De Moivre para Potencias 𝑧 = 𝑟 𝑛 (cos(𝑛𝜃 ) + 𝑖 sin(𝑛𝜃 )) 𝑛 De Moivre para Raíces 1 1 𝜃 + 2𝜋𝑘 𝜃 + 2𝜋𝑘 ) + 𝑖 sin ( )) 𝑤 = 𝑧 𝑛 = 𝑟 𝑛 (cos ( 𝑛 𝑛 𝟏 𝟑 √𝟒 − 𝟒√𝟑𝒊 = (𝟒 − 𝟒√𝟑𝒊)𝟑 ; 𝒏 = 𝟑, 𝒌 = 𝟎, 𝟏, 𝟐 2 𝑟 = √(4)2 + (−4√3) = √16 + 16(3) = √64 = 8 −4√3 𝜋 ) = tan−1 (−√3) = −60° → − 4 3 8(cos(60) − 𝑖 sin(60)) 𝜋 𝜋 8 (cos ( ) − 𝑖 sin ( )) 3 3 1 60 + 360𝑘 60 + 360𝑘 ) − 𝑖 sin ( )) 83 (cos ( 3 3 𝜋 𝜋 + 2𝜋𝑘 + 2𝜋𝑘 1 83 (cos ( 3 ) − 𝑖 sin ( 3 )) 3 3 𝜃 = tan−1 ( 𝑘=0 + 360(0) 60 + 360(0) ) − 𝑖 sin ( )) 3 3 60 60 𝑤 = 2 (cos ( ) − 𝑖 sin ( )) 3 3 𝑤 = 2(cos(20) − 𝑖 sin(20)) 𝑤 = 1.879 − 0.684𝑖 𝑤= 1 60 83 (cos ( 𝑤= 1 60 83 (cos ( 𝑤= 1 60 83 (cos ( 𝑘=1 + 360(1) 60 + 360(1) ) − 𝑖 sin ( )) 3 3 420 420 ) − 𝑖 sin ( )) 𝑤 = 2 (cos ( 3 3 𝑤 = 2(cos(140) − 𝑖 sin(140)) 𝑤 = −1.532 − 1.285𝑖 𝑘=2 + 360(2) 60 + 360(2) ) − 𝑖 sin ( )) 3 3 780 780 ) − 𝑖 sin ( )) 𝑤 = 2 (cos ( 3 3 𝑤 = 2(cos(260) − 𝑖 sin(260)) 𝑤 = −0.347 + 1.969𝑖