Subido por Adalis Tobar

formulario-calculo-completo

Anuncio
Fórmulas de derivación
𝑎, 𝑐, 𝑛 =constantes; 𝑢, 𝑣, 𝑥 =variables o expresiones algebraicas
Método de los cuatro pasos
𝑑
𝑑𝑥
𝑓(𝑥) = lim
Trascendentes
𝑓(𝑥+Δ𝑥)−𝑓(𝑥)
9.
Δ𝑥
Δ𝑥→0
Fórmulas básicas
1.
2.
3.
4.
5.
6.
7.
8.
10.
𝑑
𝑐=0
𝑑𝑥
𝑑
𝑑𝑥
𝑑
𝑑𝑥
𝑑
𝑑𝑥
𝑑
𝑑𝑥
𝑑
𝑑𝑥
𝑑
𝑑𝑥
𝑑
11.
𝑥=1
(𝑢 ± 𝑣) =
𝑑
𝑑𝑥
12.
𝑑
𝑢 ± 𝑑𝑥 𝑣
𝑑
13.
(𝑐 ⋅ 𝑣) = 𝑐 𝑣
𝑑𝑥
𝑛
𝑣 =𝑛⋅𝑣
𝑛−1
(𝑢 ⋅ 𝑣) = 𝑢
𝑢
( )=
𝑣
√𝑣 =
𝑑𝑥
𝑑
𝑑𝑥
𝑑
14.
⋅ 𝑑𝑥 𝑣
𝑣+𝑣
𝑑
𝑑𝑥
𝑢
𝑑
𝑑
𝑣 𝑢−𝑢 𝑣
𝑑𝑥
𝑑𝑥
𝑣2
𝑣
19.
𝑣
𝑑
log 𝑎 (𝑣) =
𝑑𝑥
𝑑
𝑑
𝑣
𝑑𝑥
𝑑
20.
𝑣⋅ln(𝑎)
𝑑
𝑎𝑣 = 𝑎𝑣 ⋅ ln(𝑎) ⋅
𝑑𝑥
𝑑𝑥
𝑣
21.
𝑑
𝑒 𝑣 = 𝑒 𝑣 ⋅ 𝑑𝑥 𝑣
𝑑𝑥
𝑑
sen(𝑣) = cos(𝑣) ⋅
𝑑𝑥
𝑑
𝑑𝑥
22.
𝑣
𝑑
𝑑
23.
cos(𝑣) = − sen(𝑣) ⋅ 𝑑𝑥 𝑣
𝑑𝑥
𝑑
𝑑
15.
tan(𝑣) = sec 2 (𝑣) ⋅ 𝑑𝑥 𝑣
𝑑𝑥
16.
𝑑
𝑑𝑥
24.
𝑑
𝑑
𝑑
𝑑
𝑑
tan−1 (𝑣) =
𝑑𝑥
𝑑
𝑣
𝑑𝑥
1+𝑣 2
𝑑
csc −1 (𝑣) = −
𝑑𝑥
𝑑
sec −1 (𝑣) =
𝑑𝑥
𝑑
𝑑𝑥
cot
𝑑
𝑣
𝑑𝑥
𝑣√𝑣 2−1
𝑑
𝑣
𝑑𝑥
𝑣√𝑣 2−1
−1 (
𝑣) = −
𝑑
𝑣
𝑑𝑥
1+𝑣 2
Regla de la cadena
𝑑
sec(𝑣) = sec(𝑣) tan(𝑣) ⋅ 𝑑𝑥 𝑣
𝑑𝑥
𝑑𝑥
𝑣
𝑑𝑥
cos −1 (𝑣) = − √1−𝑣
2
𝑑𝑥
csc(𝑣) = − csc(𝑣) cot(𝑣) ⋅ 𝑑𝑥 𝑣
𝑑
𝑣
𝑑𝑥
sen−1 (𝑣) = √1−𝑣
2
𝑑𝑥
𝑑
𝑑
18.
2√𝑣
ln(𝑣) = 𝑑𝑥
𝑑𝑥
17.
