)(6m) = 0 Solving for B; B = 0.767kN Bx = (1y)(0.767kN ) = 0.295kN By = (f)(0.767kN ) =0.708kN Reverting back to the unresolved forces; [2FX= 0 ] + A x + lk N -(0 .2 9 5 k N ) = 0 A x = +0.705kN [2Fy = 0 ] + Ay - lk N + (0.708kN) = 0 B, .-. A y = +0.292kN 2.39 8k 12’ ’ ■ 12’ ) Upper beam: C y + D y = 8 k; C y= D y= 4k Left beam: [2 M a = 0] - 20k(2 4 ') - 4 k (6 0 ') + By(48') = 0 By = + 15k [2 F y = 0] + A y - 20k + 15k - 4 k = 0 A y = +9k Right beam: [2 M e = 0] + 4 k (l2 ')-1 6 k (2 4 ') + Fy ( 4 8 ) - 4 k ( 6 0 ') = 0 Fy = +12k [2Fy = 0 ] - 4 k + E y - 1 6 k + 1 2 k - 4 k = 0 Ey = + 12k 2.40 Upper beam: [ 2 M d = 0] + 4 0 0 * (l2 ') - C y(l0 ') = 0 C y = +480* [2 F y = 0 ] - 400* + C y + D y = 0 D y = -4 8 0 * + 400* = -8 0 * (l) [2 F X= 0 ] + 300* + D x = 0 D x = -3 0 0 * (« -) Lower beam: [ 2 M b = 0] - C y( 5 ') - A y(l0 ') = 0 A y = -2 4 0 * (i) [2 F y = 0] - 240* + By - 480* = 0 B y = +720* (T) [2 „ = 0 ] Bx = 0 2.41 FD Ax [ 2 M a = 0] + F D X( 4 ') + F D y ( 2 0 ') - 2 k ( 1 6 ') - 8 k ( 3 2 ') = 0 ( 4/ 5) F D ( 4 ‘) + ( % ) F D ( 2 0 ') - 3 2 k_ft - 2 5 6 k- ft = 0 E D = 1 8 .9 k F D x = ( / 5) ( l 8 .9 k ) = 1 5 .2 k E D y = ( % ) ( l 8 . 9 k ) = 1 1 .3 k [2 F X = 0] + A x -F D x = 0 A x = + 1 5 .2 k H [2 F y = 0] + A y - 2 k - 8 k + 1 1 .3 k = 0 A y = - 1 .3 k ( i) y + 1 5 .2 k = 0 * (dfk) (D C „) (B D .) (D C y) (BDy ) Solving the two equations simultaneously; BD = 17.9k DC = 19.7k x = (% )F D F D y = (% )F D 2.42 Parallelogram Method Tip-to-Tail Method 2.43 Tip-to-Tail Method 2.44 2.45 Rx =EFX = -(6k) cos 60° + (3k) cos 30° Rx = -3 k + 2.6k = -0.4 k Ry =EFy = -(6 k )sin 6 0 °-(3 k )sin 3 0 ° R., = -5 .2 k -1 .5 k = -6.7k R x = - 0 .4 k | ) = 86.6^*^ IR \ / 'J \ ■tan- 1 —— = tan”M ^— = tan_1(l6.75) = 86.6° Rv 10 .4 1 v ’ R = ^ R 2a + Ry = ^(0 .4 0 )2 +(6.7)2 = 6.71k R y = - 6 .7 k R = 6 .7 1 k 2.46 y Fly F1 = 800# Force -500# P=500# F, +F1cos30°=(800#)(0.866)=692.8# + F1sin30°=(800#)(0.50)=400# + F2cos30°=(1200#)(0.866)=1039.2# - F2sin30°=-(1200#)(0.50)=-600# R x = 2 F x = + 6 9 2 .8 # + 1 0 3 9 .2 # = + 17 3 2 # (-» ) R y = EFy = - 5 0 0 # + 4 0 0 # - 6 0 0 # = - 7 0 0 # (1) R = -^(1732#)2 + (-7 0 0 # )2 = 1868# Alternate way to find the resultant R: Rx= 1732# R„ sin 0 0 = tan = tan _1(0 .4 0 4 ) = 22 700 700 sin 2 2 ° 0.375 =1867# 2.47 y x d Component F F y -(-J=)(9°kN) - -63.6kN AD = 90kN - ( ^ H = - T = - 63-6kN BD = 45kN -% (45kN) - -27kN -% (45kN) - -36kN +{l 10kN) cos 30° = +95.3kN -(H 0kN )sin30° = -55kN Rx = 2 F x =+4.7kN Ry = D Fy =_1546kN CD = 11 OkN R= + Ry = ^(4.7)2 +(l54.6)2 = 154.7kN 0 = tan -i| R y ■tan 0 = tan-1(32.9) = 88.3° Resultant 154.6 4.7 2.48 100# d2x = d j cos 45° = 14'(0.707) = 9.9' d2y = d 2 sin 45° = 14' (0.707) = 9.9 dlx = d! cos 20° = Iff (0.94) = 9.4' [2 M C = 0] + 250# ( dlx) - 1 00# (d2y) - F (d2x) = 0 250#(9 .4 ')- 1 0 0 #(9 .9 ) ^ ^ 9.9 2.49 [2F X = 0 ] + A X -3 .8 3 k N = 0 A x =3.83kN (F») [2Fy = 0 ] + A y -3 .2 1 k N = 0 A y =3.21kN (Fy) M a = -3 .2 1 k N (3 .1 m )-3 .8 3 k N (l.3 3 m ) M a = - 9 . 9 5 k N - m - 5 . 0 9 k N - m = - 1 5 .0 4 k N - m 2.50 T ,y T 1 = 500# Force T, = 500# (500#)cos15° = 483# (500#)sin15o =129.5# J2 = 700@# (700#)cos10° = 689.5# (700#)sin10o = 121.8# Ma = +T£x(30’) + T2y(6*) - T 1y(35') - T1y(4') =0 M. = 689.5#(30') + 121 8#(6’) - 483#(35’) - 129.5#(4’) = +3990#-ft 2.51 R = 2 F y = 10 # + 7# + 6# - 18# = + 5 # M0 = +(7#)(4”) + (6#)(9”) - (18#)(17” = - 224#-in. R(x) = 224 #-in; 2 2 4 #_in : 44.8" R = 5# 44.8” origin 2.52 150N Weight of wood member: 100N co = 30N/m Assume the member weight is located at the center of the length. 30N/m o m m M M M I origin 1m 2m 150N a 100N 1m o origin 1.5m i i W = 90N (beam w t.) R = 2 F y = -100N - 90N + 150N = -40N M0 = - (100N)(1m) - (90N)(1.5m) + (150N)(3m) = +215 N-m R(x) = Mo 215N - m , _ x = -------------- = 5 .4 m 40N For a 40N force to produce a moment directed counter-clockwise, the R = 40N force will be at an imaginary location where x = 5.4m to the left of the origin. 2.53 y 400# 200# 11 100# 20#/ft TT~T I I I l I I H r ~ r r origin 4' Total beam weight equals (20%)(16') = 320# at the center of the beam length. For the beam to remain stationary and horizontal, the moments taken about points A and B should be balanced by the opposing moments due to B and A respectively, resulting in no resultant moment. [Z M a = 0] + 200*(4') + 100*(8') - 320*(8') - 40 0 *(l2 ') - B (l6 ') = 0 B = 360* [ 2 M b = 0] + 400*(4 1) + 320*(8') - 100*(8') - 2 00*(l2') - A (l6 ') = 0 A = 60* R y = 2 F y = + A +100* + 100* - 320* - 400* + B = 0 = +60* + 200* + 100* - 320* - 400* + 360* = 0 2.54 ------------- Force —*-------------------- F »n AB -T T AB 13 AC 4 --A C 5 W 0 F —j f - + — AB 13 3 --A C 5 -5k 19 4 [SF =01 - — A B - - A C = 0; L x 1 13 5 13 .-. AB = - — AC 15 19 fs F = 0 l + — A C - - A C - 5 k = 0; L y J 13 5 = 5k; 4 — AB = - - A C = 0 13 5 + — [ - — A C |- - A C = +5k 13 V 15 / 5 AC = -5.36k (compression) AB = —j^ (-5 .3 6 k ) = +4.64k (tension) 2.55 —x Force AC BC F-2kN [2FX = 0] -AC --A C 5 -BC cos60° = -0.50BC + - ( 2 k N ) - + 1 .2 k N +BCsin 60° = +0.866BC - - i ( 2 k N ) = - 1 .6 k N AC -0 .5 0 B C + 1.2kN = 0; [2Fy = 0 ] - —AC + 0.866B C - 1.6kN = 0; Solving simultaneously; B C = 2 . lkN (compression) AC = 0.27kN (tension) - A C + 0.50BC = 1.2kN - - A C + 0.866BC = 1.6kN 2.56 y ! Force x ________________ BA F_ - — BA 13 DB - — BA 13 + D B s in 3 0 ° = + 0 .5 0 D B W + D B cos30°: 0 -8 0 0 # n 94 fR L x = 2 F x =01j 1- 3— [Rv = 2FV = ol - — B A + 0 .8 6 6 D B -8 0 0 # = 0 L y 13 y BA + 0.50DB = 0;D B = — 1BA 3 J 13 BA + 0.866| — BA | = 800# (13 ] BA = 658.2# DB = |^ -j(6 5 8 .2 #) = 1215.2# + 0 .8 6 6 D B 2.57 i y For ce ------ F _x------------------------- F —H------------------------ CA -CA cos 45° = -0.707CA CA sin45° = +0.707CA CB +CB cos 30° = +0.866CB +CBsin30° = +0.50CB W O r2FX L x = olj - 0.707CA + 0.866CB = 0; -W n CA = 0--------1.22CB 70? This relationship indicates the CA > CB, therefore, CA = 1 8kN Then, CB = (1 8kN)/1.22 = 1 48kN [2Fy = 0] 0.707CA + 0.50CB - W = 0 W = 0.707(1.8kN) + 0.50(l.48kN) = 2.0kN 2.58 Joint B: y Force AB=1560# +— (l560#) = 1440# 13' > BE 0 BC fl560#') = - 600* 13' 1 +BE 4 BC 5 [2FX=0] + 1440# - ^ B C = 0; 3 BC 5 BC = 1800# [2Fy = 0] - 600# + B E - |( l 8 0 0 #) = 0; BE = 1680# 2.58 cont’d Joint C: Force CD -0.707CD +0.707CD CB = 1800" +~ (l8 0 0 #) = 1440# + |( l 8 0 0 #) = +1080# W 0 -W [2FX = 0] - 0.707CD +1440* = 0; CD = 2037# [2Fy = 0] + 0.707(2037#) + 1 080# - W = 0; W = 2520# 2.59 500# [2 M A = 0] - 5 0 0 #( l 0 ' ) 3 ( l 0 ' ) + ^ ( 2 4 ' ) = 0 (B*) 50B 288B # » — + ------- = 5000 ; 13 13 B = 192.3 (By) # B„x = 14* \Bv = 111.5* y [2F = 0lJ + A x - 7(BJ 4 # =0; L f 2 F V = ol L y J Ax =74# + A v - 5 0 0 # + 1 7 7 .5 # = 0; y (r> \ A y = 3 2 2 .5 # 2.60 Cx 1.8kN 2m ,, 2.5m Bx 1 i By 2.7kN By M 3m Bx 3m — MB rc -,A Cx B eam AB: [ZFx =0] Bx = 0 [2M b = 0] - A y(4.5m) + 1.8kN(2.5m) = 0; [2Fy =0] + lkN - 1.8kN + By = 0; Ay =l kN By = 0.8kN B eam BC: [ZFx =0] Cx = 0 [2Fy =o] - 0.8kN - 2.7kN +C y = Q Cy =3.5kN [2 M C = 0] - M rc + 2.7kN(3m) + 0.8kN(6m) = 0 M RC = 8. lkN - m + 4.8kN - m = 12.9kN - m 2.61 2k [2F X = 0] - A x + 4 k = 0; A x = +4 k ( - ) [2M A = 0] - 2k(20') - 3k(40l) - 2k(60l) - 3k(40') + 4 k (2 0 ) + 65,( 80-) = 0 By = 4 4 k (t) [ 2 FV = ol + A v - 2k - 3k - 2k - 3k + 4 k = 0 L J A y = +6 k (t) (By) 2.62 Dy Cy U pper Beam: [ZM a = o] - 300#(s) + By(8') = 0; [ZFx =0] + A X-1 8 0 # =0; By = +187.5# (f) A x =+180# (->) [SFy = 0] +187.5# - 240# + A y = 0; A y = +52.5# (f) L ow er Beam: [ZM d = 0] +200#(4')+ C y(6')-187.5#(9l) - 8 0 #(l3l) = 0 Cy = +322#(f) [ZFx = 0] + Dx - 60# = 0; Dx = +60#( ^ ) [2Fy = 0] - 200# + Dy + 322# - 187.5# - 80# = 0 Dy = +145.5#(f) Chapter 3 Problem Solutions : ■ E X _V 29’ [Z M a = 0] y “ V 29 + ^ - ^ - J ( 4 0 ,) - ( 3 0 0 # ) ( 3 0 ' ) - ( 3 0 0 ^) ( 2 0 ,) - ( 3 0 0 # )( 1 0 ,) = 0 E = +22SV 29 = +1212* E x = 1125#; Ey =450# [Z F x = 0 ] C B X = E X = 1125* [Z F y = 0 ] + C B y -3 0 0 * -3 0 0 * + 450* = 0 C B y = +150* .. (15QJX10') n3. CBy CBX' h c = 4 '+ y ; h = 5.33' 1125* 3.2 Assume E„,m = 1200# Cable forcelbE = E [ZM a = 0] - (3 0 0 ' )(1 O') + (300* )(20') + (300* )(3 a ) + E y(40') = 0 E y =+450* e x= 1/ e 2 - X =i ^ ; 10' 1112 e^ E x = 1112 Ey=450# y = 4.05' E=1200# Ex=1112# [SFX = 0] CBX = 1112* [ZFy = 0] + C B y - 3 0 0 * - 3 0 0 * + 450* = 0 CBy = + 150* CB = 1112* <1200* Y' CB — = ---- y'= 1.35' 10' CBX hc = y '+4.05'= 5.4' .-.OK (31.1 ftKN) Original FBD [X M a = 0] - 3 k (1 2 ') - 7 k ( 3 2 ') - 2 k ( 4 2 ') + E y ( 6 0 ') = 0 E y = 5 .7 3 k ( 2 5 .5 k N ) [Z F y = 0] + A y - 3 k - 7 k - 2 k + 5 .7 3 k = 0 A y = 6 .2 7 k (2 7 .9 k N FBD (a) [X M C = 0] - 2 k ( 1 0 ,) + 5 .7 3 k ( 2 8 ,) - E K(1 2 ,) = 0 E x = 1 1 .7 k ( 5 2 . lk N ); E = E D = 1 3 .0 3 k ( 5 8 .0 k N ) From the original FBD: [X Fx = 0 ] A x = 1 1 .7 k (5 2 .1 k N ) A = A B = 1 3 .2 7 k ( 5 9 .1 k N ) FBD(a) [XFx = 0] CB„ = E „ = 11.7k (52.1kN) [SFy =0] + CBy - 7k- 2k + 5.73k = 0 CBy = 3.27k (14.4kN) CB = 12.15k (54.1kN) 12 (3.67m)' V .— 20 ’ (6.1m) .... Ax A=13.28k (59.1kN) Ax=11.7k (52.1kN) Ay=6.27k (27.9kN) CDy CDx 3k’ (13.35kN) 7k ’ (31.14kN) [SFX = 0] CDX= 11.7k (52. lkN) [ZFy = 0] CDy = 3.73k (l6.6kN) .-. CD = 12.28k (54.5kN) 3.4 From the solution for Prob. 3.3, it appears that the force in cable AB is maximum. Therefore, assume the following: reaction @ A = 20k and AB = 20k. Using the original FBD of Prob. 3.3, A„ = 6.27k A=20k Ay=6.27k A x =-1jA 2 - A 2y - 19k A=20k Ay=6.27k [ZFx = 0 ]-1 9 k + C D x =0; CDX= 19k (A») [ZFy = 0] + 6 .2 7 k -3 k -7 k + CDy = 0 CDy = 3.73k il£. = — ; 1 3.03 h B= 3.96' B [E F x = 0 ] C B X = 19k [S F y = 0 ] + C B y + 3 . 7 3 k - 7 k = 0 C B y = + 3 .2 7 k hc - h B 2 ff CBy 3 ,2 7 k “ C B X ~~ 1 9 k (h‘= -hB) = 2{ l ^ i ) =3-44, h c = h B + 3 . 4 4 '= 3 .9 6 '+ 3 .4 4 '= 7 .4 0 ' 3.5 p 1 A 1200# [ZM a = 0] - 3 0 0 % ( 1 8')(9')- 1200#(18') + B(12') = 0 B = 5850# (T) [ZFy = 0] + A -3 0 0 % (1 8 ') -1 2 0 0 # + 5850# = 0 A = 750# (T) 3.6 BOON (0 = 145 N/m 1.52m 2.13m [EM a = 0] -80 0 N (1 .5 2 m )-(1 4 5 % )(1 .5 2 m + 2.13m)(1.825m)+B(3.65m) = 0 B = 598 N [lF y = 0 ] + A - 800N - (145 % )(3.65m ) + 598N = 0 A = 731N 3.7 2k 2k CO = 0.4 k/ft 5’ , ’ 4' 3 ’, | “ A T UUUI p B f [ I M a = 0 ] - 2 k (3 ')-2 k (8 l) - 0 .4 ^ f t (4')(141) - B(12') = 0 B = 3.7k [ZFy = 0 ] + A - 2 k - 2 k - ( 0 . 4 % ) ( 4 ') + 3.7k = 0 A = 1.9k 3.8 1000# 900# Ax t - A ► .B y Ay' 6' 6’ I 6’ [I F x = 0] A x = 0 [ I M a = 0 ] - 1000#(6 ') - 9 0 0 #(14')+ By (12') = 0 By =+1550 [ZFy = 0] + Ay - 1000# - 900# + 1550# = 0 Ay = +350 3.9 R=60kN 1 C0 = 15kN/m Ax Ayi : .By 1m 1m 2m T------ ------- 71------ 7 2m [IF k = 0 ] A x = 0 [EM a = 0 ] By(3m) - 60kN (4m ) = 0; [SFy = 0] - A y + 80kN - 60kN = 0; By = 80 k N A y = 20kN 3.10 [ZFk = 0] a x = o [ZM A = 0] - 900* (2'J - 600*(31) + By(lO') = 0 By = 360* [SM B = 0] + 600* (7') + 900* (81) - A y(1 O') = 0 A y = 1140* 3.11 Ri R2 Ra 8 . 2’ 13.375’ 16.375' Ri = GDO'H15^ ^ 6') + l 100/ ^ ^ 6') = 1200# r 2 = (iD(i')(150%>)(&®)+ t100^ 1' ) ^ 6') = 1400# R3 = ( ^ ) ( l ,) ( 150% 3 )(6 ')+ (1 0 0 % 2)(1')(6') = 1200# [SM a = 0] - 1200*(3') -1400*(8.2') -1200*(13.375) + E(16.37S) = 0 E =1900* [2Fy = 0] A -1200* -1400* -1200* +1900* = 0 A = 1900* 3.12 1000# Step 1: FBD of the entire truss. Step 2: Solve for the external support reactions. [£M D= 0] + A , (20') - 866* (10') -1000' (20 I - 0 A.,, = 1-1433* [ZFX... 0] Dz 500' - 1433’ - 0 Dx = +933* |IT; = 0] + D y - 8 6 6 # - 1 0 0 0 ' = 0 Step 3: Isolate a joint and solve two unknown member forces. ACX - 0.707AC: ACy = 0.707AC Joint A: AB AC [EF;, - 0] +1433"' + 0.707AC - 0 A C - 2030' (comp.) [ZFy = 0] + AB + A C y =0 A B - -(-0.707 x 2030') = +1433* (tension) Joint B: [IF x = 0] D C - 0 BD, [XF, —0 1 -D D J 30 BA * BD = • 1433' (T) 1-133' 0 Joint D: [XF,, - 0] BC - 0 D" [ZFV- O] i-BD D BD - -i-1433# (T) 1433# ™0 'D C 1<133 # BD = Joint E: DE ::: 5001? 1000# 30/ % / E J &X£ &------- ►eef [SPy - 0 ] 866* liC EC = - 866' (C) [2F;; =0] -5 0 0 * -5 0 0 * EF = +1000* (T) ' EC Joint F: I t -1 [IMP <. F [SFV= 0] -1000* - 0.707CF = 0 CF M l5* (C) CF 1000# 1000# 3.13 3.14 3.15 3.16 3.17 LLJQ- 3.18 | 2lX-1 - 0] + ^ £ ( 3 ' | + ^ B (6 ' i 4k(6') V5 ' (A C „) V5,' 4k(12'| (A C „) AC • :9V5 ' -20. Ik (T) ODp [Y U „ - 0] + BC • V5 ■p/“« + - ^ r (6'i + 4k(6') 2k(6') - 0 V -5 V5 (BC.,) (B C .) ' 2.24k (C) [EM.. = 0] - BD(3') - 4k(6') - 2k(l 2') = 0 BD .. 16k (C) 2k(18') - 0 3.19 [IM a = 0] II. (2 5'j ■■■■(3kN)(5m) + (1 .2 k N )(2 m )- (1 .6 k N )(7.5m ) = 0 H. = 9 .8 4 k N [2 F y = 0 ] - A y - 3 - 1 . 6 t 9 .8 4 = 0 A.. - 5 2 lkN [2Fx = 0] - A,, +1.2=0 A „ = + 1.2kN f2 F „ 1 J = 0 l -3 k N -1 .6 k N -------- C H J 6.4 I h =0 .; CH - -7.35kN (C) [ZM h = 0] + BC(2m) -■3(2.5in) -1.6(5m) = 0 BC - +7.75kN (T) [SM; - 0] -FH(2m) : 1.2(2m)~ l.<5(2.5m) = 0 F1I- O.SkN (C ) 3.20 J y - 4600' [ i f ; = 0] ••• II.,...2000' ...500'... 800# + 4600# = 0 Hy -1 3 0 0 ' f£p; = 0] - 11., + 600# = 0 II, •• 600# Section a-a: B BC A 600# [2Ma = 0] + 500'(5’) + BB(5’) = 0 BE = -500' (C) BE' ' EA ’ 800# Section b-b: 500# '[EM* = 0 ] + 500* (5') - CEy(5') - C E X(2.5') = 0 But; CE = 4 ^ C E : V5 C E ,.= -j~ C E ' V5 —J—-CEj'5') -T-- ^ C E i^ .S ') ..500' 15') V5 V5 CE = 250V5# S e c tio n c-c: [EM G—0] —600'* (5') + FJ(5') + 4600* (5‘) = 0 FJ - 600' 4600* - 4000' (C) 3.21 A B ,, - % A B AB.. [SMH= 0] AB= (AB)(12') - 6 k(1 2') = 0 - 6( 12).- 51 , . - A - = -10k (<’| 3(12) ' ' [£M a = 0] BH(12') = ft BH = 0 = 0] ■i-HG(9,) - 6 k ( l 2 ' ) = 0 H G - 18k (T ) AB Section a-a: I Vi '.. , 4 . 7 3 k - 2 k - H H ,. - 0 EE-I = %(: !.73k) —3.41k EI-Iy ~ + 2 ,7 3 k ; (T) Section b-b: [SFv = 0] + 4 ,7 3 k -2 k - 3 HCy --10.27k; +H CV- 0 HC-- • % ( 0 . 2 7 k ) = + 0 .3 4 k f t ) Section c-c: |EF = 0 + 2.27k-BI„ =■0 (A ,) Blv - 2.27k: BI = %, (2.27k) - ' 2.84 k (T) 3.23 Section a-a: ~ \ D -----------------------7 \ /' \ / C E \ / DB / / /• / / / S / / \ 2k N [XF.. = 0] ■■■2 k N + C E X - 0 C l i... = + 2 k N ; 1 \ \ \ \ \ X C E = + 2 i / 2 k N (T ) E CT Section b-b: [ZF. =0] + 6k N - FBV= 0 FB„ = + 6kN FB ■■■■■+6->/2kN (T) F» = 3.5k Ay = 3.5k Section a-a: I- o A [2!M,, 2 / 7 OD = 1 / 0’ D 1k Only DB can resist the rotational tendency (counter-clockwise) of the 1 -k applied load. DBy " —7— ; 1 |Z M vC \ B ir iS 0| V t3 q ~ u ] -f 1^(16*^ D B - = I lk ; V l3 D B X(I 6 'J ~ U S e c tio n b-b: * o [ZMq =0] + lk(28'| + 3k(36') EA J36') = 0 EA* —-!-3.8k 5 .......... HA -3EA^ EA - -4 "k (T) Zero Force Members: 3.25 3.26 3.27 3.28 ' 200# - ^ 4 [EM B= 0] + Ax(9‘) - 1 5 0 '( 6 ') - 200* (16') = 0 A x “ +455* (->) for member A C : [EFX= 0] C x = 455* For member BC: [EFx = 0] Bx = 455* (<-) 200# Member AC: [£Ma = 0] - 200*(16') +Cy(12') = 0 By - 150* -Cy = 0 Cy = 267* Ay =Cy-200#; For equilibrium in member BC: Ay =-67* (4-) By =412* (T) 3.29 (0 = 400#/ft BCX=%BC; [ZMa = 0] - BCy = %BC 400*1ft(1 ffV 5) + % B C ( 6') = 0 (B Cy) BC = 4167* BCX=%{4167) = 2500*; BCy = %(4167) = 3334* [EFX= 0] - Ax + 2500* = 0 Ax = 2500* («-) [ZFy =0] + A y + 3334*-400#,ft(10') = 0 Ay = 666* (T) 6 .6 7 m 3.30 [DM B= 0] + I80kN(8m j + 135kN(22.67m) - Ay (29.34m) = 0 Ay = 153.4kN [ZFV= 0] + 153.4kN I35kN ISO lcN B „ = 1 6 1 .6 k N 135kN [XF,, - 0] + 1 7 1 .6 k N - C x =0 C ., = 1 7 I . 6 k N [lF y = 0] i 153.4kN - 135kN-Cv = () C y = 1 8 .4 k N [XFx = 0] + 1 7 1 .6 k N - B.. = 0 Bx = 1 7 1 .6 k N + Bv = 0 3.31 [EM,, - 0 ] + Bx(14') - 500J(10') - 200* (16') = 0 Bx - 586* (< ) [EE, = 0] + Ax - 586# = 0 A, = 586* (•••>) [EF, - 0] + A., - 500’ - 200'* - 0 A.. Bx = 5 8 6 # 500# *1 Ax = 586# t ■Ay = 700# C„ =820*; C y = 820* D x = 234 #; D v = 820# E „ = 820 f ; E y = 820# Ey Dx (c) 200# ' ~00? (T) 3.32 10kN 2m FBD(a): 1.33m [£ M a = 0] - 10kN(2m) + By(2.5m) = 0 By = 8kN [XFy = 0] - lOkN + A y + 8kN = 0 2.5m A y = 2kN A. Bx (a) t Ay I I FBD(c): [Z M C = 0] - Bx(2m) + 8kN(2.5m) = 0 Bx = lOkN [XFy = 0 ] - C y + 8kN = 0 Cy = 8kN 10KN [SFx = 0 ] + Cx - lOkN = 0 Cx =10kN 2m or, since member CB is a two-force member, use the slope relationship for C and C . Cy C Cx 2.5m 2-lorce member Cx C yl (b) 2m (c ) Bx Ax Ay : 3.33 FBD of the entire frame: [ZMc = 0] -3 k (4 ')-lk (l2 ')+ A x(6') = 0 Ax = +4k (<-) [ZMa = 0] -3 k (4 ')-lk (1 2 ')+ C x(6') = 0 Cx = ^ k (-») FBD(a): [ZM b = 0] + 3 k (2 ')-A y(6') = 0 Ay = lk (t) [ZFy = 0] + lk + Cy - 3 k - l k = 0 Cy = 3 k ( t) (b) 2-force members DB DB, Cx ' .1 "t C y| D (d) FBD(d): [SMe = 0] +BD(6')-3k(12') = 0 BD = +6k [SFy = 0] + 3 k -6 k + Ey - l k = 0 E y = +4k [SFx =0] + 4 k - E x = 0 E=+4k E , 1k FBD(c): [ZFy = 0] +By - 4 k = 0 By =+4k P F X= 0] - B x +4k = 0 Bv = +4k 3.34 1m Ri = 4.5kN R2 = 9k N 1 kN/m-(r IkN/m Bx Ay By. 3.5m R i= 4 .5 k N R2 = 9kN ,1 m Bx By Ay 3.5m Equivalent FBD PF* = 0] Bx = 0 [ Z M B = 0] + 9 k N ( 3 .5 m ) + 4 . 5 k N ( 5 m ) - A y ( 6 m ) = 0 A y = 9kN [ZFy = 0] + 9 k N - 4 .5 k N - 9 k N + By = 0 By = 4 .5 k N 3.35 Poor reaction p = Yso„ x h = ( 3 5 % 3) x 7 . 5 ' = 2 6 2 . 5 % 2 o o= p x l ' = ( 2 6 2 . 5 ^ 2) x l ' = 2 6 2 . 5 % F = ^ _ ( ^ % X Z i L 984* 2 2 [ I M a = 0 ] + B x (8 ') - 9 8 4 * ( 2 .3 ) = 0 B x = 308# [ZFX = 0] - A x + 9 8 4 * Ax= 676* - 308* =0 3.36 I R = 20k Bx Ay 4k Ay Cx _ 3 k ._ j •Cy Upper Beam: P F * = 0] Bx = o [ I M B = 0 ] - A y (2 0 ') + R (1 5 ') = 0 [IM a = 0 ] - 2 0 k ( 5 ) + B y ( 2 0 l) = 0 By = 5k Lower Beam: [IFx =0] +CX+3k = o Cx = -3 k (<-) [ZMC = 0] - 4 k ( S ) - 15k(10') + Dy(20') = 0 Dy =8.5k [XFy = 0] + Cy - 4 k - 15k + 8.5k= 0 Cy = 10.5k VT Bv 3.37 Overhang beam simple beam } DL= 15psf SL = 25psf DL+SL = 40psf CO= 320 #/ft l l l l l l l l l l l l l H i l l III IT U T Cl) = 3 2 0 m TTTTU 20’ Dy = 3 2 0 0 # 13 2 0 0 # co = 3 2 0 #/ft [C y = 3 2 0 0 # 3200# 111 H i 111 i co = 3 2 0 # /f t .h i ’ F h h u u i ^ i [ZMA =0] + (3200')(30')+(320%)(30')(15')-By(25') = 0 By =+9600' [ZFy = 0] - 3200' - (320%)(30') + 9600' + Ay = 0 Ay = 3200’ 4.8 k 9 .6 k 24’ 1 4 .4k 9 .6 k 9 .6 k |J 2 8 .8 k 9 .6 k . 24’ |J 24’ 2 8 .8 k Girder with Columns @ 24’ o.c. 3.38 [ZMA=0] +3k(12') + 2k(l7')-}fB(10,) = 0 B = 7.6k; Bx = 2.91k (-»); By =7k(J.) [IF k =0] - 2 k - A x + 2.91k = 0 Ax = +0.91k (<-) [!Fy =0] - 3 k + A y - 7 k = 0 Ay = + 10k (T) Joint E: EDx =j§ED; EDy = ^ E D [ZFy = 0] + -^-ED-3k = 0 ED = +7.8k (T) [IFX= 0] +|f(7.8k) + EF = 0 EF = -7 .2k (C) Joint D: DCX= 0.707DC; [IFx = 0] ED=7.8k DCy = 0.707DC (7.8k) - 2k + 0.707DC = 0 DC = +13k (T) [!Fy = 0] —||(7.8k)-D F -0.707(13k) = 0 DF =-12.2k 3.38 - cont’d Joint F: DF=12k [E F„--0] + 7.2k + CF - 0 CF - -7.2k (C) [2FV = 0] - 12.2k -F A = 0 FA —-12.2k (C) Joint C: [SFk = 0] +7.2k 0.707(13k)i-C A r - f CB = 0 [lF y = 0 ] + 0.707(13k) - f C A - jf CB = 0 CB = +7.6k (T) C A - + 2 .4 k ( T ) Force Summation Diagram 3.39 Force Summation Diagram Solving for the support reactions; [ I M E = 0] 10k(14') + + ^ ( 1 0 ' ) + - ^ ( 4 ' ) ^ 0 l> « ) A = loV 2k; A., = 10k; [ i f ., - o ] - r : . in k o E x = -H-10k (->) [IF ,, - C'| Ey = 0 E,. I I Ilk 10k (A y) Ay - 10k =0 3.40 Solving for the support reactions; [E M a = 0] + D v (I2 m ) 1 8 k N (8 m )9 k N (4 m )-0 D „ = +15kN (T) [2 F y = 0] t A y - 1 8kN l 15kN - 0 A ,. ' l.'k N (T) [2 T « = 0) A x + 9kN - 0 A, " 19kN (<-) Solving for the support reactions; |I.V1, = 0] -2 iV - I 5 u '( 8 ' j : r .,(6 ') = 0 ( :•j |SFX= 0j +200# - A ;: = 0 Ax = +200* (<—) [Z F v = 0 ] 150# + A „ = 0 A v = + 1 5 0 * (T) 3.42 8k 3.43 Support reactions for the entire FBD: [ir , - o] c , i) |X M , = 0 ) - 1 0 k ( 2 4 ') + C 1,(<1«,) = 0 Cy [IF,, 5k = 0] (T) 5k 10k + 5k + A,, = 0 Av = +10k (T) Using the left half of the section cut; DGy = ys DG; DG_ = y* DGF [IF. n] • / D G 5 k + 10k - 0 (Dcy DG- 8 .3 3 k (C ); |IM . DGX= 6.66k; 0] -5k(2-r) AB= 14.8k (T) [IFX= 0] + FG + (- 6.66k) + (4,8 k ) = 0 ' (DC-,) ' FG = +1.87k (T) DGV= 5k lllki 21') AB| 2f?) ' (A B )' 0 3.44 Support reactions for the truss: |i!H. 0| A x = 0 [EM. - 0] - 2k(25‘) - 4k(35') + Fy(40) - 0 Fy .. 14.75k 0 [ill;, = 0| A., - 2 k - 4k t 4.75k = 0 A., ••• ■1.25k |1| Using the left side of the section cut; | I'M D= 0] ~ 1.25k(2.5‘) ••• Gil |5V-Sk‘i = 0 ■ ’ GH -+3.61k (T) [EMH- 0] C'D|5V3) 1.2.>k(20l) - 0 CD = -2 .89k (C) |EM,. 0] - 1.25k.(15')+ 3.61k|5V3) t X(HD)|5V3) t ^ ( H D ) ( 5 | = 0 '•GH-i I ID -1.44k (Cl ' ' (K D J ' ' (H D .) 3.45 Solve for BG: R ( i ;: — '/■ i H Ci:B G y = % 4 B G [1M m-■ 0] -3000*(20')- 4BG)(12') ■H000#(2tf) ‘ 1000#(10') = 0 B G - 2700' (C) Solve for HE: [EM b = 0] -3 0 0 0 ’ (30') ! HE{16') I 1000'(10') I 1000*(20'i I 1000*(30') -■ 0 HE = +1875# (T) Solve for HB: I IB.. = %.4:,(HB) [ZM n --0] + 3000*(10‘) + -rfr(HB)(30') HB = +1179* (T) 1000*(10') 1000*(20') 1000*(3ff) = 0 3.46 |IM g = 0] = 2 kNj-l m) + 4kN(2 m) - DE(3m) - 0 DK - • 5..13UN (C) [XMZ = 0] + 2kN(2m) - AB(3m) - 0 AB = -rl.33kN (T) [XF„ = ()] -2 k N -4 k N -- )<BC = 0 BC - -10kN (T) 3.47 In this example, a moment equation will be used to determine the effective tension counter. From (ZM,.