𝑑
𝑣
𝑑𝑥
𝑑
𝑑
𝑑𝑦 𝑑𝑦 𝑑𝑢
=
⋅
𝑑𝑥 𝑑𝑢 𝑑𝑥
𝑑
cot(𝑣) = − csc 2 (𝑣) ⋅ 𝑑𝑥 𝑣
Sugerencias algebraicas
𝑎𝑥
𝑏
3
𝑎
= 𝑏𝑥
√𝑥 √𝑥 = 𝑥
1
𝑥 −𝑛 =
Otras cosas útiles
1
𝑥𝑛 =
𝑥𝑛
𝑚
𝑛
√𝑥 𝑚 = 𝑥 𝑛
√𝑥 = 𝑥 3
1
𝑎
𝑥 −𝑛
𝑏𝑥
𝑎
= 𝑥 −1
𝑏
Ángulos Notables
Recta punto-pendiente: 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1 )
1
𝜽 Deg
𝜽 Rad
𝐬𝐞𝐧 𝜽
𝐜𝐨𝐬 𝜽
𝐭𝐚𝐧 𝜽
𝟎°
𝟎
0
1
0
𝝅
𝟔
𝝅
𝟒
𝝅
𝟑
𝝅
𝟐
1
2
√3
3
√3
2
√3
2
√2
2
1
2
1
0
∞
Pendiente de la Normal: 𝑚𝑁 = − 𝑚
𝑡
𝟑𝟎°
𝑚 −𝑚1
2
Ángulo entre dos rectas: 𝜃 = tan−1 (1+𝑚
1 ⋅𝑚2
Longitud de la subtangente =
1
3
√𝑥 = 𝑥 2
𝑥 2 = 𝑥 √𝑥
)
𝟒𝟓°
𝑦1
𝑚𝑡
𝟔𝟎°
Longitud de la subnormal = 𝑦1 ⋅ 𝑚𝑡
𝟗𝟎°
√2
2
1
√3
Fórmulas de Integración
𝑎, 𝑏, 𝑐, 𝑛 =constantes; 𝑢, 𝑣, 𝑥 =variables o expresiones algebraicas
Básicas
1.
∫ (𝑢 ± 𝑣)𝑑𝑥 = ∫ 𝑢 𝑑𝑥 ± ∫ 𝑣 𝑑𝑥
16. ∫ sec(𝑣) 𝑑𝑣 = ln|sec(𝑣) + tan(𝑣)| + 𝑐
2.
∫ 𝑎 𝑑𝑣 = 𝑎 ∫ 𝑑𝑣
17. ∫ csc(𝑣) 𝑑𝑣 = ln|csc(𝑣) − cot(𝑣)| + 𝑐
3.
∫ 𝑑𝑥 = 𝑥 + 𝑐
4.
5.
∫ 𝑣 𝑛 𝑑𝑣 =
∫
𝑑𝑣
𝑣
𝑣 𝑛+1
𝑛+1
𝑑𝑣
𝑣
18. ∫ √𝑎2 2 = sen−1 (𝑎) + 𝑐
−𝑣
+ 𝑐; 𝑛 ≠ −1
𝑑𝑣
1
𝑣
19. ∫ 𝑎2+𝑣 2 = 𝑎 tan−1 (𝑎) + 𝑐
= ln|𝑣| + 𝑐
𝑑𝑣
1
𝑣
20. ∫
= sec −1 ( ) + 𝑐
𝑎
𝑎
𝑣√𝑣 2−𝑎 2
Trascendentes
𝑑𝑣
1
𝑣+𝑎
𝑑𝑣
1
𝑣−𝑎
21. ∫ 𝑎2−𝑣 2 = 2𝑎 ln |𝑣−𝑎| + 𝑐
𝑎𝑣
6.
∫ 𝑎𝑣 𝑑𝑣 = ln 𝑎 + 𝑐
7.
∫ 𝑒 𝑣 𝑑𝑣 = 𝑒 𝑣 + 𝑐
22. ∫ 𝑣 2−𝑎2 = 2𝑎 ln |𝑣+𝑎| + 𝑐
8.