=0), A,causes a counter-clockwise rotation about point O. The only tension counter capable of resisting in the clockwise direction about O is member DG. Therefore: r a v u = 01 - O'i - S ^ 3 6 0 ^ + A„ (312') = 0 V II " ' (D O ,) DG v 11 ' (DC-y) -25k (T) To solve for DF: [2M o - o] ^ ( 3 0 ') iDKj J ^ C 24') 24k(72') = 0 (DK;) DF = 54.2k (C) To solve for EG: [ZMd = 0] - 24k(48') + EG(3O') = 0 ECj —-i-38.4k 3.48 Ax - •20k: Av - 20k; A - 20V2k [XFy = 0] : 20k - 5k 5k 1Ok - B.; = C B, - 0 HD [2 3 ;= 0] ' Bx 20k - c < - \ B. = 20k [XI-;. ... 0| + E D y ED., = 5k; 5k - 0 ir> -5 V 2 k (T) / o- A EF 5k [XFV- ()] + FCy -1 0 k - 5 k = 0 FCV= 15k; 5k 10k FC -- 15>/2k 3.49 800# ,400# [EFy = 0] + Ay + 400# - 800# = 0 Ay =+400# (T) [ 2 ^ = 0 ] + AX- 693# = 0 Ax -h Ax = 693* (-») - M ra [ZMA= 0] - M r ^ + 693#(81) +400#(6') -8 0 0 #(6') = 0 clockwise Ay MRa = 3144#-ft Ay = 400# 3.50 FBD of the entire frame: [SM 0 = 0] +A lc(9,)-3 6 0 #(8') = 0 A x =+320# (<-) [2 F* = 0] G* - 3(20# = ° G x =320# (-») FBD of the horizontal beam DBE: [XFx =0] Bx = o [XMB= 0] + D (2')-360#(4') = 0 D = F = 720* [XF =0l + BV-7 2 0 #-360* =0 1 y 1 y (D) By = 1080* Using the result for By = 1080" proceed to FBD of the inclined member ABC: [ZMC= 0] + 1080'(2') - Ay( 6') + 320'(6') = 0 Ay = +680' (T) [SFy = 0] (+ 680')-1080'+ Cy =0 (A y) < B ,) Cy = +400' Return to the FBD of the entire frame and solve for Gy; [SFy = 0] + (6 8 0 ')- Gy - 360' = 0 (A,) Gy =+320'(l) Use the FBD of the inclined member CFG; [EFx =0] + (3 2 0 ')-C x = 0 Cx = 320' (Q .) fZF = 0l -3 2 0 ' + 720' - Cv = 0 v 1 (o,) y C = 400' y 3.51 FBD (a) FBD(b): [XFk = 0] b x = 0 [XMa = 0] -100% (4')(2') + By(10') = 0 By = +80# [lF y = 0] + Ay -100% (4') + 80* = 0 Ay = +320* FBD(c): [ZFx = 0] Cx = 0 [ZFy = 0] - 80# - 200* + Cy = 0 Cy = 280* [ZMc = 0] +80#(6') + 200#(4 ')- M Rc = 0 M Rc =+1280*“ft 3.52 FBD (a) Support reactions: [XMa = 0] - 8kN(6m) + B(4m) = 0 B = 12kN (->) [SF =0 L x =01J - Ax +12kN |,Bj A k = 12kN (<-) [XFy = 0] + Ay - 8kN = 0 Ay = 8kN (t) Joint F: [SFx = 0] - 0.707DF + 0.707EF = 0 DF = EF [ZFX= 0] + 0.707DF + 0.707EF - 8kN = 0 2(0.707DF) = 8kN DF = 5.66kN (T); EF = 5.66kN (C) 3.52 - c o n t’d [EMC = 0] +12kN(2m) - 8kN(2m) + DE(2kK) - 5.66kN(2V2m) = 0 DE = 8kN (T) [XFx =0] Cx-12kN-(0.707)(5.66kN) = 0 Cx =16kN [XFy = 0] + 8kN - Cy + 8kN - (0.707)(5.66kN) = 0 Cy=12kN 3.53 Support reactions: [XFx =0] Ax = o [EMa= 0] - Dy(12') + 500'(4') = 0 Dy= 166.7' (T) [SFy = 0] +166.7' - 5 0 0 ' + Ay = 0 Ay = 333.3'(1) Figure (b): [ s m a = 0] - c y(9‘) + 500'(4') = 0 Cy = 222.2* [£Fy = 0] + 222.2' - 500' + 333.3' - ABy =0 ABy = +55.5' Figure (c): [£MB = 0] + 55.5'(4')-ABX(5') = 0 ABX= +44.4' [2FX=0] + BAx- A B x =0 BAX= +44.4# [2Fy =0] - B A y + (55.5') = 0 BAy = +55.5' Figure (b): p Fx = o] - c x + (44.4#) = o Cx = +44.4' 3.54 R, = 400 */h (181) = 7200# R 2 = 600 Jft (6')3600# [XMA =0] Ey(20')-7.2k(4,)-3.6k(22') = 0 Ey = 7.56k [XFy = 0] + Ay -7 .2 k -3 .6 k + 7.56k = 0 Ay = 3.24k [XFx = 0] A x = 0 FBD (b): [IM D= 0] - By (18') + 7.2k(4') - 3.6k(3') = 0 By =3k [lF y =0] + 3k + Dy -3 .6 k -7 .2 k = 0 D y = 7.8k FBD (a): [XFy = 0] + 3 .2 4 k - 3 k - C y =0 Cy = 0.24k [IM b = 0] + Cx(16.2k) - 3.24k(l') + (-0.24k)(9') Cx = 0.333k [IF x = 0] + Bx - 0.333k = 0 Bx = 0.333k FBD (b): [IF X= 0] - 0.333k+ DX= 0 Dx = 0.333k 3.55 Ri = 4243# 3000# '600# R2 = 1560# L 1440# R, = (100 %)(30V2') = 4242.6’ R, = R, (100%)(30V2') V2 V2 = 3000 R, = 4Ri^ = 3000* VT R2 = (6 0 % )(% x 2 4 ') = 1560# R2,= % (R 2 )= 1 4 4 0 # R2 =X3(R2) = 600# From FBD (b): [XMA = 0] -3 0 0 0 #(15')-3000#(15)+B![(30,)+ B y(30,) = 0 From FBD (c): [£MC = 0] -6 0 0 #(5,)-1440*(12,) - B x(24,)+ B y(10,) = 0 Solving the two equations for (FBDb): simultaneously, B = 286# ( ^ ) By = 2714# (T) The same forces are equal and opposite for FBD(c). From FBD (b): [E F X = 0 ] + 3 0 0 0 * - 2 8 6 * - A x = 0 A x = 2 7 1 4 * (« -) [Z F y = 0 ] - 3 0 0 0 * + 2 7 1 4 * - A y = 0 A y = 2 8 6 * (T) From FBD (c): [E F X = 0 ] + 1 4 4 0 * + 2 8 6 * - C x = 0 C x = 17 2 6 * ( « - ) [Z F y = 0 ] - 2 7 1 4 * + 6 0 0 * + C y = 0 C y = 2 1 1 4 * (T) 3.56 2kN FBD (a): [ Z M A = 0 ] + 2 k N ( 4 m ) + lk N ( 2 m ) - lk N (1 .3 3 m ) - D y (2 .6 6 m ) = 0 D y = 3 .2 6 k N (4) [Z F y = 0 ] + A y - ik N - 3 . 2 6 k N = 0 A y = 4 .2 6 k N (T) 3.56 - cont’d Using FBD (c): [ lF y = 0] + B y - l k N - 3 .2 6 k N = 0 B y = 4 .2 6 k N [Z M d = 0] - 4 .2 6 k N ( 2 .6 6 m ) + lk N ( 1 .3 3 m ) + B x(3 m ) = 0 B x = 3 .3 3 k N [S F x = 0] - 3 . 3 3 k N + D x = 0 D x = 3 .3 3 k N Go back to FBD (b) and solve for Ax. [ I F x = 0] - 2 k N - l k N + 3 .3 3 k N - A x = 0 A x = 0 .3 3 k N 3.57 [ZFy = 0] - A y +152* = 0 G x = 3 7 6 # (« -) P F X= 0] DX=376#H [ZFy = 0] +752#- D y =0 ( Gy) Dy =152* (I) From FBD (b): [z fx = o] +1900# - a x -3 7 6 # A x = 1 5 2 4 ' (< -) =o 3.58 1’ W = (r)(3')(l')(l50% 3) = 450# Pmax=CD'xh=(35%,)(3') = 105%2 p = O0P™ x h x 1'= (/2)(105%,)(3')(1') = 157.5# M om ents about the toe @ A: m o tm „ = P x 1 - (157.5#) X l '= 157.5#—ft. M RMi = W x 0 .5 '= (450#)(0.5') = 2 2 5 # - f t. SP = j ^ = u ,,,. 2 2 5 * - f l - = 1 .4 3 < 1 .5 157.5#-ft. R etaining wall does not m eet the overturning requirem ent. R = tJ ( W ) 2 + ( p f = t/(450)2 + (157.5)2 = 477# P=157.5# <toe) 4 r pmax- x = ° , 5' Bearing pressure check: M rm. ~ M 0TMa (2 2 5 * -ft.) - (1 5 7 .5 # -f t.) W (450#) X n , p| x = 0 . 1 5 ' < ^ = % = 0.33' M axim um bearing pressure at the toe is: = 2000 P sf < 3 0 0 0 p sf (allow able) Pmax = ^ - = OK 3.59 W ,= X (1.5')(1.5')(1')(150% 3) = 168.75# W2 = ( 4 ') ( l.5 ') ( r ) ( l5 0 % ,) = 9 0 0 # W3 =(1')(5.5')(1')(150% 3) = 8 2 5 # WT = 1 6 8 .7 5 # + 9 0 0 # + 8 2 5 # = 1894# Pmax= a > x h = (3 0 % 3 )(5 .5 ')= 1 6 5 % 2 P = >^pmax x h x 1'= > ^ (l6 5 % 2)(5 .5 ')(r) = 4 5 4 # m o tm = p x % = ( 4 5 4 # ) ( 1 . 8 3 ' ) = 8 3 1 # —ft. M fl = (W 1)(l') + (W 2)(0.75l) + (W 3)(2') M a = (I 68 .8 # )( r) + (900#)(0.75') + (8 2 5 # )(2 ‘) M a = 2 4 9 4 # -f t. 3.59 c o n t’d But, M A = WTx b , (2 4 9 4 # -ft.) b = j —--------- -^ - = 1.32 (1894#) M rm = M a = 2 4 9 4 # -f t. £r M rm (2 4 9 4 # -ft.; M otm (8 3 1 # -f t.) O K, w all is stab le x=O.80’ R = V(W T )2 + (P )2 = ^ (1 8 9 4 )2 + (4 5 4 )2 = 1948# .. M rm - M otm (2 4 9 4 # —ft.) - (83 l# - f t.) WT 1894# = =2 0 . 88 ' = 0 .8 3 '< x = 0 .8 8 '< 2 ^ / = 1.76' w ith in the m iddle third P max = - ^ r (4a - 6 x) = ^ J ( 4 a (2 .5 ) p max = 1430psf < 3 0 0 0 p s f X 2.5 '—6 x 0 .8 8 1) OK = 3.0 > 1.5 3.60 Pma* = “ 'Xh P = ^Pn»*X hxr = {*>%,)(*) = P = K (3 2 0 % 2)(8Xl') = 1280# W1=(l')(8')(r)(l50% ,) = 1200# W2 =(3')(1')(1')(150%3) = 450# W3 =(3')(7')(l')(l50% 3) = 2520# WT = R = -^ (4 1 7 0 f 1200#+450#+2520# = 4170# + (1 2 8 0 )2 = 4 3 6 2 # Wr=4170# b=1.92- M rm = MA = W,(0.5') + W2(2.5') + W3(2.5) MA =(l200#)(0.5')+(450#)(2.5') +(2520#) =8025#-ft. ■ U 1280# b = 8025 # - f t .= 1 9 2 , 4170# 2.67’ M 0Tm = P X % :r M .m M otm = ( 1 2 8 0 # ) ( 2 .6 7 ‘) = 3 4 1 8 # - f t . 8025#-fl. M rm -M OK 2^ = 2 67' ^ = % = 1-33' :L = 2 .3 4 > 1 .5 3 4 1 8 # -ft. otm (8 0 2 5 WT 3418) ^ ^ 4170 X<M 2W 2 (4 1 7 0 ) Pmax=1 7 = 3(U) =2527^ 2<30°° PSf •■•°K 3.61 W i = ( 1') ( 3 ,) ( 1') ( 1 5 0 % 3 ) = 4 5 0 # W 2 = ( l ' ) ( 8 ') ( l 5 0 % 3) = 1 2 0 0 # W T = 4 5 0 # + 1 2 0 0 # = 1650# P maX = ( 4 0 % , ) ( 8 ') = 3 2 0 % t2 P = X ( 3 2 0 % 2)(8 ')(1 ') = 1 2 8 0 # R = ^ (1 6 5 0 )2 + (1 2 8 0 )2 = 2 0 8 8 # M rm = M a = W ,( 1 .5 ') + W 2( 3 .5 ') M a = (4 5 0 # ) ( 1 .5 ') + ( 1 2 0 0 # ) ( 3 .5 ) = 4 8 7 5 # - f t . M A = W T x b = 4 8 7 5 # -ft. b = 4 8 7 5 # -f t. = 1 9 5 , 1650# M o tm = P x % = ( 1 2 8 0 # ) ( 2 .6 T ) = 3 4 1 8 # - f t . S.F. = - M b m _ = 4 8 7 5 # - f t . = L 4 3 < L 5 M o tm 3 4 1 8 # - ft. N o t s ta b le f o r o v e r tu r n in g t m rm ~ m otm (4 8 7 5 ) WT (3 4 1 8 ) ^ 1650 = 1.33' x < /4= 2W 2 (1 6 5 0 ) p- = i ^ = i ( ^ ) = OK fo r b e a rin g ^ = % = 133' 1 2 5 0 p sf< 3 0 0 0 p sf p re s s u r e 2^ = 2.67- 3.62 pnax = co'xh= (5 .5 y m!)(5.5m) = 30.25*%i P = >£pmax(h)(lO = X (30.25% )(5.5m )(l') = 83.2kN W, = (0.5m)(5m)(lm)(23.5“/ n,) = 58.8kN 2m W2 = (0.5m)(3m)(lm)(23.5kl// ,) = 35.3kN 0.75m- W3 = (2m )(5m )(lm )(l8% !) = 180kN Wi 1.5m-- m Wa Pm ax R = -yjw* + P2 = t/(274)2 + (83.3)2 = 286kN = Ma = W, (0.75m) + W2(1.5m) + W 3(2m) M a = (58.8kN)(0.75m) + (35.3kN)(1.5m) + (180kN)(2m) b = 1,67m - W t = 274kN P = 83.3kN f R = 286kN u 457kN - m b = -------------- = 1.67m 274kN Mn :Px = (83.2kN)(l.83m) = 152kN - m S.F. = -^a*L= 457kN~ m = 3 ,0 > 1.5 Mn 152kN -m x = 1.11m ^ = 3 n ^ = im /. OK 2^ / = 2 m (4 5 7 -1 5 2 )k N -m = 1. 11m x = 1.1 lm < 2^ Pmax = (4a - 6x) = (4 x 3m - 6 x 1.1 lm) P .„ = !©■%■ (3400psf)> 1 4 3 .6 % , (3000psf) Overstressed in bearing 3.63 W, =(1.33,)(14.67')(1,)(150%,) = 2927# W2 = (1.33')(8')(r)(l50%,) = 1596# W3 = (5.33')(14.67')(1')(150X1») = 8992# WT = 2927#+ 1596#+8992#= 13,515# P - = ( 4 0 /n,) (l 60 = 640% , P = ^ (6 4 0 % !)(16')(1')=5120# R = ^/w 2 + P2 = ^/(13,520)2 + (5120)2 = 14,450# = MA = W,(2') + W2(4') + W3(5.33') MA = (2927#)(2') + (1596#)(4‘) + (8992#)(5.33') Ma =60,200#-ft. Ma = WTx b = 60,200#-ft. , 60,200#-ft. ^ _ b = --------------- = 4.45' 13,520# m ctim = P X /'j Mb S.F.= M01m = (5120#)(5.33') =27,300#-ft. 60,200#—ft. = 2.2 >1.5 27,300#-ft. OK for overturning ^ = % = 2.67' 2)4 = 5 .3 3 ' RM CTIM 60,200-27,300 = 2 .43'< a^ WT 13,520 Kmax ™ = 3 1M 202 = 3x 3(2.43') P K .'. exceed the allowable bearing pressure Chapter 4 Problem Solutions 4.1 CO= (50 psf)x(5') = 250 lb /fj R (1.250 lb .) R (1,250 lb.) FBD of beams B-1, B-2, B-3 Beam B-1 (1,250 lb.) Beam B-1 (1,250 lb.) 10' 10' (COl. Ar 1) (1.250 lb.) FBD of girder G-1 Girder G-1 (partial framing) CD (Col. D-1) (1.250 lb.) 1250lb. = 250 lb /fl 10' t FBD of girder G-2 -------------------------------------------------------------- 1 T C o l D-3 Col.A-3 37501b. FBD o f girder G-3 (B) ! 1250 ! (C) G 1 (5) ! 1250 ! N\ p e o / / .1250 <D— Col. D -1 1 2500 lb. Col. D-3 3750 lb. (A) G >- CD=250lb/ft 1- u u i u i 1250 o 3750 B1 X B1 a / b 1 250 3 \ 1250 - B2 1250 3750.. (tySummary o f Column Loads 4.2 ®snow= (25 lb ./It 2)x(2‘) = 50 lb /It Slope conversion: 11111 n n 11 n 1 1 1 1 1 1 1 n i n n n u DL = ( l 0 1 b . / f t . 2) x 12.37 12 ( 2 ') = 2 0 lb . / f t . fihb \ ^width) coSnDW = ( 2 5 1 b . / f t . 