∫ sen(𝑣) 𝑑𝑣 = − cos(𝑣) + 𝑐
Integración por partes
9.
∫ cos(𝑣) 𝑑𝑣 = sen(𝑣) + 𝑐
23. ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢
10. ∫ sec 2 (𝑣) 𝑑𝑣 = tan(𝑣) + 𝑐
Integral definida y
Teorema Fundamental del Cálculo
11. ∫ csc 2 (𝑣) 𝑑𝑣 = − cot(𝑣) + 𝑐
𝑏
24. ∫𝑎 𝑓 (𝑥)𝑑𝑥 = lim ∑𝑛𝑖=1 𝑓(𝑥𝑖∗ )Δ𝑥
12. ∫ sec(𝑣) tan(𝑣) 𝑑𝑣 = sec(𝑣) + 𝑐
𝑛→∞
𝑏−𝑎
13. ∫ csc(𝑣) cot(𝑣) 𝑑𝑣 = − csc(𝑣) + 𝑐

Δ𝑥 =
14. ∫ tan(𝑣) 𝑑𝑣 = ln|sec(𝑣)| + 𝑐

𝑥𝑖 = 𝑎 + 𝑖 ⋅ Δ𝑥
15. ∫ cot(𝑣) 𝑑𝑣 = ln|sen(𝑣)| + 𝑐
𝑛
𝑏
25. ∫𝑎 𝑓(𝑥)𝑑𝑥 = 𝐹 (𝑏) − 𝐹(𝑎 )
Sustitución trigonométrica
Expresión
Sustitución
Identidad
𝜋
ඥ𝒂𝟐 − 𝒗𝟐
𝑣 = 𝑎 sen 𝜃; − 2 ≤ 𝜃 ≤
ඥ𝒂𝟐 + 𝒗𝟐
𝑣 = 𝑎 tan 𝜃; − 2 < 𝜃 <
ඥ𝒗𝟐 − 𝒂𝟐
𝜋
𝑣 = 𝑎 sec 𝜃; 0 ≤ 𝜃 <
𝜋
2
𝜋
1 − sen2 𝜃 = cos2 𝜃
2
𝜋
1 + tan2 𝜃 = sec 2 𝜃
2
ó𝜋≤𝜃<
3𝜋
2
sec 2 𝜃 − 1 = tan2 𝜃
Notación sigma
Progresiones
Aritméticas
Geométricas
𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑟
𝑎𝑛 = 𝑎1 ⋅ 𝑟 𝑛−1
𝑆𝑛 =
𝑛(𝑎1 +𝑎𝑛)
𝑆𝑛 =
2
𝑎
𝑥ҧ = ∑𝑛𝑖=1 ( 𝑛𝑖) =
𝑎1+𝑎𝑛
2
𝑟⋅𝑎𝑛−𝑎1
∑𝑛𝑖=1 𝑐 = 𝑛𝑐
∑𝑛𝑖=1 𝑐𝑎𝑖 = 𝑐 ∑𝑛𝑖=1 𝑎𝑖
∑𝑛𝑖=1(𝑎𝑖 ± 𝑏𝑖 ) = ∑𝑛𝑖=1(𝑎𝑖 ) ± ∑𝑛𝑖=1(𝑏𝑖 )
𝑟−1
𝑥ҧ = 𝑛ඥς𝑛𝑖=1(𝑎𝑖 ) = 𝑎1 ⋅ √𝑟 𝑛−1
Interés compuesto
Geométricas infinitas
𝐶 = 𝑐 (1 + 𝑟)𝑡
1
𝑆 = 1−𝑟
𝑎
∑𝑛𝑖=1(𝑖 ) =
𝑛(𝑛+1)
∑𝑛𝑖=1(𝑖 2 ) =
2
𝑛(𝑛+1)(2𝑛+1)
∑𝑛𝑖=1(𝑖 3 ) = ቂ
6
𝑛(𝑛+1) 2
2
ቃ
Descargar