2 ) x ( 2 ') = 5 0 lb ./ f t. (Inb. I width I “ •n*i - “ s^ + ^ dl = (501b./ft.)+(20.61b./ft.) = 70.6lb./ft. Snow loads are assum ed to be on the horizontal projection of the roof while the dead loads are applied along the length of the rafter. Both load conditions are combined to simplify the computations. Generally, the dead load is converted into an equivalent horizontal load and added to the snow load. Determination of the dead load a s an equivalent horizontal load requires a slope conversion. Ceiling Joist: DL + LL= 15 lb.At.2 CO = (15 lb /ft 2)x(2") = 30 lb /It • W W U U H 10' Wall A 1501b. Ceiling Joists U i U U H U U i [interior Wall 150+180= 330 lb. \ Wall B| 1801b. co = 151 b./ft. x 2ft. = 3 0 lb./ft. 3rd floor walls: Wall A: Roof = 1463 lb /It .478 lb /ft I 165 lb /ft 7771b./2' = 388 lb./ft. Ceiling = 150 lb./2' = 75 lb./ft. 463 lb./ft. W alls Wall - 80 lb /It Wall B: W all— 80 lb /ft Roof = 777 lb./2' = 388 lb./ft. Ceiling =1801b./2' = 90 lb./ft. Wall A 543 Ib./ft. l Int. Wall 245 Ib./ft. LWall B 558 lb /ft Interior Walls: Ceiling = 330 lb./2' = 1651b./ft. 3rd Floor: Wall B = co x 6'= (60 lb./ft.) x (&) = 360 lb./ft. Interior Wall = (co)x(S + 61) = (6 0 lb ./ft.)x (l 1') = 6 6 0 lb./ft. 478 lb./ft. Wall A: 543lb./ft.+300lb./ft. = 84-3lb /ft. (wall above) Wall B: (3rd floor) 5581b./ft.+3601b./ft. = 918lb./ft. (u/all above) (3rd floor) Interior W all: 2451b./ft.+ 660 lb./ft. = 905lb./ft. (u/all above) (3rd floor) CD= (60 lb./ft.2)x(1') = 60 lb./ft ■u w m 1 10' m . -----------------Tz---------------- 1 Hr f Wall A Inter. Wall Wall B 1 300 lb. 660 lb. 360 lb. 2nd floor: Wall A = cox 5 = (6 0 lb./ft.2) x ( 3 ) = 3 0 0 lb./ft. Wall B = co x 6'= (6 0 lb./ft.) x ( 6') = 360 lb./ft. Interior Wall = (co)x(5'+6') = (60lb./ft.) x (11') = 6 6 0 lb./ft. 4.2 cont’d. RA=12,660 lb. R,nt =23,880 lb. Beam - 20’ span: (0„U = w tolal =(923 lb./ft.)+(3001b./ft.)+(431b./ft.) = 1266 lb/ft. ( wall above) (2nd floor) x L = (1266lb./ft.)x(20) =12 60Q[b End reaction R = A (beam weighl) 2 2 Beam - 28’ span: “ umi = “ total =(9851b./ft.)+(660 lb./ft.)+(61 lb./ft.) = 1706 lb./ft. (wall abov*) (2nd floor) (beam weight) a) xL (1706 lb./ft.) x (28') End reaction R. . = —— ------= -------------— -—-— - = 23,8801b. 2 2 4.3 Roof Loads: co = 6 6 lb /ft cn 764 lb per 2‘ Front wall Roof Rafters 12' 14' 424 lb 396 lb Roof beam Snow = 20 psf Roofing = 5 psf Sheathing = 3 psf Rafters = 3 psf Ceiling = 2 psf Total DL= 13 psf 396 lb. per 2' Back wall Design Load = SL + DL = 20 psf + 13 psf = 33 psf coSL+DL =(331b./ft.2)x (2ft.) = 66 lb./ft. (rafter spcg) P Front wall “ ►wall = 6 4 Floor Loads: Occupancy (LL) = 40 psf Floor = 5 psf Joists = 3 psf Total DL= 8 psf Design Floor Load = LL + DL = 40 psf + 8 psf = 48 psf w d u l l =(48lb./ft.2)x (2ft.) = 96lb./ft. ( joist spcg) co = 96 ib./ft. r 672 lb. per 2' (front footing) f1248 lb. per 2' n (floor bea m ) : 576 lb. per 2‘ (back footing) 4.3 co n t’d Front footing: co = (446 lb./ft.)+(336 lb./ft.) = 782 lb./ft. (Wall load) (floor joisls) Back footing: co = (262 lb./ft.)+(288 lb./ft.) = 550 lb./ft. (Wall load) 4920 lb. (Col.) 2460 lb. (C0L) (D = 624 lb./ft. ' H i i i n L 6' i i w 1 6' u , , | 4332 lb. 3744 lb. 6664 lb. 37441b. Ext. post Int. post Int. post Int post 8664 lb. (Int. post) Critical footing (floor joisls) 4.4 Roof Loads: Snow = 25 psf Dead Load = 15 psf —(S L + D L ) x (8 1) + w beam (Tnb. widlh) c o ^ = (40 lb./ft.2)x ( 81) + 151b./ft. = 335lb./ft. Beam Reaction: (24’ span) (Wall or beam) co^xL (335lb./ft.) x 24' R,■beam : 40201b. or u/all 2x4020 lb. = 80401b.(every 8') Girder G-1: Spacing of beam should be treated as concentrated loads every 8' Girder G-1 supports concentrated beam reactions from both sides plus its own self (0 Wall (17k) ^ g ird e r = 50 lb./ft. weight. Since the beam reactions occur at 8’ o.c., they must be represented as concentrated loads and not reduced to an Girders Column (42.2k) equivalent uniform load. Column: The column load includes the girder Wall (17k) reactions from both sides plus the tributary weight of the girder. P = 42.2k fPl h = 30' Column 0 = 255 lb /ft. (trib. width = 6‘) L= 16' Beam B-2 G -2 (2040 lb.) Beam B-2: (Tributary width = 6’) + > Wall (2040 lb.) “ snow = (251b./ft.2) x (61) = 150 lb./ft. coDL = (l5 1 b ./ft.2)x (6 ')+ (l5 1 b ./ft.) = 1051b./ft. (b e am w t.) codl +sl = 150 lb./ft. + 1051b./ft. = 2551b./ft. 4.4 co n t’d Girder G-2: Beam reactions are treated as concentrated loads spaced at 6’-0” o.c. Truss joists are spaced close together (2' or less),therefore, the reactions may be treated as an equivalent distributed load on girder G-2. 20401b. 20401b. 20401b. 20401b. ^otal - * I 1 T T '- t r h ■ m i ' 1I H 1- I W i L = 30' 12,5701b. Girder G-2 12,5701b. The tributary width of load from the truss joists onto the girder equals half of the span or 12. “ snow = (251b./ ft.2) x 12' = 300 lb./ft. coDL = (l81b./ft.2) x 12'+(501b./ft.) = 266lb./ft. (girder weighl) “ toul = “ sr™ + w DL = 566 lb/ft. 4.5 =20 psf x ( 16/ l 2 ft ) = 26.7 plf Critical roof joist: (16” o.c. spacing) Loads: D L = ( l 2 1 b . / f t . 2 ) x ( 1 6 / 1 2 ) = 1 6 lb . / f t . Joist Wt. = 4 Ib./ft. coSL = ( 2 0 FBD of the critical inclined roof joist c o 'd l lb ./ft.) = (5 /4 ) x ( 1 6 /1 2 ) ' = 2 6 .7 X (2 0 lb ./ft.) = 25 lb ./fL lb ./ft. (slope adj) “ total = cos l + cod l = 2 6 .7 lb ./f L + 2 5 1 b ./f t . = 5 1 . 7 lb ./ f t. c o 'D l = ( 5 / 4 ) x ( 2 0 plf) = 25 plf “ total = “ SL + ® DL “ total = 26.7 p lf + 25 p lf = 5 1 .7 plf 17' 439 lb. 439 lb. FBD of the equivalent, horizontally projected roof joist co = 2x(439 ib/16")x(i2/16ft.) Ridge Beam: The equivalent concentrated load from the triangular load distribution is equal to: R = Y 2 x ( 3 4 ') x ( 6 5 9 l b ./ f t.) = 1 1 ,2 0 0 2 M a = - ( 1 1 , 2001b.)(17') - ( 4 0 lb ./ft.)(3 4 ,)(17l) + B y (2 2 .6 7 ') - 0 .-. B y - 9 ,4 2 0 lb. ^ F y - - ( 1 1 , 2 0 0 1 b .)- ( 4 0 lb ./ft.)(3 4 ') + (9 ,4 2 0 1 b .) + A y - 0 A y - 3 ,1 4 0 lb. lb. 4.6 1). Rafters ®SL = 6 0 'b4 0>SL = 60lb/ft Ridge beam Slope adjusted deald load: Slope adjusted deald load: ffl,DL = ( 3 6 lb ./ „ . ) x ( 1 2 .6 5 / 12) = 3 0 lb ./ft Q)’DL = ( 3 6 'b /,) x ( 1 3 /12)= 3 9 'b /f a>SL= 60|b/ft aiSL = 60 lb /ft “ Total = 3 8 'b 4 + 60 'h /ft = 9 8 'b / ft “hotal:= 39 lb / ft L = 14' 686 lb./24„ Bearing wall + 60 'b / ft =99 lb / ft L = 16' 686 Ib/24„ Ridge beam 792 lb724" Bearing wall FBD of an equivalent horizontal rafter - left 792 lb./24„ Ridge beam FBD of an equivalent horizontal rafter - right 2) Short wall/roof beam col. 4.6 co nt’d (3) Walls: (4 ) In te rio r C o lu m ns: S e e (2) above. (5) Floor Joists 0) =(50 psf )x( 1 ffl = 66.7 = 66.7 *>/ft t T* ± jL= 14' L= 16' 534 /• 467 (Wall) (Beam) FBD o f th e flo o r jo is t - le ft (6) a n d (7) F loo r Beam and P o st 7545 lb. (Beam) 534 /-; (Wall) FBD of the floor jo is t-rig h t 4.6 c o n t’d (8) Foundation Walls: (8) Continuous Footings m.;j, = («/13)'x(3')x(150 "•/1 .•) = 300 it Footing A (i 25:; Footing B (W- .)'x(150 .______... = 100 • /■■■ q = 2000psf; qnet = q - base wt. qnet = 2000psf - 10Opsf = 1900psf Footing A P/a = (323 /j + 300 " )/(1.25' x 1') = 898 psf < 1900 psf (OK) Footing B P/a = (926|b /|t + 300 Ib./j )/(1.25'x 1■) = 981 psf < 1900 psf (OK) (9) Critical Pier Footing P = 15,090 lb. Base = (!V|'))‘x(150 I',' ■) = 100 ■'! : qM.| = 2000psf - 10Opsf = 1900psf P/A = (15,090 lb.)/(x2) = 1900 » /,2 x- = 7.94 ft 2; x = 2.82' = 2-10" square 4.7 Jack Rafter (Typical span): = 25psfx (24/12 ft.) = 50 plf Roof DL: coDL = (l21b./ft 2 Jx (2'j = 24 lb./ft. tH t “ dl (honz pp.']) = 0 V 12) ( 2 4 = 3 0 lb / f t - Snow: coSL = 12 5 1b./ft 2) X ( 2‘) = 5 0 1b./f't. FBD of a typical jack rafter = 50 plf + 30 plf = 80 plf i i u u n m CD,,,*, m = wSL + w'DL = 50 lb./ft. +30 lb./ft. = 80Ib./ft. (horiz pro)) 101 400 lb. 400 lb. FBD of the equivalent, horizontally projected jack rafter This rafter represents the maximum load condition onto the hip rafter since other rafters Hip Rafter diminish in length. The spacing of the jack rafter along the length of the hip rafter is: /. to = 2,xV 2 = 2 8'>1 x (4001b.) = 284 lb./ft. 4.7 cont’d Ceiling Joists: (2’ o.c. spacing) o'< d i = ( 7 ( b ./f t..2 ) X ( 2 ') = 14-1 b . / f 1:. Ci) = 54 p(f t 1 111 t TT T t 2161b. Wall 1 ./ft2 ) x (2'j = 40 l b . / f t . cotota| = 14 l b . / f t . + 40 l b . / f t . = 54 l b . / f t 270 /-. 1u i (20 l b Beam B-1: B eam B-1: ic e o ib . Col. = 1 324 lb. Wall 5401b. Beam B-1 co = i 12' 81 n T 540 lb. 1 i » = 270 lb./ft. 2 ft. ■■ jreo ib. itre wall B e a m B -2: (!) = 1 0 8 1 1 '/, + 2 7 / = 135 I '/ Beam B-2: Joist load: (span = 8 ') L = 12' CD 810 1b. wall ( 4 1) = 127 lb ./ft. ) X = 108 lb ./ft. (tjrib w id th ; 810 1b. Col. B e a m B -3 : Beam B-3: co = 135 ib /ft The load condition on beam B-3 is t r r t i identical to beam B-2. I 540 Ib. 540 Ib. w D.lL = 1351b/ft. 4.7 co n t’d Interior Column: Loads to the column Ceiling joist: 1081b. Beam B-1: 10801b. Beam B-2: 8101b. Beam B-3: 540 lb. P = 2538 lb. In addition to the vertically applied loads on both the jack and hip rafters, truss action develops due to the ceiling tie condition. An examination of the truss action for each rafter case will be performed. The three dimensional truss solution for the hip rafter was not covered in the text but can be done relatively easily using readily available structural software. 4.8 600# H G F E [EFX = 0] + 600#-G A X- ECX= 0 Assuming GAX= ECX Then GAV= ECV= 300# 600# H 600 G 300 F 300 E 4.9 r „ I200#(16‘) [l'M A =0] By = ----- —----- = 1 3/0# I ; i [2Fy - 0 ] Ay =1370# (!) Assume Ax = B, Then; A.x = Bx = 600# Gy 1200# Dyj r Gk K FH n H D j2 M „ = 0] FH.,(4'i -6 0 0 # (’Iff) = 0 Di !;11. = 2400#; CE FHV= 2400# * \ c [SE. =0] - Gv + 2400#-1370#= 0 G y = 1030# [vR =0] +1200#-G x +2400#-600#= 0 Gy = 3000# A Ax - 600# — v•A » = . . . . , [SMr; =0] C E ,(4 ')-6 0 0 # (1 6 I) = 0 1370# C E ,= 2 4 0 0 # ; CEV= 2400# [2 Fz = 0] - Dx + 2400# -600# = 0 D, =1800[2Fy = 0] + Dy - 2+00#+1370# = 0 D. =1030.7 1030 11030 3000 F G IT J2400 2-100 2136 2400 D 1800 p, , Bx = 600# By = 1 3 7 0 # |v F = 0 | + 4k-G K . =0 GK, = 4k; GK„ = 4 k [SFX= 0] + 4k + 6k + CE, Assume AQX ■ CEX AGv = CEX= 5k 4.10 co n t’d 4.11 Roof (20psfx10'=200«ft) F„ = 200^rt(40')=8000#/rt 2nd (20psfx10'=200#ffi) F, = 200#>Tt(40’)=8000#/(t A= 0] - 2000#(1 O') +1000#(5') + T(IO') = 0 „ 20,000-5,000 T = —:-------- :---- = 1500# 10' 4.11 c o n t’d 8000# A nnt. V- 2= — = 400% 2000# W =1000# , M= 20,000#-ft M = 2,000#xl0'=20,000#-ft. 4000# [2M B =0] -2 0 0 0 # (2 0 ')-2000#(1 O') + 2000#(51) + T(10') = 0 = 40,000 + 20,000-10,000 = 500Q# 101 [2M b =0] -20,000, “n-4000#(10l) + 1000#(5')+ 1000#(5') + T(10I) = 0 (M) T =5,000# aien bs „ £ - ,Z = ,lZ Z = y W SLSl "b #L0Z6 d zm6'p = ■ ■= x = v 7'% SL 8i = ( [’% o g i ) [ y ^ J - j^ o o o z : = ” nb y,Li.8 = #X?L9\ ((pe jdojs) % V V 9 = % v v \ + Y .o s = + '^ os = Z #W9l J9 d w t = .2xjsd z= n a W#09 = ,2XJSd92 = ns f t m t t t t m t t t t t m t t m m l js d 9 J = PEOI MOUS ZVfr Chapter 5 Problem Solutions 5.1 [EMC - 0] i 500# (3') c« . ,p BA._ g . Cy’ I'A > P :::: 500# B Av = 50(^ ( 3 ') = 7 5 0 # , . liAV BA - -50V 2r p - 750 V2 # A - K " x 2"=1 in.3 BAX(2') - 0 5 .2 Total are of marquee = 20'xl0'= 200ft/' Total load = 200ft2 x 100%, -■=20,000# Since the framing is symmetrical, each rod carries an equal amount of the load. T.j, = T ^ sin 3 0° = 0.5TAR [EM,. = 0] i 10k(5') 0.5X^(10*) - 0 T„,v - 10k P f.r = —; ‘ A 10k 0.-ki r in.^ ■ A_= _ P= ----‘-1' T 22%,, To the nearest Xs“'~ % " <l) For % " $ rod, A -0 .5 1 8 5 in.2 10k 1 = ---, =19.2ksi< 22ksi (stasl) 0.5185 in. (dtorable) stress is OK, within the stress range 5 .3 . p p . 120k on . 2 a) f = —; A = ---------- = 8.9 in. A rcqd 13.5%,* From the steel tables in the appendix; Use: W 8x31 (A = 9.12 in.2 P . 120k b) fp = 4-: \Ab=-----=„ =266.7 in.2 —; A b 0.45% For a square base plate: U se: 16.3"xl6.3" or 16J£"xl6)£" plate. c)* r p f= P—; A A Ah b 120k .-J . 2 = -= 40ft 3% , Use : 6.32' square or 6'-4-" square footing 5.4 a) Taking a 1' (12") strip; f = | - ; P = A x f = (48 in.2)x l5 0 % nJ=7200# But: P = Ybrx A x h h P 7200# ISO' - ^ - ( n o x ^ f t 2) - b) Taking a 1' (12") strip; f = —; P = A x f = 7 2 in.2x l 5 0 y , =10,800# A But: h= /,n P = yxA xh P yxh 10,800# (no*/n, ) x ( & e ) , 5.5 a) P = 20,000#; P 20,000# A 64 in A = 64 in.2 = 312.5j/ ; JlD b) P = 40,000#; A ^ ----4 since rod is threaded A = 0.3 0 2 in.2 . P = A 4000# 0.302 in.2 c) P = 40,000#; A = 4 "x4"— - = 15.4 i n 2 _ 4000# br* 15.4in.2 A = 8"xl2'= 96 in 2 d) P = 15,000#; f = 1510 0 0 # = l 96 in.2 A = 8"xL; e) P = 16,000#; Fv =120psi . P 16,000# 2 A„0., = — = ------- — = 133.3 in Fv 120%,« 133.3 in.2 = 8"xL; L = 16.7" 5.6 , „ P A 10,000# •> 71X2 D B = 1 0 ,0 0 0 # = 4,273psi 7 tX l2 I 4 JI 4 J b) [ZFy = 0] @ jo in t D ; -1 0 ,0 0 0 # + A D y + CD y = 0 But, A D y = CDy = 5000# .-.CD = 5,000V 5#= 11,180# P _ 11,180# A ” 1 in 2 , , P 11,180# . c) fv = — = —----------- r—r- = 12,660psi 2A 2 [rc x 0 .7 5 ^ / AD CDy ADy A D ,. **•* 1 CD 5 .7 S L 0.0024" 2.0" . e = — = -----------= 0.0012'“/,, 5.8 " r w a“ “ * 5.9 *— ^----PT \ 5 = 0.0033in./in. II Q 8 = ^-; 5 = eL = (0.0033'^n)x (8") = 0.0264 in 5.10 e= £ ; 5 = eL = 0 .0 0 5 '/n(50 0 'x l 2'»/() = 30 in 5.11 Consider a 1’ length of wall; Roof = 1’x10’x100psf= 1,000# Snow = 1’x10'x30psf = 300# Dead Load + Snow = 1300#/ft. Brick = 1 ’x(4/12)’x120#flt2 = 480# Tool lead at the base of the wall = 1780# Bearing area = 4”x12” = 48 in.2 , P 1780# .^ • f = — = -------- t-= 37.1 psi < 125 p a p A 48 in.2 .'. OK, w ithin stress allowable 5.12 a) wire weight(total) = 0.042% X 300'= 12.6# A , « t f , ,( O .I 2 5 ) - , 0 0 1 2 3 .n , 4 , P 4 12.6# A 0.0123 in.2 „ f. = — = ------------rr = 1024.4pSl _ F,n, *■allow . 65ksi q (S.F.) Paiiow = (2 1 .6 7 % t)(0.0123m 2) = 266.5# Wire wt. = 12.6# M aximum W = P - 12.6#= 254# 5 .1 3 ,) = ft|7„ 8=I k , AE 71X1.5 UN S - PL. A AE' rerd 2 9 x l 0 6%,i ) - PL 5E (2 9 ,0 0 0 # ) ( 2 5 'x l2 ^ ) _ o . 2 re,,<1 (0 .1 0 )(2 9 x l0 6%ii) A = fD l; D = M 4 Vn Use : 2" (b rod =m . = 1.9 S , (3 .1 4 5.14 A = 0.006 in .2 „ 5 = pl AE P = 16# E = 30x10s psi , 0.106T. ( o .o o e in /^ ^ o x io 6; ^ ) LN P 16# . b) f = — = -----------5- = 2667psi A 0.006in 5 .1 5 L = 90’-10” = 1090”; P = 60k F = 20 ksi; Upset rods, E = 29x10® ksi , a) . reqi P Ft 60k 20%, = — = --------- = 3 in. 2 Ttd A = — = 3 in 2 4 ,----- turnbuckle U se: d = , — =1.95" Era b) 5 = P L = a L = (20y . . ) C ^ ) =075„ AE E 29x10 Each turn = X " movement per rod (one thread) one turn on the tum buckle = movement 0.75" Number of turns = ------- = 1.5 turns 0.5" 5.16 5 = aLAT = (6 x 1O'6 /°F)(2 x 20'xl 2 %)(60°F) 5 = 0.173" 5.17 A ssum ing unrestrained movement; 5a, = cca,LAT = (12.8X 10"6/°F)(L)(55°F) = 704x 10^(L) Sco„c = « concLAT = (6.0 x Iff* /°F)(L)(l 5°F) = 90 x 1(T“(L) R estrained deformation in the alum inum panel: 5 „ = 5 A1- 5 _ = 6 1 4 x lO ^ ( L ) Stress required to restrain the alum inum by 6 1 4 x 1 0 ^ (L ): g_PL_fL ” AE_ E ’ r f _5E ” L 614xlO-(L)(lOxlO6X„0 _ . f = ---------------- ---------------L= 6140 p a L 5.18 a) 5 = aLAT Set 8 = 0.25" • AT = — = -----------------------------------= 53 4°F aL (6.5x10^ /°F)(60,xl2% ) AT = Tflnll- T m8 = 53.4° F Tfmll = 53.4°F + 70°F = 123.4°F (no stress condition) b) @T = 150°F 5 = aLAT = (6.5x 1(T6/°F)(720")(150° -123.4°) = 0.124" (restrained deformation) fL 8= — ; E 5E (0.1 2 4 ")(2 9 x l0 * /1\ f = — = ----------^ ----------- / n i = 4994 psi L 720" 5 .1 9 From the equilibrium condition; P = 100k [SFy = 0 ] fsAs + fcA c = 100k 8s = 5c =0.01" = 5 =— E f . 5E1. (0 01")(20X1 0 ^ .,). 2 42fai 3 Lc f 120" SE„ (0.01")(3xlO >X , ) c Lc 120" A rc(15j— A q = 0.25 ksi n 6 6 itl2 _ A 4 Substituting in to the equilibrium equation; 2.42( As) + 0.25(176.6 - As) = 100k 2.42(AS) + 4 4 .15k -0 .2 5 A S= 100k A s = 25.8 i n 2 A =150.8 in.2 0 . 01 " 5 .2 0 P = 180k A„„ = 7iD2 _ 71(12.75"-2x 0.375") 4 7CD2 Ail = ^ - A a 13 in.2 con= ^ ^ ^ - - 1 1 3 i n 2 = 14.7 i n 2 L= 30” From equilibrium; [ZFy = 0 ] fcA c + fsAs = 180k fc(l 13 i n 2) + fs(l4.7 i n 2) = 180k ........ (Eq. 1) From the deformation and strain relationship; 5= 5 =5s c 5= — E £k=Lk. ec e, ’ E 2 9 x l0 5 f = —- X f = -------- r- X f = 9.67f s E„ 3x10 .......... (Eq. 2) c Substituting Eq. 2 in to Eq. 1; 113fc +14.7(9.67fc) = 180k 113fc + 142fc = 180k fc = 0.71 ksi f =9.67(0.71) = 6.87 ksi s=s.=s.=Y ^ , = 6 .8 7 ./ (3 0 ') = o o o 7 1 , s Es 29x10 cv' 5.21 a) From equilibrium; P = 50k [ZFy = 0] Ps + P0 = 50k but; Ps = f sAs and P0 = f 0A 0 fsAs + f0A 0 = 50k As = 4 in 2 .... (Eq. 1) A 0 = 32 in .2 From elastic deformation; 5s = 5o (since the load is symmetrically applied) s PL 5 o = ----- and E = — and L„ = L„ AE L 3 0 f E 8 = — SO fs — Es fo E0 = — f = E , x f = 3 0 x l 0 ^ x f =155 3 E0 0 2x10 Substituting in to Eq. 2: 15f0(4 in.2) + f0(32 in.2) = 50k f0 = 0.543 ksi; fs = 8 .1 5 k s i b) 5 = 5S = 5 0 fL 8 .15V ',(8") 8 = — = ------ 7 V = 0.002" E 3 0 x 1 0 /yi ni Chapter 6 Problem Solutions 6.1 ,Y CG / X y = 5.67' Rot. I'....* C om ponent 5.33' AA X XAA 20 inr 5” 100 in." 9” 100 in.a 16 in 1” 16 in.:< 4" 64 in.3 24 in.2 8.5" 204 in.3 4" 96 in.3 y yAA 10" • • h" ■ \ 0“ YAA = 60 in.2 ZxAA A 320in. = 5.33" 60in." - = M A = 3 4 0 i^ =567„ A 60in. Ex A A = 320 in.3 ly A A 340 in. 6.2 y .Y ........................-k 4’ C om ponent AA X xAA y yAA A" «■ 0 2" s.. \ \ \ 24 In:' 2” +48 in.-' 3" +72 In.3 -2 in.2 2.5' -5 in’ 3“ -6in.“ 9 In.2 5" +45 In.J 2’ 18 In.3 \ 2AA = 31 in.2 - ZyAA 84 in.3 A 31in.2 LxA A = 88 in3 XyAA » 84in* 6.3 C om ponent AA - y= 1000ft.J A 132 ft. XyAA _ 702ft.A 132ft/ = 7.6' = 5.3' xAA y 160ft.2 8’ 1280ft.3 5’ 800ft3 -28ft.2 10’ -280ft.3 3.5' -98 ft.3 XAA = 1 32ft.2 ZxAA x Ix A A = 1000 ft3 ZyAA = 702 ft.3 6.4 C15x40 (cenlerted) S' Vi d+x C om ponent X 11 .Sin? o o 14.02+ .78 =14.8” 174.6 in.s 26.5 in.2 0 o 14.02 2 = 7.01' 185.8 in.3 . ■'■T ........... !J11 1---- xAA y ---- 1 ___ ___ XAA = 3 8 3 in ^ x=0 - yAA AA 360.4m .3 y = ------- - r = 9.4" 38.3in. XxAA = 0 lyAA . =360.4 in: 6.5 3” 3” Ref. Y C om ponent U m AA x 6.09in.2 0 ^ - + 1 0 ”+.28”-.7’ = 9.7’ 59 in.3 2x5 = 10in.2 0 ■22 . 10 - 5 1 1 ” 2 + 2 - 311 51.1 in.3 4.71 in.2 0 XAA =20.8in.2 y= i 20.8m ^ 2 = 5.3„ xAA X xA A = 0 yAA XyAA =110.1in.3 6.6 Component AA X xAA (in 2) (in.) (in3) 2.75 0.25 0.69 2.0 2.0 4.0 y yAA (in ) (in 3 ) 3.25 8.94 ft■ • 5ife” - i» i • 4” 1 ZAA = 4.75 in.2 - = ScAA = 469_m^ = Q9 ZAA 4.75 in.2 ExAA = 4.69 in.3 - = M 4^ = 2ffl 4.75in.2 0.25 0.50 EyAA = 9.44 in.3 6.6 co n t’d Comp. • 4A I,, (in.*) dv(in.) Adv' (in.') IVC(in.*) ' 7 dy (in.) A d/ 2.75 6.93 y-y = 4.3 0.06 x -x = 1.5 0.74 1.25 5li" 2 0.04 4" 6.1 2.7 1 A .I - = 10 4 in 4 I I yc = ') S in 4 y - y 2= 1.75 I 1. = 7.0 in.4 I x = Z I „ + ZAdJ = 7.0 + 10.4 = 17.4in.4 I y = £1^ + XAdx = 2.7 in.4 + 3.5 in.4 =6.2in.4 x2 - x = 1.01 2.0 3 5 in 4 6.7 yc y ^-d>e = I” dyi = 5" ^ , dysi = 3" 12“ Ref. Y C om ponent 2| ■ 1 AA lin'1; 12 lyi n «; 9 yAA (in3; 108 Ixo 4 dy 5 Ady2 300 bh3 12 12 5 60 36 1 12 24 1 24 8 3 216 2 12 IAA = 48 in.2 XyAA = 192 in" IAdy-= 528ln? IL, = 48in:; Component AA lyc 12 35 dx Adx‘ - EyAA 192 in.3 y = —---- + ---------t- = 4" A 48 in.2 12 24 288 il « "328inJ IAdx2 = 0 I, = ZI„ + EAd2' = 48 in.4 = 528 in.4 = 576 in4 I y = £1yc + EAd2* = 328 m 4 + 0 = 328 i n 4 6.8 yt y= -------- --------- ■—j— -------, = 6T | ; j -B __ II 4* 1 X \ dx = 4” . CL \ Y Component 1 \ 1...............j .............. ]1 1 2! • o 21 • 'SO 1 1 AA Ixc dy Ady2 20 6.67 +6 720 40 333.33 0 0 20 6.67 -6 720 2 lxc = 346.7 in:1 EAdy2= 1440 in? Ix = ZIXC+ SAd^ = 346.7 +1440 = 1787 in.4 By fo rm u la : bh; - b , h ? _ (1 0 )(1 4 f-(6 )(1 0 )3 12 12 6.8 c o n t’d Component AA lye dx Adx 2 [I 20 166.7 0 0 40 13.3 4 640 20 166.7 0 0 10 Slyc - 346.7 in:5 Iy = E l,, + £ A 2 = 3 4 7 + 640 = 987 i n 4 ZAdx’ = 640 in/1 6.9 -X dyi =yi-y dy2 = y-ya dja = y-ya Component AA yAA Ixc dy Ady 5.25 10.05 55.13 0.98 4.76 119.0 2x16.88 = 33.76 5.63 190.1 356.0 0.11 0.4 5.25 1.75 9.19 0.98 3.99 83.6 y.AA = 44.3 in2 SyAA = 254.4 in.' Slxc= 357.9 in.'1 y - ^yA _ 2 5 4 M n ^ _ 5 7 4 „ A 44.3 in.2 Ix = £ I „ + EAdJ = 358+ 203 = 561 in.4 ZAdy2 = 203 in.'1 6.10 ^ rr . groove tongue r a Vj Component r K. y ......... ’v 7............ AA Ixc 432 in.2.. ^ ^ p . = 2 915 in4 O ....(■>...<J- 3x12.56 = 37.7 in2 -3 x(tt)(4)... = -38 in4 64 Zlxc = 2878 in 4 Ix = ZI X0+ ZAdJ ZAd 2 =0 Ix = ZIXC= 2878 in.4 No transfer is necessary since the solid slab and the three holes all have their component centroids on the major entroidal x-axis. 6,11 Component AA y yAA Ixc 16 14.31+1 =15.31 245 5.33 yi - y =4.9” 384 24.1 7.16 172.6 882 y- 247 YAA = 40.1 in.') dy Ady® XyAA - 417.6 inf Xlxc - 887.3 in4 - XyA 417.6 n, y = — — = ------------£- = 10.4 3 A 40.1 in.2 Ix =X Ixc + XAdy =887 + 631 = 1518 in.4 M y 2 = 631 in ' 6.12 Y Component AA x (in?5 ( in .) 3.38 4.49 0 -0.634 LAA=7.87in.J (in3) 0 -2.85 ZxAA =-?.8;>in."' - = - 2 8 5 ^ =Q 3611 7.87 m 2 - = 5S0Sia»= 7 O , 7.87 in.2 d xAA = y 1- y = 9.65,,-7 "= 2.65" dy2 = y - y 2 = 7"-5 "= 2 " dxl= x = -0.36" dx2 = x2 - x = 0.634"-0.36"= 0.27" y yAA 1tW.22-.57 = 9.63 32.6 iin.) Jin. ) 22.45 ZyAA =55.05in.3 6 .1 2 c o n t’d AA Ixc dy 3.38 1.32 2.65 4.49 6/1 Component 23.7 18 il.: = 68.7 In: Component Ady SAdyJ = 41.7in4 AA ly dx Adx 3.38 32.6 -0.36 0.44 4.49 2.28 -0.27 0.33 _l_ Xlyc =34.9111* lA d ;- = 0.77 in? - = -2 8 5 _ m _ l = _ 0 3 6 „ 7.87 in.2 I 55.05 in.3 7.87 in.2 = 7.0" Ix = Z IX0+ S A d2 = 68.7 + 41.7 = 110.4 in.4 Iy = 21^ + ZA d2 = 34.9 + 0.8 = 35.7 in.4 Component A It ... '1 Adx"1 Ixc dy Ady lyc 4.44 6 - 0.93 - 5.07 141.4 4.44 0.93+0.25 -1.18 0 0 0.13 0 0 5.07 141.4 4.44 1.18 7.66 6.0 72 s.s 4. .14 E lxc = 8 0 .9 E A d y 2 = 2 8 2 .8 Ix = ZIXC+ SAdJ = 80.9 + 282.8 = 363.7 in.4 Iy = E I ^ + S A < = 9 .0 + 1 5 .3 = 24.3 i n 4 dx X ly r - 9 0 7.66 X A d x 2 = 1 5 .3 6.14 Component AA Ixo dy A dy2 12 0 .5 6 7 .5 + .3 7 5 = 7 .8 8 745 12 0 .5 6 1 4 .7 404 1 4 .7 404 y= CXa ilx c Component 7 .8 8 E A d y '= 1 4 9 0 In:1 8 0 9 In.4 AA ly 12 256 12 256 745 dx A dx2 1 4 .7 11 dx 14.7dx‘ - 1 4 .7 11 dx 14.7d*2 E lyc = 5 3 4 ln 4 X A dx2 = 2 9 .4 d x ' 6.14 co n t’d Ix = 8 0 9 + 1490 = 2299m 4 Iy = 5 3 4 + 29.4d^ B u t: Ix = I y 2299 in.4 = 534 i n 4 + 29.4d^ ,2 1 / 03 „ . d = -------= 60.2 in. 29.4 = 7.8"+ d v = 7.8" 0.8" 'from A ISC T ables w = 15.8" - 0 .7 " = 7 .9 ' Chapter 7 Problem Solutions 7.1 Sect. E: x = 0 to x = 5' X Fy=0: i), V = +10k (constant + shear) XMe = 0: -10k(x) = M; M = 10x @ x = 0, M = 0; @ x = 5’, M = +50k-ft Section F: x = 5 'to x = 10’ X Fy= 0: +10k - 10k - V = 0; V = 0 (no shear) EMf = 0: -10k(x) + 10k(x - 5') + M = 0 M = +50k-ft. (constant for x = 5’ to x = 10’) Section G: x = 10’ to x = 15’ XFy = 0: +10k - 10k- 10k + V = 0; V = 1 0 k (constant -shear) ZM g = 0: -10k(x) + 10k(x - 5 ’) + 10k(x - 1 0’) + M M = 150k-ft. - 10x (varies with x; between x = 10’ to x = 15’) 7.1 co n t’d 7.2 Ma = 200k-ft. (0= 1 k/ft L^ ) Lo ad V B = 20k 20’ ■A Section cut C: (for x = 0 to x = 20) EFy = 0: -1k/p,(x) + V = 0 V = 1k/p,(x) (1st degree function) Shear varies as a function of x (linear) @ x = 0, V = 0; @ x = 20’, V = 20k (negative shear) ZM d = 0: 1%(x)(x/2)-M = 0 M = x2/2 (2nd degree function) @ x = 0; M = 0 7.3 FBD Solve lor Ihe external reactions al B and D. XlVb =+(10k)(15')+(20k)(5')-RB = 0 Rb = +25k EFy = -1 Ok - 20k + 25k + Rd = 0 Rd = +5k Cut sections E, F and G and write equations of equilibrium XM = Oand ZFy = 0 to determine the internal shear and moment developed at each of the respective sections. ,.vG h Section cut E: XFy = 0: -1 Ok + Ve = 0; VE=10k The shear between A and B remains constant. XM e = 0: +10k(x) - Me = 0; Me = 10x The moment M increases as a function of x, between A and B; x = 0 to x = 5’. Section F: XFy = -1 Ok + 25k - Vf = 0; VF = 15k The shear remains constant (positive) between B and C. XlVt = (10k)(x) - (25k)(x - 5 ’) + IVt = 0 Mf = 15x -1 2 5 The moment varies linearly from x = 5’ to x = 10’. Section G: XFy = -10k + 25k - 20k + Vg = 0; Vg = 5k Shear is constant between C aqnd D. XM g = (10k)(x) - (25k)(x - 5’) - (20k)(x -1 0 ’+ Mg = 0; Mg = -5x + 75 Moment varies linearly for x = 10’ to x = 15’. 7.3 co nt’d Load V (Shear) M (Moment) 7.4 b| al 00 = 2 k/fl i 20k. t m i I a; 10’ cd = O n CD n j ci I i b; <— 20k J M I) CD = 2 k/ll A i i i i n r i B 20k = Secction a-a: @ x= 0 to x = 10’ EFy = 0: +20k - oox - V = 0 V = 20k - 2x (as x increases, V decreases) IMa-a = 0: -20(x) +(<ox)(x/2) + M = 0 M = 20x - x2 (M increases with x; 2nd degree curve) 2 k/ll I 20k Id i 120k ™ — Af co = 2 k/ll a h 1111 riB co = 2 k/ll III 1 I I I i Section b-b: @ x = 10’ to x = 20’ EFy = 0: +20k - 2(k*t)(1 O’) - V = 0 V=0 (No shear between x = 10' to x = 20’) EM>b = 0: -20x + 2(k«)(10’)(x - 5’) - M = 0 M = -10Ok-ft. (assumed direction of M on the FBD is incorrect; it should be counter-clock) Section c-c: @ x = 20’ to x = 30’ EFy = 0: +20k - 2(k«)(1 O’) - 2(km)(x - 20’) + V = 0 V = 2x - 40k (V increases with x) EM = 0: -20(x) + 2(10)(x-5’) + 2(x-20')(x - 20')/2 + M = 0 M = -x2 + 40x -300 (M is a function of x ....2nd degree) 7.4 co n t’d “V” Diagram: @ x= 10’; V = 0 (V = 20k - 2x ) Between x = 10’ to x = 20’; V = 0 Between x = 20’ to x = 30’; V goes from 0 to -20k ‘M’ Diagram: @ x = 0 M= 0 (no moment at the hinge) Betweenx = 0 tox = 10', Mis increasing. @ x = 10’, M = 100 k-ft. (positive bending) Between x = 20’ to x = 30’ M is deer easing. @ x = 30’, M = 0. 7.5 7.6 15k a)=3k/ft 30k [•- 10’ 20’ 45k 7.7 4k co=2k/ft 4 D B 9.5kJ Tl 0.5k t— *— * 8’ L 6’ 7.8 7.9 (D=600lb/ft MA=10k-H. <N 1 ....... ........... (j i A <N \ 3k 4 lC B 5k* 5' < 5' 3k »< 5' f 0 VL U l 7.12 (D = 6 k/ft 7.12 co n t’d ( A=1/2(XX2/3X) = *73 6k/ft X 9' From sim ilar triangles: °VX = 6k/ft/g, ; (C = 2Xf. AV = 9k = x2/3; * = 5 -2 zero slope —A=2/3(5.2 i)(9i)=31 .2 x = 5.2' E x = 5.2' AEBD _ Aacd - Aacbe 81 k-ft - 49.8k-ft = 31,2k-ft AACD = ( 1/3)(9')(27k) = 81k-ft Aacbo = (9k)(9‘) = 81 k-ft AAE0 = (2/3)(5.2')(9k)=31.2k-ft = AaCBO - a a e o = 81 k-ft - 31,2kft. = 49.8k-ft. a acbe - 7.13 co=4k/ft 16k T bI 26k (a) 70k c <D=4k/ft i FBD's of beam components mu III c JL 16k 16k (b) <D=4k/ft I ......................i D C ((hinge) 1 L fJ 26k I -------------------- . 16k 70k 4' ---------- * ------- J 'M' 7.14 7.15 (o2=3k/ft f B 30k ®1 = 2 ^ k/» ' ft MA=400k-ft B iA " ■Ra 30k SC t 30k 30k m i ~ 2 k / <t Mn=400k-ft Kt 50k = 50k FBDs of beam components Chapter 8 Problem Solutions W 8 x 1 8 (S x = 1 5 . 2 in3) M (1 8 k — ft.) x (12 in ./f t.) , , < 2 2 k si fb = — = i ------------- ^ — -— - = 14 .2 k / i n b Sx 1 5 .2 in . ' O.K., the beam is not overstressed. 'O+ 8.2 11V 3V .o + 4x12 S 4S Sx = 73.8 in .3 ffc Me _ M _ 4 .2 8 k -f t. x 12 in./ft. _ = 0.696ksi I S„ 73.8in.; fb = 696psi < l,300psi The beam is safe. /. OK 8.3 P = 6k w = 3^/ft 1 j- I - It L ■ H H B ,1 36k C 18k ' 4' | 8' W8x35; (Ix = 127 in.4, Sx = 31.2 in.3, d = 8.12", c = 4.06") ^ Ix OK = M = (5 4 k -ft.)x (1 2 ,r ^ :) = 2 Sx 31.2in. 0 8 k . < 3 0 k ,. o + 8.4 M m ax = 1 7 .2 k - f t . fb= — ; b Sx m,n Fb 22k/in. S can th e W 8x s e ctio n s until you find one th a t has an Sxeq u al to o r g re a te r th a n th e Sfoin. va lu e above. Use: W 8 x1 3 = 9 .9 1 in3) 8.5 W 8 x1 8 (d = 8 . 1 4 ’ , c = d /2 = 4 .0 7 ” , (, = 6 1 .9 in", q, = 15.2 in?) ^ = M = ( 2 4 2 k - » ) « ( l 2 l„/H .) = i 9 | t / i | | 2 I, S, 15.2in. fb = 19.1ksi <Fb = 30ksi OK 8.6 co = 2 k/ft 5k M _ (16.67k- ft.)(l2in./ft.) _ Sx 1 l.Sin.3 17ksi < Ft, = 22ksi b) Timber beam required: o req'd _ ^max c (■6.«7t - f , J ( n ln / f , . ) s i K .| | , 1.6k/in. Use 8 x 12 S4S (Sx = 165.3 in.3) •. OK 8.7 M (25.6k —ft.)(l2 in./ft.) — =-i------------- \ — -— - = 1.9ksi < 2.4ksi S„ 162in. OK 8.9 oo = 1 k/ft = M Sx (50k -ft.)(l2 in /ft.) i 1 = A------------------ A 30k/in Use: W 14xl8 (Sx =21.1in3) . , _ 20m 3 8.10 W 18x40 (Sx = 68.4 in.3) M fb = — w r- „ max = Fb ^ x M = (22k/in.2)(68.4in3) = 1504.8k -in . = 125.4k - ft M max= 8 P = 1 2 5 . 4 k - f t . p _ 1 2 5 . 4 k - f t . _ 5-68k 8.11 - V yA 43in 3 y = - = - — = —- ^ - = 3.07" A 14in. |y c = 5.93" = 2 !Xc + 2 Ady = 43-2in 4 + VOin.4 = 113.2in.4 N .A . y = 3.07" t Ref. 8.11b = Mc = (43.75k - f , ) ( l 2 , n / f t.) ( 5 .^ ) = 275 b L 113.2in. fh = 27.5kksi < Fh = 30ksi ' /. OK. -A = 8 in.2 = 5.93 in.2 J y = 2.97" N .A . s _ n a J shear plane ____ £ y = 1.93' □ t : shear plane VQ _ (8.75k)( 5.93in.z x 2.97" = 1.36 k/in.2 < Fv = 20ksi f, = (8.75k )(8in. xl.93") ------- 77------- = 1. 19ksi (ll3.2in.4)(l") 8.12 (d = 0.4 k / ft ) « i§ f T 6.4k L = 32' Log beam 6.4k Fb = 1200psi; Fv = lOOpsi V * max = coL _ (4001b/ft.)(32') toL2 _ (4001b/ft.)(32') 8 c = d/2 = R f Me (51,2001b.- ft.)(l2 ia /ft.)R fb = — = ------------- ^ 7 -------ji R :64001b. = 51,2 0 0 1 b .-ft. 8 I = rtD4 _ j i R4 64 4 3 = 12001b./in Due to the bending requirement; R = 8.67” (say 9”) _ (5 1 ,2 0 0x 12)(4) _ R - 3 14(1200) -653 8.12b „4R_ N.A. 3it Shear: VQ (64001b)(”RX)(4K ) lb Ri = 1001b./in.2 ( " R% |(2R) (4K6400) T2 (3)(3.14)(100) /. R = 5.2" Bending governs the design. Use an 18” diameter log. 8.13 co • L = 20' V v mat ff>L oaL mL 2 2 ©L M max = C om ponent A y yA I* i = g— n ^ 10 8.5 85 0.833 2.15 46 9.13 4 36.4 110 2.35 50.3 121.4 ill — -- 2 - ,I > ^ = 1 2 1 .4 .n ; A 19.13 ft35, 19.13in = 2 I ^ + E A y = l l l i n -4 + 9 6 3 m 4 = 2 0 7 '3 in 4 A dy2 ye>.3 8.13b Bending: jy Me fb = M I allow [22 k / in.2 ^207.3in.4 j c 633' toL 8 7 2 0 k - in . 720k - in. 12in./ft. (0 Shear stress at the flange: f„ = VQ Ib < Q L = ( l- 2 k /f t.) ( 2 0 ') = i 2 k 2 2 ( A \ y (12k) lOin.2 2.15in. \ /\ / = 0.156k/in.2 < Fv =14.5ksi f., =(207.3in.4)(8in.) Shear stress is not critical. 8.14 C om ponent A y yA 10.5 10.5 110.5 12 6 72 U 3 -5(3)3 = 7.89 12 2M (123)_144 dy 3.77 149.5 0.73 6.4 5.98 188 12 5.25 IS ] 27.75 z V = = A 186 5m 3 = 6 73" 27.75in.2 0.75 3.9 3.5(l.53) ' ' = .99 12 186.5 152.9 344 Ix = 21*. + SAdJ = 152.9 + 344 = 469.9in 4 b Me (7,2001b- ft)(l2in./ft.)(673") Ix 469.9in.4 n 8.14b Shear stress: 5.98* Component ESI A y Q=yA 6.75in.2 3.37" 22.7in.3 5.25in.2 5.98" £ Q = Ay VQ f„ = lb 31.4in.4 Q=541in. (1 8 0 0 lb .)(.54. lin .= 196 ( 4 9 6 .9 in .4 ) (l" ) lb./ in .2 8.15 co = (lb/ft) >t__6^_ +3C0 Beam cross section V m, , = 3 c o M max = 6 a) + ){ (3 )(3 < o ) = 1 0 .5 U A = 7 2 i n .2 t (6)(12?) = 8 6 4 in . 12 c = 6" I 8 6 4 in . S. = — = ---------- = 144in. c Fb = 1 ,6 0 0 p s i _ Me _ M 3 6 in. Fv = 8 5 p s i M aiiow = F b * s x = ( 1 6 k/ in 2) * ( l 4 4 i n . 3 ) = 2 3 0 k - in. = 1 9 .2 k - ft. b = ix = sx 1 9 .2 k - f t . 0»,bending “ - 1.83 k / f t . 10.5 VQ fv = SN A -y = 3" _ F vI b _ (-085Xn2)(8 6 4 i,4)(6'')_ io g ^ Q 4 .0 8 k ( 3 6 in .2 x 3 ”l , , 0) = ——— = 1.36k ft. (shear) 3 f t. Shear governs. 8.16 29 | P 6' i 6 , f 6' a) Vmx = 1.67P 1.67P 4 x 12 S4S (Sx = 73.8 in .3, A = 39.4 in.2) fb = Sx M _ = F b x S , = ( l . 6 k / i n . 2) x ( 7 3 . 8 i n . 3) o + = 118k —in. = 9.85k —ft. E q u a tin g t h e t w o m o m e n t e q u a tio n s , 10P = 9.85k- ft. P = 0.985k = 9851b. 1.67P _ c h ~ 1 5V Yma x A (@ N .A.) FV(A) A (851b./in.2)(39.4in.2) = -i----------- &----------= 2,2301b. 1.5 1.5 E q u a t i n g th e s h e a r e q u a tio n s ; 22301b. = 1.67P ; P = 13401b. B e n d i n g g o v e r n s : P = 9 8 5 lb. b) V = 1 3 3 P = 1.33(9851b.) = 1 ,3 1 51b. M = 1 .3 3 P (4 ') = 5 .3 3 P = 5.33( 9851b.) = 5 ,2501b. © 4' 1 5V 1.5(13 IS lb.) fv = ------- = — i-------- r ^ = 5 0 . 2 p s i A 3 9 .4 m .2 fb = M = (52501b . - ft.)(12„./ft.)=854ps. 73 .8 in . 8.17 a>L M max = Mmax Fb * s x = (2 2 k/i:n-2) X(79i:n.3) = 173 5k - in. 1 7 3 5 k -in . : = 1 4 5 k -f t. 12in./ft. E q u a tin g th e m o m e n t e q u a tio n s , V fiiT2 8 - = 1 4 5 k -ft. 145(8) « *-- — -2 .9 k /ft. K) 1/2“ x 10“ steel cover plale (lop & bottom) - (2) C10x20 N.A. Adv' Component 0.1 157.8 5.25 138 11.8 ][ 0.1 5.25 138 276 158 I* = 2 'xc+2 Ady = 158 + 276 = 434in 4 c = 5.5" ^ = ^ = 4 3 4 1 ,^ ^ = 7 9 in .‘ , / _ <D L _ ( 2 . 9 k / f t . ) ( 2 0 ') _ 2 ? i: 2 2 N.A. b = 2 x 2 . 7 4 ” = 5 .4 8 " Q = A y = ( 5 i n 2) ( 5 .2 5 “) = 2 6 .3 in .3 vo lb 2 ( 4 3 4 in .4) ( 5 .4 8 in .) 8.18 M m,v = 32k - ft. = 384k -in . M req'd (384k-in.) Fb " 22 k/in.2 1 7 .5 in . From the Appendix Tables; Use: W12x19 (Sx= 21.3 in.3) does not account for the beam’s weight. orW10x10 (Sx = 18.8 in.3) Same weight as the W12x19 but shallower in depth. f (ave) _ V v max t,„d 14.7k . (0.235")(12.16") fv = 5 . 1 4 k s i < (aw) -32k-ft. 1 4 .5 k s i OK 8.19 Fb = 1200 psi Fv = 10Opsi 12” Plank Cross Sectio9n bh! __(12)h1 = h3 x 12 12 A =12h Bending : _ Mc b _ TAX' h9 h2 h = 2.2" Shear: ijv A , „ =a h. L 2 ! M .w . v 1200 Bending controls: 5 12h h = 2 .2 “ 8.20 5k 2Tx4' rough cut P (pilch) t ± ____ "j" ~ ~ ~ ~ - - - T - ~ - T 20 - 1 L= 16' +2.5K ‘V ’ _(5")(20")3 x -2.5K (4")(16")3 12 1965in.4 12 Q = Ay = (8in.2)(9") = 72in.3 20k-ll. V = 2500# r 'M ' 1 F= 2 shear planes y = 9” f vb p = ( b p ) ^ F = capacity of 2 nails at the flange representing 2shear surfaces ( 2 x 8 0 # = 160#) A lternate m ethod: VO (2 5 0 0 # )(7 2 in 3) f =— = / = 22.8psi Ib (l9 6 5 in )(4") A ff v A = 2"x2p = 4p F 160# 4 p = — = ----------- ; fv 2 2 . 8 ^ , (160#)(l965in.4) = 1.75" P ~ V Q ~ (2500#)(72in.3) U se: 1y4" spacing p = pitch or spacing f . = ^ - A = FI p = 1.75" 8.21 F b = 22 ksi E = 29 x 10 ksi Vmax=10k; S Fv = 14.5 ksi Mmax=48k-ft. = M = (4 8 k -ftJ (l2 ir^ = reqd Fb 22k/in. Try: W8x31 (Sx = 27.5 in .3, d = 8", t„ = 0.285", Ix = 110 in.4) <i)hmL2 (31 lb/ft.)(8') 2 2 adJ (9921b. - ft.)(l 2 in/ft.) 22k/in.2 San = 0.54in.3 = Sreq.d + S ,^ = 26.2 + 0.54 Stolal = 26.74in.3 < 27.5in.3 /. OK 10k f = X = __________ <™> t„d (0.285")(8") fv = 4.38k/in.2 < Fv = 14.5k/ir (ave) .-.OK Deflection: !!!!!!!!!!!!!!!!!!!!! * total 0>L4 8 EI PL3 3EI (1.031 k/ft.)(8ft.)4 (1728 in.3/f t.3) (2kX8ft.)3(l728in.3/ft. (8)(29xl03 k /in 2)( ll0 in 4) 3 (2 9 x l0 3 k/in.2)(l 10in.4) Absl = 0.286"+0.185"= 0.47" 3 8.22 mpL = 300 lb/ft (Qll = 400 lb/ft _ wL2 _ (700lb./ft.)(16')2 _ = 22,4001b.ft. B 5600 lb. 5600 lb. L= 16' ^req'd M _ (22,4001b. - ft)(12in./ft.) _ = 207in. — 1300 lb./in.2 b.)(16ft.) ~2 " L5V _ 1.5(5,6001b.) "*req'd 851b./ in.2 T r y : 8 x 14 S 4 S ( A = 1 0 1 .2 5 m .2 Sx = 2 2 7 .3 i n . 3, Ix = 1 5 3 8 i n . 4, * N o te : a) = 0 .2 5 2 x A ( f o r D o u g l a s F i r a n d S o u t h e r n P in e ) _a>bmL_(25.51b./ft.)(16') _ 1.5Vad, _ 1.5(2041b.) _ Aadd “ c d = 2 5 . 5 lb ./f t.* ) Fv 2041b. 2 ~~ 851b./in.2 - Atotai = Areq d = 98.8in.2 +3.6in.2 = 102.4in.2 > 101.3in.3 T h e b e a m is o v e r s t r e s s e d i n s h e a r . T ry : 8 x 1 6 S 4 S (A = 1 1 6 .2 5 i n . 2, S x = 3 0 0 .3 i n . 3, I., = 2 3 2 7 i n . 4, a = 2 9 .3 l b . / f t . ) -L / _ ( I 6 f t . ) ( l 2 in ./ft.) ’ / 3 60 _ 5toL4 * actual (LL) 384El 360 : 0.53" 5(400lb/ft.)(16ft.)4(l728in.Vft.3) _ o 3 8 4 ( l . 6 x l 0 6 lb ./in .2) ( 2 3 2 7 in .4 ) O K f o r d e fle c tio n . U se: 8 x l 6 S 4 S = 98.8in/ 8.23 B V m, v = 20001b. 2k Veq'd ' 1 .5 V 1 .5 (2 0 0 0 lb .) F„ 110 lb ./in .2 = 27.3in. M1max max = 1 2 ,0001b. —ft. _ M _ (1 2 ,0001b. — ft.)(l 2 in./ft.) _ Sreq'd _ _ 9 2 .9in. 1 5 5 0 lb ./ in. T r y : 4 x 14 S 4 S (A = 4 6 .4 i n . 2, S = 1 0 2 .4 i n . 3, L = 6 7 8 .5 i n . 4, u = 1 2 l b . / f t . ) 0>hmL 2 c (1 2 lb ./f t.) ( 1 6 f t.) 2 = 3 8 4 1 b .-ft. . 3 (3 8 4 1 b . - f t. ) ( l 2 i n . / f t . ) _— ^add — ---- 1 5 5 0 lb ./ i n .2 Stotal —Sreq,d + ~~ —92.9in. + 3in. ,3 v i A i a:„ 3 allow L (1 6 ')(1 2 in ./ft.) PL 240 240 2 0 .1 H rr ( l k ) ( l 6 ') 3 (1 7 2 8 ) p 2 0 . l ( l . 6 x l 0 3) ( 6 7 8 .5 ) PL 5a>L 48EI 384El - + ------ + - . ^eam M H I U U U I U H rt ( l k ) ( l 6 ')3 (1 7 2 8 ) 5(. 0 1 2 )(1 6 ')4 (1 7 2 8 ) 4 8 ( l . 6 x 103) ( 6 7 8 .5 ) 3 8 4 ( l . 6 x 1 0 3 )(6 7 8 .5 ) A a c t= 0 .3 2 4 " + 0 .1 3 6 " + 0 .0 1 6 " = 0 .4 8 " < 0 .8 0 " OK C h e c k th e b e a r in g s tre s s . 1 2 0 001b. + 961b. | j. _ P _ \ ___________ (bm.wt)/ P “ A b rg “ - = 1 0 9 p s i < Fo l = 4 1 0 p s i (5 .5 " x 3 .5 " ) OK U se : 4 x 1 4 S4S t 8.24 4 “ concrete slab jL ._______ CO = 9 9 lb /f t2 x f = 7 9 2 lb /ft n m n n in in n n u j 0 7 1 2 lb B I 8 7 1 2 lb I ^ M e la l L o ad s: Section A-A ft .j * (1 5 0 l b / f t . 3) = 50 lb ./ f t.2 C one. = ( % t2 M e ta l d e c k = 4 lb ./f t.2 . 2 P l a s t e r c e ili n g = 5 lb ./ft. 59 p s f D ead L oad = o>DL = (5 9 lb ./f t 2)(8') = 4 7 2 lb./ft. L iv e L o a d = 4 0 p s f o>LL = (40 lb ./ f t.2)(8') = 320 l b / f t. 99 p s f D L + LL = to = 99 lb ./ f t.2 x 8'= 7 9 2 lb ./ft. M . , = ^ = ( , , ; ' b / f ‘ -X22') 8 rc,d 8 Fb = 48,0001b— ft. 22k/in. Try: W14 x 22 (Sx = 29 in.3, A = 6.49 in.2 Ix = 199 in.4) Deflection check: _ ^ B eam B-1 decking L _ (2 2 ') ( 1 2 in ./f t.) _ 360 360 r4 384EI 384^29 x 103)( 199) 8.24b Beam SB1: Mmax= 95.6k-ft. (95.6x12) ^req'd “ 22 = 52. lin." Try: W 16 x 36 <SX = 56.5in.3, A =10.6in.2, Ix = 448in.4) (D+L) L (24')(12 in/ft.) 240 240 5o>L 384 El _ 5(.336)(24')4(1728) + (8.95)(24')3(1728) ao> 384(29 x 103)(448) 28.2(29xl03j(448) A„, = 0 . 193"+0.584" = 0.78" < 1.20" (12.55k) (aF;e) twd (0.293')(15.86") OK in shear U se: W16x36 for SB1 .-. OK = 2.7ksi < F„ = 14.5ksi PL3 28.2EI 1.2 " Chapter_9_Problem Solutions 9.1 W8x31 Iv = 37. lin .4 /min. L = 20' A = 9.13 in 2 j i 2E I 3 - 1 4 i( 2 9 x 103 k /in .2)( 3 7 .lin .4) L2 (2 0 '* 1 2 in ./ft.)2 P°r ^ cr 184.2k = i 8 4 2 k = 2 0 2 k s. A 9 . 13in. 9.2 2-31/2” <t>standard pipe Iy = 2 x l = 2(4.79in.4) = 9.58in4 (min) L = 24'= 288" °r n 2EI (3.14)2(2 9 x l0 3)(9.58in4) L2 (288)2 33k 9.3 Pcr = 250k W10x54; Imln = 103 in .4 P., = l 2 « 2EI 3 . 1 4 2 ( 2 9 x 103 k / i n . 2 ) ( l 0 3 i n 4 ) L = ? 250k L = 343" =28.6' 9.4 8" diameter pole A = ------ = ——— = 50.2" 4 4 ; _ nD4 _ n(8")4 _ 64 64 2 0 lin. P„ = 25 k P,,= « 2EI ( k l )2 = — (KL)2 , 3.14 (lxlO k/in. )(201in. ) ^ , (KL)2 = ------- i--------- ------^ ---------L = 7.93 x 104 in.2 v ’ 25k KL = 282" ; 'IR'l" L = ------ = 403”= 33.6' 0.7 8“x6"x%" rectangular tube. (A = 9 .5 8 in .2; ry = 2 .3 6 ” ; KL ( l ) ( 3 8 'x l 2 i n ./ f t .) ry 2 .3 6 ' I y = 5 3 .5 in .4 ) ^ ; j t 2E I y 3 .1 4 2( 2 9 x l 0 3 k / i n . 2) (5 3 .5 in .4) (K L ) 2 (4 5 6 " )2 P = ^ 6 4 | = 77ks. A 9 .58in. 73.64k 9.6 W8x28 (W200x42) (A = 8.25in.2; Iy =21.7in.4; rx =3.45"; ry = 1.62") W eak Axis: Le = 16' Le _ 16'xl2in./ft. _ 119S ry 1.62" Strong Axis: L = Le = 26' Le _ 26'xl 2 in./ft. 3.45' Weak axis buckling = 9 0 .4 The weak axis governs. n 2EIy 3 .1 4 2 ( 2 9 x 10 3 k/in.2)(21.7in.4) = 168k ?Cr L2 (16'xl 2 in/ft.)2 for =^ = J ^ = 20.4ksi or A 8 .2 5 in . CD (N II Ifc Strong axis buckling W12x65 (A = 19.lin.2; ry = 3.02") Case a): KL = (0.65)(18'xl2in/ft.) ry 3.02in. Fa = 18.66 ksi Pa =F a x A = (l8 .6 6 k /in 2)x(l9.1in.2) = 356k Case b): KL _ (0.8)(18'xl2in/ft.) ry 3.02" g? Fa =17.69 ksi Pa = (l7.69k/in.2)x (l9 . lin 2) = 338k Case c): KL ry (l)(18fxl2in/ft.) _ ?15 3.02” Fa = 16.28 ksi Pa = (16.28 k/in.2) x(l9. lin.2) = 31 lk 9.8 Pa WM M. Vci \ \ 1 K = 1.0 J I ye 2 - C 1 2 x 2 0 .7 ( A 3 6 s t e e l ) o <N II _l d x = b f - x = 2 .9 4 " - 0 .7 0 " = 2 .2 4 " X 1 i [M r- A Component A li—' 4 A d/ 6.09 129 3.88 2.24 30.6 6.09 129 3.88 2.24 30.6 1Z18 in .12 258 in.4 7.76 in.4 Iy = S I^ +S Adx = 7.8 + 61.2=69i„4 ry = K L _ (l)(20'xl2in./ft.)_ ioog ry 2.38” Fa =12.88 ksi =t ] 1 61.2 in.4 i x = 2 I- = 258in-4 P a = F a x A = ( l 2 . 8 8 k / i n . 2) x ( l 2 . 2 i n . 2) = 157 k = =2.38'' 9.9 L5x3>£x>£. (A = 4 in.2, rz = 0.755") Since trasses are assum ed to be pin connected, it is reasonable to assume K = 1.0. KL rz (l)(7'x!2 in/ft.) 0.755" Fa = 11.54-ksi Pa =Fa xA = (ll.5 4 k /in .2)x (4in.2) = 46k 9.10 P = 60k 5" $ Std. wt.pipe A = 4.3in.2; r = 1.88"; P = 60k O F, = — = 60k =13.95ksi A 4.3 in. II KT — =92.2 r (from Table 10.1) L = — x 92.2 = x 92.2 = 216.7"= 18' K 0.80 9.11 Weak Axis: Ptotal = 500k 12' ! \ kl = 14. JL W 12x 106; A = 31.2in.2; rx = 5.47"; r = 3.11* Bracing (2nd fir beams) t i I KL 14'x 12 in/ft. ry ” 3.11” From the Table 10.1; Fa = 17.99ksi yM / M . Pa = 17.99 k/in.2 x31.2in.2 = 561k > 500k .-.OK Weak axis Ptotal - 500k Strong Axis: Assumes that the 2nd floor beam loads are applied at the top of the column. This is a bit conservative. KL=26' K L _(l)(2 6 'x l2 in ./ft.)_ = 57 "77“ 5AT From the Table 10.1; Fa = 17.71ksi Pa = 17.71 k/in.2 x31.2in.2 =553k > 500k Strong axis OK 9.12 L = 20' K L= 20' P = 30k Try a 5”(|) pipe: A = 4.3 in .2 ; r = 1.88” KL (1)(20'x 1 2 ^ ) _ 1277 r 1.88" Enter Table C-36; ^allow = 9.17 ksi Pallow = ^ allow X A = 9.17 x 4.3 in .2 = 39.4k Pa How > ^actual 9.13 P = 30k L = 20’; KL = 20'; P = 30k Try: W8 x 18 (A = 5.26 in.2, ry = 1.23”) - = 195 \ 1.23" \ I KL = 20' ! Fy = 36 ksi Enter Table C-36; Faiow = 3.93 ksi Paiow = Fao„ x A = 3.93 ksi x 5.26 in.2 = 20.7k Paiow< P = 30k; Inadequate design Try W8 x 24 (A= 7.06in.2; ry = 1.61”) KL _ (20x12)" r ~ 1.61" F*,™ = 6.73 ksi Use: W8x24 -149 9.14 p P = 350k T r y a W 1 4 x 7 4 (A = 21.8 in .2; r x = 6.0 4 "; ry = 2 .4 8 ") m m W e a k A xis: L = 12'; K L = 12' KL (l)(1 2 'x l2 in ./ft.) 12' ! 2.4 8 “ KL= 12' -Bracing ( 2 n d fir b eam s) = 58 S tro n g A xis: L = 2 4 '; K L = 24' KL ( l) ( 2 4 'x l2 in ./f t.) rx 6.04" T h e w e a k a x is g o v e r n s th e d e s ig n . KL E n te r th e s le n d e r n e s s r a t io ta b le w i t h — = 58. Weak axis ry Fa = 17.62ksi Pa = F a x A = 17.62 k / i n .2 x 21 .8 in .2 = 3 8 4 k P = 350k Pa = 3 8 4 k > P * , = 3 5 0 k .-. O K P E fficien c y : — i£!- x l 0 0 % = ----------x 100% = 91% 384k T r y f o r a m o r e e ff ic ie n t c o l u m n s e c t io n W 14x68: (A = 20 .0 i n .2; rx = 6 .0 1 "; r y = 2 .4 6 ") W e a k A xis: K L _ 1Z . KL ' (1X12' x 1 2 in /f t.) rv 58.5 2.4 6 “ S tr o n g A xis: Strong axis K L - 2 4 '' KL rx P X ^ ' x 1 2 in / f t.) 47.9 6 .0 1 1 T h e w e a k a x is g o v e rn s . TCT — = 58.5; Fa = 1 7 .57 k s i P a = Fa x A = 17.57 k / i n .2 x 2 0.0in .2 = 3 5 1.4k Pa = 3 5 1.4k > P ^ = 3 5 0 k P E fficien c y : .-. O K 3501c x 100% = ^ ^ x 100% = 99.6% Pa 3 5 1 .4 k Use: W14x68 9.15 P = 397.5k R oof L oad: D L = 8 0 p sf JL LL = 4 0 p s f D L + LL = 120psf x 5 0 0 f t .2 = 6 0 k x 5 0 0 f t .2 = H Z 5 k F lo o r L o a d : D L = 100 p s f L L = 125 p s f D L + LL = 2 2 5 p sf T h e t h i r d f l o o r c o l u m n s u p p o r t s t h e 4 lh, 5 lh, a n d 6 lh f l o o r s p l u s t h e r o o f . T h e c o l u m n l o a d is t h e r e f o r e : P = 3 x 1 1 2 .5 k + 6 0 k = 3 9 7 .5 k T r y : W 1 2 x 7 9 (K L = 1 6 '; A = 2 3 .2 i n . 2; r y = 3 .0 5 " ) w/w/A 3rd Floor Column KL ( 1 6 'x l 2 in ./ft.) ------ —-------------------------— 6 3 ; r„ F , = 1 7 .1 4 k s i 3.OS' P a = F a x A = ( l 7 . 1 4 k / i n 2 ) x ( 2 3 . 2 i n . 2) = 3 9 7 .6 k P = 622.5k JL P a = 3 9 7 .6 k > P a o t= 3 9 7 .5 k OK T h e g r o u n d f lo o r s u p p o r t s a n a d d i t i o n a l t w o f lo o r s o f lo a d . wmm, P = 5 x 1 1 2 .5 k + 6 0 k = 6 2 2 .5 k K L = 20' U se a W 12x s e c tio n f o r a b e t t e r tr a n s i tio n to th e W 12x79 a b o v e . T r y : W 1 2 x l 3 6 ( A = 3 9 .9 i n . 2; r y = 3 .1 6 " ) K L _ ( 2 0 'x l 2 i n . / f t . ) _ 7 6 F , = 1 5 .7 9 k s i fy “ Pa = P, 1st Floor Column 3 .1 6 ” “ ; F a x A = 1 5 .7 9 k / i n .2 x 3 9 .9 in .2 = 6 3 0 k = 630k > P„„f = 6 2 2 .5 k OK 6 x 6 S4S S o u th e r n P in e A = 3 0 .2 5 i n . ^ E = 1 ,6 0 0 k s i; F c = 9 7 5 p s i L (I4 'x l2 in/ft.) ^ = i --------------- -— - = 3 0 .5 d 5 .5 ' 6x 6 S4S So. Pine (Dense No. 1) / 03E — 0 .3 (l.6 xl0 6 lb ./in2) _ — -------------- 2--------- 516psi (30.5)‘ (y F0* = F 0C d = ( 9 7 5 l b . / i n . 2) ( l.2 5 ) = 1 2 1 9 p s i I g = 5 1 6 Psi = 0 .4 2 3 Fc 1219psi E n t e r A p p e n d i x T a b le 14. C p = 0 .3 7 7 F ^ = F ’ x C p = 1 2 1 9 p s ix 0 .3 7 7 = 4 6 0 p s i P a = Fc x A = ( 4 6 0 lb ./ in .2) x ( 3 0 . 2 5 i n 2 ) = 1 3 ,9001b. 9.17 8 x 8 S 4 S D o u g la s F ir ( A = 5 6 .2 5 i n . 2; E = 1 .6 x 1 0 6 p s i ; F,. = 1 0 0 0 p s i ) KL = 13.5' le _ 1 3 .5 x 1 2 i n / f t . F ’ = F cC d = ( I 0 0 0 p s i) ( 1 .0 ) = lOOOpsi FqE _ 1 0 2 9 p s i _ l Q3 F* lOOOpsi F r o m A p p e n d i x T a b l e 14; 8x8 S4S Douglas Fir (No. 1) C p = 0 .7 0 1 F^ = F * C p = (1 0 0 0 p s i)( 0 .7 0 1 ) = 7 0 1 p s i P , = F j x A = ( 7 0 lp s i) x (5 6 .2 5 in .2) = 3 9 , 4001b. P a = 3 9 .4 k > 32k; OK U s i n g A p p e n d i x T a b l e 12, i n t e r p o l a t e b e t w e e n 1 3 ' a n d 1 4 '; P a = 3 9 .4 k 9.18 G lu -L a m C o lu m n : 6 % " x l0 ^ " ( A = 7 0 .8 8 i n . 2; E = 1 .8 x 1 0 6 p s i ; F,. = 1 6 5 0 p s i ) i . • W e a k A x is : KL= 11' t. i 1<l l 'x l 2 i n . / f t . -S- = --------------- — = 1 9 .5 5 d 6 .7 S ' A . L 2 2 'x 1 2 in ./f t. ,, S t r o n g A x i s : — = -----------------— = 2 5 .1 5 & d 1 0 .5 ' Bracing The @ mid-height s tr o n g a x is g o v e r n s t h e d e s ig n . , 0 .4 1 8 E , ,,, 0 .4 1 8 (1 .8 x 106 lb ./in .2 ) = 119 0psi & F* = F cC d (25.15)" = ( 1 6 5 0 p s i)(1 .0 0 ) = 1 6 5 0 p s i F sE_= 1 1 9 0 p s i = 0 7 2 F* 16 5 0 p si F r o m A p p e n d i x T a b le 14; C p = 0 .6 1 9 F^ = F * C p = (1 6 5 0 p s i)(0 .6 1 9 ) = 1 0 2 1 p si P , = F t x A = (1 0 2 lp s i) x (7 0 .8 8 in .2) = 7 2 , 370 1 b . = 7 2 . 4 k 9.19 H e m -fir: E = 1400ksi; Fo=1050psi; A = 5.25in.2 Le _ (7.5')(12^,) Fj = FcC d = (l050psi)(l .0) = 1050psi C =0.504 F'c = F*Cp = (I050psi)(0.504) = 529.2psi Pai,ow =Fc x A = (529.2)(5.25) = 2778# (per stud, every 16") co = 2778# x % = 2084% Bearing stress: Foi = 405psi Panow = Fcl x A = (405psi)(5.25in2) = 2126# p aiiow < (b e an n g ) Pahow (com pression) Bearing stress governs 9.20 4x8 S4S D ouglas-Fir (A = 25.38m 2, E = 1600ksi, Fc = lOOOpsi) Weak Axis: Le =K L =0.8(8')(l2'"/t)= 76.8” Slenderness ratio = Strong Axis: L / 76 8" yA = — 1— = 21.9 /d 3.5" Le = K L = 1.0(10')(12"/t) = 120" Slenderness ratio = L / 120" yA = -------= 16.6 /d 725" Weak axis governs. 0 3E 0 .3 (l.6 x l0 6) FcE = 7 T ^ r = = 1OOlpsi (21.9) L. vdy Fc' = FcC d = (lOOOpsi) (1.0) = lOOOpsi F ^ _ 1 0 ° 1p si _ i qq Fc lOOOpsi Enter Table 9 - E d Cp =0.691 F^ = Fc* x Cp = (I000psi)(0.69l) = 691psi Paiiow = Fo x A = 69 lpsi x 25.38m 2 = 17,540# A ^ pa«°w = 17,540# _ 351 ft 2 DL + LL 50j5(t2 9.21 Southern Pine: E = 1600ksi, F0=975psi Try: 6x6 S4S (A = 30.25in.2) L. / _ (I6')(l2'n/ft) /d 5.5" 0.3E F cE = ~ T ~ 0.3(l.6x106psi) ■= 394psi (34.9 f Fc* = FcC d = (975psi)(l .0) = 975psi cE 394psi 975psi f: = 0.404 Cp = 0.363 F; = Fc* x Cp = (975psi)(0.363) = 354psi Pallow = F > A = (354psi)(30.25in2) = 10.7k < 25k Insufficient capacity in the 6x6 Try: 8x8 S4S (A = 56.25in.2) _ (16Q(12%) U d FcE = 7.5" 0.3E 1 cE _ 732psi Fc 975psi = 25.6 0.3(1.6xl06) — i-------t—- = 732psi (25.6) = 0.75 Cp =0.585 F,; = Fj x Cp = (975psi)(0.585) = 570psi Paiiow = F' x A = (0.570ksi)(56.25in2) = 32k > 25k .-.OK 9.22 G lu -L a m : L / 6% "x______ ; E = 1.8xl06psi; (I8')(l2>»/t ) -= 32 0.418E I ^ 0.418(1.8xl06psi) r — ^ . — Fc* = FcC d = (1650psi)(1.0) = 1650psi FqE _ 7 3 5 P S1 Fc* -=0.45 1650psi Cp = 0.420 F; = Fc* x Cp = (1650psi)(0.420) = 693psi P 15,000# 2 = — = — -------- = 21.6m 2 ^ Fc 693psi Use: 6X "x7X " G lu-Lam ; A = 50.63m2 F:c =1650psi Chapter 10 Problem Solutions 10.1 Shear: (double) Pv =10.4%oltx 2 bolts = 20.8k (Table 10 1) Bearing: Thickness = %" Ap = ^ ,,x K ”= 0.469in2 Fp = 1.2FU= 1.2(58ksi) = 69.6ksi Pp = 2 bolts x (0.469m 2j x (69.6ksi) = 65.2k Net Tension: d = % "+ & "= % "= 0.688" Anet = X" (4"-0.688") = 2.48m 2 Ft = 0.5FU= 0.5(58ksi) = 29ksi Pt = 29% i2x2.48in.2 =71.9k Plate tension: Agross =4"x% "=3.Qin.2; Ft = 0.6Fy = 22ksi Pplate= 2 2 / n2x 3 .0 m 2 =66k Shear governs the design; Pall01u = 20.8k 10.2 P = 28k; A 3 2 5 -X bolts in double shear a) Based on shear : 14%olt requirement A 3 2 5 -X bolts (Pv = 18.4%olt) (Table 10.1) Capacity of 2-%"<|> bolts in bearing: Pp = 2 x {%" x%")(69.6 X .0 = 32.6k; b) Based on net tension: .-. OK d = % “+X6U= 0.688" Anet = t( W - d ) = % " (W - 0.688") Ptrei = Ft x Anet = 29X„, x X ”(W -0.688") = 28k W = 3.26" Agr0ss = t x W = X" xW ; Ft =0.6Fy = 22ksi Pgross = Ft x Agross = 2 2 ) / 2 x (%" xW) = 28k W = 3.4" *- this condition governs 10.3 Group A bolts: 3-%"<|> A 3 2 5 -X in double shear Shear : P = 3 x 2 6 .5 %o,t = 79.5k (Table 10 1) v Bearing: P = 3 x ( 2 6 . 1 ^ ) = 78.3k (l=X') (Table 102) Net tension: Ft = 0.5FU= 0.5(58ksi) = 29ksi A net = (2 plates x y 6" ) U - 2 x % , = 3.98m.2 V !d+Xs'i J Pt = Ft x Anet = 2 9 ) / 2 x 3.98in2 = 115.5k Group B bolts: 2-%"<|> A 3 2 5 -X in double shear Shear : PL=2x36.1% olt = 72.2k (Table 10 1) v Bearing: P = 2 x 30.5%olt = 61k (Table 10.2) ( t= # ) Net Tension: Ft =29ksi; d + X6- = % " Pt = 2 9 ) / 2 x (y2“) x (3■-% ») = 29.9k « - governs Tension capacity of the y x3" bar: Pt = Ft x A = 2 2 ) / 2 x (%" x3") = 33k (0.6Fy) Net tension in the yi "x3' bar is critical; 10.4 Each member will be checked for shear and bearing only. Member a : P = 105k - 63k = 42k % "<|>A325-X(NSL)-A36 steel 49 k Shear: n = ---------- = 1 .6 - 2 bolts (double) 2 6 . 5 % bolt 42k Bearing: n = ---------- = 2 .1 4 - 3 bolts * - governs 19-6% olt Member b : P = 26k 26k Shear: n = ------------ = 1 .9 5 - 2 bolts (angle) 13.3%olt - 26k B earing: n = = 2.65 - 3 bolts *—governs (t=K«-) 9 8 Yboh Member c : P = 26k Shear: n = 96k = 1 .9 5 - 2 bolts 1 3 .3 % olt 26k Bearing: n = ----------= 1 .9 8 - 2 bolts * - governs (t=X") 13. l^ o it Member d : P = 42k 42k Shear: n = ---------- = 3 . 1 6 - 4 bolts (angle) 13.3%olt 42k Bearing: n = ----------= 3 .2 1 - 4 bolts W ) 13.1%olt governs 10.5 4 - %" <|>A325 - SC(STD) w / A 36 steel Shear: Pv = 15%.^ x 4bolts= 60k «—governs (double) ( T ab,e 10 j) Bearing: P =26.1%oltx 4 bolts = 104.4k ( t - X ') (T able 10 2) Net tension: Anet = (8 "-2 x % ")(X ") =3.19in.2 Ft =0.5FU= 29ksi Pt = Ft x A net = ( 2 9 X ») x (3.19in.2) = 89.9k 10.6 1-1%"<|» A490X S hear: Pv = 119k (double) (Table 10.1) Bearing: P = F xA (t=i-) Fp = 1.2F„ =1.2(58ksi) =69.6ksi Ap = (2 x = 1.375in.2 Pp = 6 9 . 6/ i n/ . 2 x 1,375m2 = 95.7k Net tension: Hole diameter = 1%"+X6"= ljfe Anet = (2 x X ")(5 X "-lX 6") = 4.06in.2 Pt = Ft x Anet = (2 9 )/ 0 x (4 06in.2) = 117.8k Bearing governs the design. = 95.7k 10.7 Beam reaction= 210k 5 -A 4 9 0 X bolts Using Table 10.3; 5 -%"<(> A490X bolts carry 242k in shear. Clip angle thickness is %" Angle length = 1 4 / / (it fits within the beam flanges) 10.8 %"<|> A 3 2 5 -S C @3" o.c. a) Maximum clearance: = 21.62" -2(0.93") - 2(1") = 17.76" From Table 10.3; using L=17J4" n = 6 bolts Pv =90. Ik A 3 2 5 -S C 10.9 Plate capacity: PPL = F t x A = (22% 2)x(6"x%„) = 49.5k Minimum weld size = /3 6" Maximum weld size = Xe" T total = 1 2 " 495k = 4 13 / 12" Use: Xe" weld (s = 4 .6 4 % ) Table 10.4 10.10 PpL= 2 2 X ,2x (5 x X 6") = 34.88k Minimum weld size = Xe" (s = 2.78% ) Maximum weld size = %" (s = 3.71% ) L mn = 5" (distance between longitudinal welds) Total minimum weld length = 15" 'I A OOU Required strength: s = — —— = 2.29% U se: YVj. weld with L = 5" 10.11 Using the maximum weld size: t - Y \/= Y a '-Y ^ '= Y n" Pallow = L x 3.71 & =3.71L (based on w eld) (T able 10.4) Plate capacity: PPL = FT x A = 22% 2 x(% "x3") = 20.6k Equating: 3.71L = 20.6k L = 5.6" 10.12 A = 3.59 in.2 ! 4” ! Fillet weld: X" weld = 3.71% Total weld length = 4x4"= 16" Weld capacity = 3.71%, x 16"= 59.4k Fillet Weld Full penetration groove weld: Capacity is equal to the tensile capacity of the square tube. .-. Pt = Ft x A = 2 2 % 2 x3.59in.2 = 79k l ~ i // Groove Weld // 10.13 Y ____ Ri , Re a = 3.34" 0.84” P O * r2 [ZFx =0] R1+ R2 + R e = P P = F, x A = 22% 2 x 4.0in.2 = 88k [2M 0 = 0] ^(3.34") + Re(0.84") - R 2(l .66") = 0 Minimum weld: Xs" Maximum weld: 1/ 6" Try weld: s = 2.78% Re = s x L t = 2.78% x 5" = 13.9k Returning to the moment equilibrium equation; ^(3 .3 4 ) + (13.9k)(0.84") = R2(l .66") R, = 2 R, (3.34)+11.68 ----------= 2.01R, + 7.04 1.66 1 Substituting into the 2F, = 0 equation; Rj + (2.01^ + I M ) +13.9 = 88k Rj = 22.28k R2 = 51.82k R = 13.9k Rj = s x Lj L 2228k =8.01" 2.78 % T R, = s x L , T 51.82k1 0 ,.„ L, = --------- = 18.64" 2.78% X b - y = 1.66” —6L—} —1